
’photobiology’ Version 0.9.8

User Guide

Pedro J. Aphalo

May 19, 2016

Contents

1 Introduction 3

2 Installation and use 4

3 Spectra 4
3.1 Classes . 5
3.2 Data assumptions . 6
3.3 Querying the class . 8
3.4 Construction . 9
3.5 Special attributes . 11

4 Collections of spectra 14
4.1 Classes . 14
4.2 Construction . 15

4.2.1 Constructors . 15
4.2.2 Using ‘as’ functions . 16
4.2.3 Converting ‘tidy’ data . 17
4.2.4 Converting ‘untidy’ data frames 19

4.3 Querying the class . 20
4.4 Extract, replace and combine . 21
4.5 Transform or apply functions . 26
4.6 Convolution . 29
4.7 Attributes . 33

5 Wavebands 35
5.1 Construction . 35
5.2 Querying the class . 36
5.3 Retrieving properties . 37

1

6 Collections of wavebands 37
6.1 Construction . 37

6.1.1 List constructor . 37
6.1.2 Special constructor . 37

7 Object ‘inspection’ methods 41
7.1 print() . 41
7.2 summary() . 41

8 Transformations: using operators 42
8.1 Binary operators . 42
8.2 Unary operators and maths functions 45
8.3 Options . 46

9 Transformations: methods and functions 48
9.1 Manipulating spectra . 48
9.2 Conversions between radiation units 51
9.3 Normalizing a spectrum . 52
9.4 Rescaling a spectrum . 53
9.5 Shifting the zero of the spectral data scale 54
9.6 Replacing off-range spectral data values 55
9.7 Wavelength interpolation . 56
9.8 Trimming and clipping . 56

9.8.1 Method clip wl() . 56
9.8.2 Method trim wl() . 58
9.8.3 Functions trim spct and trim spct 60

9.9 Convolving weights . 60
9.9.1 Individual spectra . 61
9.9.2 Vectors . 61

9.10 Tagging with bands and colours 61
9.10.1 Individual spectra . 61

10 Summaries 64
10.1 Summary . 64
10.2 Wavelength . 66

10.2.1 Individual spectra . 66
10.2.2 Collections of spectra . 67

10.3 Peaks and valleys . 67
10.3.1 Individual spectra . 67
10.3.2 Collections of spectra . 69

10.4 Irradiance . 70
10.4.1 Individual spectra . 70
10.4.2 Collections of spectra . 72
10.4.3 Numeric vectors . 74

10.5 Fluence . 74
10.5.1 Individual spectra . 74

2

10.6 Photon and energy ratios . 75
10.6.1 Individual spectra . 75
10.6.2 Collections of spectra . 76
10.6.3 Vectors . 76

10.7 Normalized difference indexes . 76
10.8 Individual spectra . 76
10.9 Transmittance, reflectance, absorptance and absorbance 77

10.9.1 Individual spectra . 77
10.9.2 Collections of spectra . 77

10.10Integrated response . 78
10.10.1 Individual spectra . 78
10.10.2 Collections of spectra . 78

10.11Integration over wavelengths . 79
10.11.1 Calculation from individual spectra 79

11 Astronomy 79
11.1 Position of the sun . 79
11.2 Times of sunrise, solar noon and sunset 81

12 RGB colours 84

13 Optimizing performance 85

14 Example data 86

1 Introduction

We have developed a set of packages to facilitate the calculation of many different
quantities that can be derived from spectral irradiance data. The core package
in this suite is called ’photobiology’, and is the package described here. Other
specialized packages for quantification of ultraviolet radiation and visible radia-
tion (’photobiologyWavebands’), plant photoreceptors and other plant photobiol-
ogy related calculations (’photobiologyPlants’), example spectral data for filters
(’photobiologyFilters’), lamps (’photobiologyLamps’), LEDs (’photobiologyLEDs’),
sunlight (’photobiologySun’), broadband sensors (’photobiologySensors’) and for
exchange of data in ‘foreign’ formats (’photobiologyInOut’) are part of the suite.
One additional package, (’ggspectra’), implements facilities for plotting spectral
data built on top of package ‘ggplot2’, providing both ggplot statistics in addi-
tion to specializations of plot(). All packages that can comply with the reposi-
tory rules have been submitted or will in coming months be submitted to CRAN
(Comprehensive R archive network). The packages not yet in CRAN, and devel-
opment versions of those already in CRAN, are available through a CRAN-like
repository at https://www.r4photobiology.info/R/ while the Web site at
http://www.r4photobiology.info provides news about the development of
the suite and some additional information. Each package has its own public Git

3

https://www.r4photobiology.info/R/
http://www.r4photobiology.info

repository at my Bitbucket account (https://bitbucket.org/aphalo/) from
where the source code of the current and previous versions can be cloned.

Package ’photobiology’ provides two sets of functions for many operations:
low-level functions programmed following a functional paradigm, and higher-
level functions using an object-oriented paradigm. The former functions take
as arguments numeric vectors and are sometimes faster. The later ones take
‘spectra’ objects as arguments, are easier to use, and at least at the moment, to
some extent slower. For everyday use ‘spectra’ objects are recommended, but
when maximum performance or flexibility in scripts is desired, the use of the
functions taking numeric vectors as arguments may allow optimizations that are
not possible with the object-oriented functions. The differences in performance
becomes relevant only in extreme cases such as processing in a single script
tenths of thousands of spectra. In this vignette we emphasize the use of the
object-oriented classes and methods.

2 Installation and use

The functions in package ’photobiology’ are made available by installing the
package photobiology (once) in a computer system and loading it from the
library when needed.

To load the package into the workspace we use library(photobiology).

3 Spectra

Package ’photobiology’ defines a family of classes based on data frames which by
imposing some restrictions on the naming of the vectors, allows methods to ‘find’
the data when passed one of these objects as argument. In addition, as the data
is checked when the object is built, there is no need to test for the validity of the
data each time a calculation is carried out. The other advantage of using spct

objects, is that specialized versions of generic functions like print and operators
like + are defined for spectra. spct objects are data.frame objects, as a result
of how classes have been derived. In this package we define a generic or base
spectrum class, derived from data.frame from which specialized types of spectra
are in turn derived. This ‘parenthood’ hierarchy means that spectra objects can
be used almost anywhere where a data.frame is expected. Specializations of
many methods including extraction (indexing) methods and partial assignment
methods are defined to ensure that the expectations on the variables contained in
objects of these classes is guaranteed in most situations. Other specializations of
methods and functions are related to achieving a convenient and concise syntax
tailored for spectral data as in the case of mathematical operators and functions.

Another important aspect is that spectral data as stored in objects of these
classes is always of known physical quantities expressed using known units.
Furthermore, attributes are used to keep track of both metadata related to the
origin of the data and of later transformations that affect their interpretation,

4

https://bitbucket.org/aphalo/

Table 1: Classes for spectral data. In addition to the required variables listed in the
table, additional arbitrary variables are partly supported—some operations will not in-
clude them in returned values to avoid ambiguity and other possible conflicts. In addition
to the attributes listed, all spectral objects have attributes multiple.wl, normalized,
scaled, when.measured, where.measured, what.measured plus the normal attributes of
data frame objects including comment.

Name Variables Attributes

generic spct w.length

raw spct w.length, counts instr.desc, instr.settings, linearized

cps spct w.length, cps instr.desc, instr.settings, linearized

source spct w.length, s.e.irrad time.unit, bswf

w.length, s.q.irrad time.unit, bswf

filter spct w.length, Tfr Tfr.type

w.length, A Tfr.type

reflector spct w.length, Rfr Rfr.type

object spct w.length, Tfr, Rfr Tfr.type, Rfr.type

response spct w.length, s.e.response time.unit

w.length, s.q.response time.unit

chroma spct w.length, x, y, z

such as normalization or re-scaling. Although sanity tests are applied at the
time of object creation, to a large extent the responsibility of ensuring that the
numbers provided as argument to object constructors comply with expectations
remains with the users of the packages.

In addition to the classes for storing individual spectra, classes for storing
collections of spectra are defined. These classes are derived from class list

and can contain member spectra of different lengths and measured at different
wavelength values.

We give in this vignette brief descriptions and examples of the use of different
classes, methods, functions and operators. We start with the simplest and most
frequently used methods.

3.1 Classes

The package defines several classes intended to be used to store different types of
spectral data. They are all derived from generic spct, which in turn is derived
from data.frame and internally created using dplyr::data frame. Table 1 lists
them. Attributes are used in objects of these classes to keep metadata such as
information about units of expression.

The design imposes that data from different observations are never present
as different data columns, if present, additional data columns represent different
properties from the same observation event. In other words, the storage format
is ‘tidy’ as defined by Hadley Wickham. In most cases, one spectral object

5

should correspond to one spectral observation, but some functions are com-
patible or can be used to create spectral objects where the spectral data from
different observations are stored “longitudinally” and “tagged” with a factor
with a level for each observation event. These observations must use consistent
units of expression and attribute values. This long format is useful, for example,
when producing plots with package ’ggplot2’.

3.2 Data assumptions

An assumption of the package is that wavelengths are always expressed in
nanometres (1 nm = 1 · 10−9 m). If the data to be analysed uses different
units for wavelengths, e.g. Ångstrom (1 Å = 1 · 10−10 m), the values need to
be re-scaled before creating objects of the spectral classes. The same applies
to all spectral quantities, as there is an expectation in every case, of using base
SI units for expression. Table 2 lists the units of expression for the different
variables listed in Table 1 and the metadata attributes that may determine
variations in the expression of the quantities.

Energy irradiance is assumed to be expressed in W m−2 and photon irra-
diances in mol m−2 s−1, that is to say using second as unit for time. This is
the default, but it is possible to set the unit for time to day in the case of
source spct objects.

The default time unit used is second, but day and exposure can be used by
supplying the arguments "day" or "exposure"1 to a parameter of the construc-
tor of source spct objects. In addition to these character constants objects of
class lubridate:duration are also accepted.

The attributes are normally set when a spectral object is created, either
using default values or with values supplied as arguments to the constructor.
However, methods for quering and setting most of these attributes are also
available.

Not respecting the expectations about data inputs or setting erroneous
values in the metadata attributes will yield completely wrong results if
calculations are attempted! It is extremely important to make sure that
the wavelengths are in nanometres as this is what all functions expect. If
wavelength values are in the wrong units, the action-spectra weights and
quantum to/from energy units conversions will be wrongly calculated, and
the values returned by most functions wrong, without warning. Errors in
some cases will be triggered at the time of object creation as the data input
to constructors is tested to be within the expected range of values, which
in the case of some quantities frequently allows detection of mistakes in the
use unit scaling factors.

1The meaning of "exposure" is the total exposure time, in other words, fluence instead of
irradiance.

6

Table 2: Variables used for spectral data and their units of expression: A: as stored in
objects of the spectral classes, B: also recognized by the set family of functions for spectra
and automatically converted. time.unit accepts in addition to the character strings listed
in the table, objects of classes lubridate::duration and period, in addition numeric

values are interpreted as seconds. exposure.time accepts these same values, but not the
character strings.

Variables Unit of expression Attribute value

A: stored

w.length nm
counts n
cps n s−1

s.e.irrad W m−2 nm−1 time.unit = "second"

s.e.irrad J m−2 d−1 nm−1 time.unit = "day"

s.e.irrad varies time.unit = duration

s.q.irrad mol m−2 s−1 nm−1 time.unit = "second"

s.q.irrad mol m−2 d−1 nm−1 time.unit = "day"

s.q.irrad mol m−2 nm−1 time.unit = "exposure"

s.q.irrad varies time.unit = duration

Tfr [0,1] Tfr.type = "total"

Tfr [0,1] Tfr.type = "internal"

A a.u. Tfr.type = "internal"

Rfr [0,1] Rfr.type = "total"

Rfr [0,1] Rfr.type = "specular"

s.e.response x J−1 s−1 nm−1 time.unit = "second"

s.e.response x J−1 d−1 nm−1 time.unit = "day"

s.e.response x J−1 nm−1 time.unit = "exposure"

s.e.response varies time.unit = duration

s.q.response x mol−1 s−1 nm−1 time.unit = "second"

s.q.response x mol−1 d−1 nm−1 time.unit = "day"

s.q.response x mol−1 nm−1 time.unit = "exposure"

s.q.response varies time.unit = duration

x, y, z [0,1]

B: converted

wl → w.length nm
wavelength → w.length nm
Tpc → Tfr [0,100] Tfr.type = "total"

Tpc → Tfr [0,100] Tfr.type = "internal"

Rpc → Rfr [0,100] Rfr.type = "total"

Rpc → Rfr [0,100] Rfr.type = "specular"

counts.per.second → cps n s−1

7

If spectral irradiance data is in W m−2 nm−1, and the wavelength in nm, as
is the case for many Macam spectroradiometers, the data can be used directly
and functions in the package will return irradiances in W m−2.

If, for example, the spectral irradiance data output by a spectroradiometer
is expressed in mW m−2 nm−1, and the wavelengths are in Ångstrom then to
obtain correct results when using any of the packages in the suite, we need to
rescale the data when creating a new object.

not run

my.spct <- source_spct(w.length = wavelength/10, s.e.irrad = irrad/1000)

In the example above, we take advantage of the behaviour of the S language:
an operation between a scalar and vector, is equivalent to applying this operation
to each element of the vector. Consequently, in the code above, each value from
the vector of wavelengths is divided by 10, and each value in the vector of
spectral irradiances is divided by 1000.

3.3 Querying the class

Before giving examples of how to construct objects to store spectral data we
show how to query the class of an object, and how to query the class of a
spectrum. Consistently with R, the package provides ‘is’ functions for querying
the type of spectra objects. The only ‘unusual’ function provided as another
name for is.generic spct is is.any spct().

is.any_spct(sun.spct)

[1] TRUE

is.generic_spct(sun.spct)

[1] TRUE

is.source_spct(sun.spct)

[1] TRUE

In addition function class spc() returns directly the spectrum-related class
attributes. It filters out from the output of class() the underlying classes
inherited.

class_spct(sun.spct)

[1] "source_spct" "generic_spct"

class(sun.spct)

[1] "source_spct" "generic_spct" "tbl_df" "tbl"

[5] "data.frame"

8

3.4 Construction

There are basically two different approaches to the creation of spectra by users, a
constructor similar to data.frame constructor that takes vectors as arguments,
and a constructor that converts list objects into spectral objects, which works
similarly to as.data.frame from base R. In contrast to the data frame con-
structors spectral constructor require the variables or the vector arguments to
be suitably named so that they can be recognized. As data frames and spectral
objects are also lists, they are acceptable arguments.

Here we briefly describe the ‘as’ constructor functions for spectra. In the first
example we create an object to store spectral irradiance data for ‘light source’,
by first creating a data frame, and creating the spectral object as a copy of it.
In the example below we supply a single value, 1, for the spectral irradiance.
This value gets recycled as is normal in R, but of course in real use it is more
usual to supply a vector of the same length as the w.length vector.

my.df <- data.frame(w.length = 400:410, s.e.irrad = 1)

my.spct <- as.source_spct(my.df)

class(my.spct)

[1] "source_spct" "generic_spct" "tbl_df" "tbl"

[5] "data.frame"

class(my.df)

[1] "data.frame"

my.spct

Object: source_spct [11 x 2]

Wavelength range 400 to 410 nm, step 1 nm

Time unit 1s

##

w.length s.e.irrad

(int) (dbl)

1 400 1

2 401 1

3 402 1

4 403 1

5 404 1

6 405 1

7 406 1

8 407 1

9 408 1

10 409 1

11 410 1

We can make a ‘generic spct’ copy of any spectrum object.

my.g.spct <- as.generic_spct(my.spct)

class(my.g.spct)

[1] "generic_spct" "tbl_df" "tbl" "data.frame"

9

When constructing spectral objects from numeric vectors the names of the
arguments are meaningful and convey information on the nature of the spectral
data and basis of expression.

source_spct(w.length = 300:305, s.e.irrad = 1)

Object: source_spct [6 x 2]

Wavelength range 300 to 305 nm, step 1 nm

Time unit 1s

##

w.length s.e.irrad

(int) (dbl)

1 300 1

2 301 1

3 302 1

4 303 1

5 304 1

6 305 1

z <- 300:305

y <- 2

source_spct(w.length = z, s.e.irrad = y)

Object: source_spct [6 x 2]

Wavelength range 300 to 305 nm, step 1 nm

Time unit 1s

##

w.length s.e.irrad

(int) (dbl)

1 300 2

2 301 2

3 302 2

4 303 2

5 304 2

6 305 2

w.length <- 300:305

s.e.irrad <- 1

source_spct(w.length, s.e.irrad)

Object: source_spct [6 x 2]

Wavelength range 300 to 305 nm, step 1 nm

Time unit 1s

##

w.length s.e.irrad

(int) (dbl)

1 300 1

2 301 1

3 302 1

4 303 1

5 304 1

6 305 1

The different constructors have additional arguments to be used in setting
non-default values for the attributes. These arguments have the same name as

10

the attributes. Here we used the data frame created in the first chunk of the
section.

my.d.spct <- as.source_spct(my.df, time.unit = "day")

Argument strict.range can be used to override or make more strict the
validation of the data values.

source_spct(w.length = 300:305, s.e.irrad = -1)

Warning in range check(x, strict.range = strict.range): Negative spectral

energy irradiance values; minimun s.e.irrad = -1

Object: source_spct [6 x 2]

Wavelength range 300 to 305 nm, step 1 nm

Time unit 1s

##

w.length s.e.irrad

(int) (dbl)

1 300 -1

2 301 -1

3 302 -1

4 303 -1

5 304 -1

6 305 -1

source_spct(w.length = 300:305, s.e.irrad = -1, strict.range = NULL)

Object: source_spct [6 x 2]

Wavelength range 300 to 305 nm, step 1 nm

Time unit 1s

##

w.length s.e.irrad

(int) (dbl)

1 300 -1

2 301 -1

3 302 -1

4 303 -1

5 304 -1

6 305 -1

Finally argument comment can be used to add a comment to the data at the
time of construction.

my.cm.spct <- source_spct(w.length = 300:305, s.e.irrad = 1,

comment = "This is a comment")

comment(my.cm.spct)

[1] "This is a comment"

3.5 Special attributes

Spectral objects have several attributes used to store metadata, such as the
time unit used or type of spectral quantity. Some attributes are meaningful for

11

all the classes of spectra defined in the package. These are time of measure-
ment using attribute "when.measured", place of measurement using attribute
"where.measured" and free-text comments. One can set and get comments
stored in spectra by means of base R’s comment() and comment() <- func-
tions. Some of the functions in this package append additional information to
comments or merge comments.

Functions setWhenMeasured() and getWhenMeasured() are used for setting
or getting a date as a POSIXct value. This format is compatible with many
functions from package lubridate.

my.spct <- sun.spct

setWhenMeasured(my.spct, NULL)

getWhenMeasured(my.spct)

[1] NA

setWhenMeasured(my.spct, ymd_hms("2015-10-31 22:55:00", tz = "EET"))

getWhenMeasured(my.spct)

[1] "2015-10-31 20:55:00 UTC"

Functions setWhereMeasured() and getWhereMeasured() are used for set-
ting or getting a geocode as a data.frame value. This format is compatible
with function geocode() from package ggmap. It is also possible, to simply
pass latitude and longitude coordinates, as shown below. The returned value is
always a data frame with columns "lon" and "lat".

setWhereMeasured(my.spct, NULL)

getWhereMeasured(my.spct)

lon lat

1 NA NA

setWhereMeasured(my.spct, lat = 60, lon = -10)

getWhereMeasured(my.spct)

lon lat

1 -10 60

getWhereMeasured(my.spct)$lon

[1] -10

my.spct

Object: source_spct [522 x 3]

Wavelength range 280 to 800 nm, step 0.9230769 to 1 nm

Measured on 2015-10-31 20:55:00 UTC

Measured at 60 N, -10 E

Time unit 1s

##

w.length s.e.irrad s.q.irrad

(dbl) (dbl) (dbl)

1 280.0000 0 0

12

2 280.9231 0 0

3 281.8462 0 0

4 282.7692 0 0

5 283.6923 0 0

6 284.6154 0 0

7 285.5385 0 0

8 286.4615 0 0

9 287.3846 0 0

10 288.3077 0 0

..

Similar functions exist for other attributes which are not shared by all spec-
tral classes. Spectral objects may have several other attributes used to store
metadata, such as the time unit used. There functions available for querying
and setting the state if these attributes. is functions return a logical value, and
get functions return the values of the attributes themselves. In addition set

functions can be used to set the value attributes, but many of the set functions
are very rarely needed in user code.

The attributes described below are set automatically, and consequently func-
tion setBSWFUsed() and other set functions for these attributes are mainly of
use to programmers extending the package. One exception is when a wrong
value has been assigned by mistake and needs to be overwritten.

For example function is effective() returns TRUE if the spectral data has
been weighted with a BSWF. The corresponding getBSWFUsed() function can
be used, in this case to retrieve the name of the BSWF that was used when
generating the data. Here we demonstrate with one example, where we use two
different waveband objects—constructed on-the-fly with constructor function—,
defining a range of wavelengths.

is_effective(sun.spct)

[1] FALSE

is_effective(sun.spct * waveband(c(400, 700)))

[1] FALSE

Sometimes it may be desired to change the time unit used for expressing
spectral irradiance or spectral response, and this can be achieved with the con-
version function convertTimeUnit. This function both converts spectral data
to the new unit of expression and sets the time.unit attribute, preserving the
validity of the data object.

ten.minutes.spct <-

convertTimeUnit(sun.spct, time.unit = duration(10, "minutes"))

ten.minutes.spct

Object: source_spct [522 x 3]

Wavelength range 280 to 800 nm, step 0.9230769 to 1 nm

Measured on 2010-06-22 09:51:00 UTC

Measured at 60.20942 N, 24.96424 E

13

Time unit 600s (~10 minutes)

##

w.length s.e.irrad s.q.irrad

(dbl) (dbl) (dbl)

1 280.0000 0 0

2 280.9231 0 0

3 281.8462 0 0

4 282.7692 0 0

5 283.6923 0 0

6 284.6154 0 0

7 285.5385 0 0

8 286.4615 0 0

9 287.3846 0 0

10 288.3077 0 0

..

getTimeUnit(ten.minutes.spct)

[1] "600s (~10 minutes)"

Spectral objects created with earlier (pre-release) versions of this pack-
age are missing some attributes. For this reason ‘summary’ and ‘plot’
functions may not work as expected with them. These old objects can
be updated by adding the missing attribute using functions setTimeUnit,
setBSWFUsed, setTfrType and setRfrType. However, in many cases func-
tion update spct can be used to set the missing attributes to default values,
or the scripts re-run to rebuild the data objects from raw data.

4 Collections of spectra

4.1 Classes

The package defines several classes intended to be used to store collections of
different types of spectral data. They are all derived from generic mspct, which
in turn is derived from list. Table 3 lists them.

Objects of these classes, except for those of class generic mspct, can contain
members belonging to one of the classes. Being all other spectral object classes
derived from generic spct, generic mspct objects can contain heterogeneous
collections of spectra. In all cases, there are no restrictions on the lengths,
wavelength range and/or wavelength step size, or attributes other than class

of the contained spectra. Mimicking R’s arrays and matrices, a dim attribute is
always present and dim methods are provided. These allows the storage of time
series of spectral data, or (hyper)spectral image data, or even higher dimen-
sional spectral data. The handling of 1D and 2D spectral collections is already
implemented in the summary methods. Handling of 3D and higher dimensional
data can be implemented in the future without changing the class definition.

14

Table 3: Classes for collections of spectral objects. Objects of class generic mspct can
have member objects of any class derived from generic spct and can be heterogeneous.
Attributes can be queried and set with the normal R methods of the same names. See
table 1 for the attributes used in individual member spectra of collections.

Name Member objects Attributes

generic mspct generic spct names, dim, comment

raw mspct raw spct names, dim, comment

cps mspct cps spct names, dim, comment

source mspct source spct names, dim, comment

filter mspct filter spct names, dim, comment

reflector mspct reflector spct names, dim, comment

object mspct object spct names, dim, comment

response mspct response spct names, dim, comment

chroma mspct chroma spct names, dim, comment

By having implemented dim, also methods ncol and nrow are available as they
use dim internally. Array-like subscripting is not implemented.

4.2 Construction

4.2.1 Constructors

We can construct a collection using a list of spectral objects as a starting point,
in this case the spectral transmittance for two glass filters.

two_suns.mspct <- source_mspct(list(sun1 = sun.spct, sun2 = sun.spct))

two_suns.mspct

Object: source_mspct [2 x 1]

--- Member: sun1 ---

Object: source_spct [522 x 3]

Wavelength range 280 to 800 nm, step 0.9230769 to 1 nm

Measured on 2010-06-22 09:51:00 UTC

Measured at 60.20942 N, 24.96424 E

Time unit 1s

##

w.length s.e.irrad s.q.irrad

(dbl) (dbl) (dbl)

1 280.0000 0 0

2 280.9231 0 0

3 281.8462 0 0

4 282.7692 0 0

5 283.6923 0 0

6 284.6154 0 0

7 285.5385 0 0

8 286.4615 0 0

9 287.3846 0 0

10 288.3077 0 0

..

--- Member: sun2 ---

Object: source_spct [522 x 3]

Wavelength range 280 to 800 nm, step 0.9230769 to 1 nm

15

Measured on 2010-06-22 09:51:00 UTC

Measured at 60.20942 N, 24.96424 E

Time unit 1s

##

w.length s.e.irrad s.q.irrad

(dbl) (dbl) (dbl)

1 280.0000 0 0

2 280.9231 0 0

3 281.8462 0 0

4 282.7692 0 0

5 283.6923 0 0

6 284.6154 0 0

7 285.5385 0 0

8 286.4615 0 0

9 287.3846 0 0

10 288.3077 0 0

..

##

--- END ---

We can also create heterogeneous collections, but this reduces the number
of methods that can be used on the resulting collection.

mixed.mspct <- generic_mspct(list(filter = clear.spct, source = sun.spct))

class(mixed.mspct)

[1] "generic_mspct" "list"

lapply(mixed.mspct, class_spct)

$filter

[1] "filter_spct" "generic_spct"

##

$source

[1] "source_spct" "generic_spct"

4.2.2 Using ‘as’ functions

The as functions for collections of spectra, not only change the class of the
collection object, but also apply the corresponding as functions to the member
objects. They copy the original objects and then convert the copy, which is
returned.

two_gen.mscpt <- as.generic_mspct(two_suns.mspct)

class(two_gen.mscpt)

[1] "generic_mspct" "list"

lapply(two_gen.mscpt, class_spct)

$sun1

[1] "source_spct" "generic_spct"

##

$sun2

[1] "source_spct" "generic_spct"

16

4.2.3 Converting ‘tidy’ data

Spectral objects containing multiple spectra identified by a factor (class of the
argument is replicated to collection members).

two_suns.spct <- rbindspct(list(a = sun.spct, b = sun.spct / 2))

subset2mspct(two_suns.spct)

Object: source_mspct [2 x 1]

--- Member: a ---

Object: source_spct [522 x 3]

Wavelength range 280 to 800 nm, step 0.9230769 to 1 nm

Time unit 1s

##

w.length s.e.irrad s.q.irrad

(dbl) (dbl) (dbl)

1 280.0000 0 0

2 280.9231 0 0

3 281.8462 0 0

4 282.7692 0 0

5 283.6923 0 0

6 284.6154 0 0

7 285.5385 0 0

8 286.4615 0 0

9 287.3846 0 0

10 288.3077 0 0

..

--- Member: b ---

Object: source_spct [522 x 3]

Wavelength range 280 to 800 nm, step 0.9230769 to 1 nm

Time unit 1s

##

w.length s.e.irrad s.q.irrad

(dbl) (dbl) (dbl)

1 280.0000 0 0

2 280.9231 0 0

3 281.8462 0 0

4 282.7692 0 0

5 283.6923 0 0

6 284.6154 0 0

7 285.5385 0 0

8 286.4615 0 0

9 287.3846 0 0

10 288.3077 0 0

..

##

--- END ---

Data frame containing ‘tidy’ spectral data (target class and index variable
need to be supplied as arguments).

test1.df <- data.frame(w.length = rep(200:210, 2),

s.e.irrad = rep(c(1, 2), c(11, 11)),

spectrum = factor(rep(c("A", "B"), c(11,11))))

subset2mspct(test1.df, member.class = "source_spct", idx.var = "spectrum")

Object: source_mspct [2 x 1]

17

--- Member: A ---

Object: source_spct [11 x 2]

Wavelength range 200 to 210 nm, step 1 nm

Time unit 1s

##

w.length s.e.irrad

(int) (dbl)

1 200 1

2 201 1

3 202 1

4 203 1

5 204 1

6 205 1

7 206 1

8 207 1

9 208 1

10 209 1

11 210 1

--- Member: B ---

Object: source_spct [11 x 2]

Wavelength range 200 to 210 nm, step 1 nm

Time unit 1s

##

w.length s.e.irrad

(int) (dbl)

1 200 2

2 201 2

3 202 2

4 203 2

5 204 2

6 205 2

7 206 2

8 207 2

9 208 2

10 209 2

11 210 2

##

--- END ---

To convert a ‘tidy’ data frame into a long form spectral object we need to
pass the number of spectra through parameter multiple.wl to override the
usual check for unique wavelength values.

setSourceSpct(test1.df, multiple.wl = 2L)

test1.df

Object: source_spct [22 x 3]

containing 2 spectra in long form

Wavelength range 200 to 210 nm, step 1 nm

Time unit 1s

##

w.length s.e.irrad spectrum

(int) (dbl) (fctr)

1 200 1 A

2 201 1 A

3 202 1 A

4 203 1 A

18

5 204 1 A

6 205 1 A

7 206 1 A

8 207 1 A

9 208 1 A

10 209 1 A

..

4.2.4 Converting ‘untidy’ data frames

Data frame containing ‘untidy’ or ‘wide’ spectral data (class is determined by
the function used, columns which are not numeric are skipped.

test2.df <- data.frame(w.length = 200:210, A = 1, B = 2, z = "A")

split2source_mspct(test2.df)

Object: source_mspct [2 x 1]

--- Member: A ---

Object: source_spct [11 x 2]

Wavelength range 200 to 210 nm, step 1 nm

Time unit 1s

##

w.length s.e.irrad

(int) (dbl)

1 200 1

2 201 1

3 202 1

4 203 1

5 204 1

6 205 1

7 206 1

8 207 1

9 208 1

10 209 1

11 210 1

--- Member: B ---

Object: source_spct [11 x 2]

Wavelength range 200 to 210 nm, step 1 nm

Time unit 1s

##

w.length s.e.irrad

(int) (dbl)

1 200 2

2 201 2

3 202 2

4 203 2

5 204 2

6 205 2

7 206 2

8 207 2

9 208 2

10 209 2

11 210 2

##

--- END ---

19

split2source_mspct(test2.df, spct.data.var = "s.q.irrad")

Object: source_mspct [2 x 1]

--- Member: A ---

Object: source_spct [11 x 2]

Wavelength range 200 to 210 nm, step 1 nm

Time unit 1s

##

w.length s.q.irrad

(int) (dbl)

1 200 1

2 201 1

3 202 1

4 203 1

5 204 1

6 205 1

7 206 1

8 207 1

9 208 1

10 209 1

11 210 1

--- Member: B ---

Object: source_spct [11 x 2]

Wavelength range 200 to 210 nm, step 1 nm

Time unit 1s

##

w.length s.q.irrad

(int) (dbl)

1 200 2

2 201 2

3 202 2

4 203 2

5 204 2

6 205 2

7 206 2

8 207 2

9 208 2

10 209 2

11 210 2

##

--- END ---

4.3 Querying the class

is. functions are defined for these classes. R’s class method can also be used.

is.source_mspct(two_suns.mspct)

[1] TRUE

class(two_suns.mspct)

[1] "source_mspct" "generic_mspct" "list"

20

In addition to using class to query the class of the collection, we can use
base R’s lapply together with class or class spct to query the class of each
of the members of the collection.

is.filter_mspct(mixed.mspct)

[1] FALSE

is.any_mspct(mixed.mspct)

[1] TRUE

class(mixed.mspct)

[1] "generic_mspct" "list"

lapply(mixed.mspct, class_spct)

$filter

[1] "filter_spct" "generic_spct"

##

$source

[1] "source_spct" "generic_spct"

lapply(mixed.mspct, class)

$filter

[1] "filter_spct" "generic_spct" "tbl_df" "tbl"

[5] "data.frame"

##

$source

[1] "source_spct" "generic_spct" "tbl_df" "tbl"

[5] "data.frame"

4.4 Extract, replace and combine

R’s extraction and replacement methods have specializations for collections of
spectra and can be used with the same syntax and functionality as for R lists.
However they test the class and validity of the returned objects and replacement
members.

Methods ‘[‘, and ‘[<-‘, extract and replace ‘parts’ of the collection, re-
spectively. Even when only one member is extracted, the returned value is
a collection of spectra. The expected replacement value is also, always a
collection of spectra.

two_suns.mspct[1]

Object: source_mspct [1 x 1]

21

--- Member: sun1 ---

Object: source_spct [522 x 3]

Wavelength range 280 to 800 nm, step 0.9230769 to 1 nm

Measured on 2010-06-22 09:51:00 UTC

Measured at 60.20942 N, 24.96424 E

Time unit 1s

##

w.length s.e.irrad s.q.irrad

(dbl) (dbl) (dbl)

1 280.0000 0 0

2 280.9231 0 0

3 281.8462 0 0

4 282.7692 0 0

5 283.6923 0 0

6 284.6154 0 0

7 285.5385 0 0

8 286.4615 0 0

9 287.3846 0 0

10 288.3077 0 0

..

##

--- END ---

two_suns.mspct[2:1]

Object: source_mspct [2 x 1]

--- Member: sun2 ---

Object: source_spct [522 x 3]

Wavelength range 280 to 800 nm, step 0.9230769 to 1 nm

Measured on 2010-06-22 09:51:00 UTC

Measured at 60.20942 N, 24.96424 E

Time unit 1s

##

w.length s.e.irrad s.q.irrad

(dbl) (dbl) (dbl)

1 280.0000 0 0

2 280.9231 0 0

3 281.8462 0 0

4 282.7692 0 0

5 283.6923 0 0

6 284.6154 0 0

7 285.5385 0 0

8 286.4615 0 0

9 287.3846 0 0

10 288.3077 0 0

..

--- Member: sun1 ---

Object: source_spct [522 x 3]

Wavelength range 280 to 800 nm, step 0.9230769 to 1 nm

Measured on 2010-06-22 09:51:00 UTC

Measured at 60.20942 N, 24.96424 E

Time unit 1s

##

w.length s.e.irrad s.q.irrad

(dbl) (dbl) (dbl)

1 280.0000 0 0

2 280.9231 0 0

22

3 281.8462 0 0

4 282.7692 0 0

5 283.6923 0 0

6 284.6154 0 0

7 285.5385 0 0

8 286.4615 0 0

9 287.3846 0 0

10 288.3077 0 0

..

##

--- END ---

two_suns.mspct[1:2] <- two_suns.mspct[2:1]

Methods ‘[[‘, $ and ‘[[<-‘, extract and replace individual members of
the collection, respectively. They always return or expect objects of one of
the spectral classes.

two_suns.mspct[[1]]

Object: source_spct [522 x 3]

Wavelength range 280 to 800 nm, step 0.9230769 to 1 nm

Measured on 2010-06-22 09:51:00 UTC

Measured at 60.20942 N, 24.96424 E

Time unit 1s

##

w.length s.e.irrad s.q.irrad

(dbl) (dbl) (dbl)

1 280.0000 0 0

2 280.9231 0 0

3 281.8462 0 0

4 282.7692 0 0

5 283.6923 0 0

6 284.6154 0 0

7 285.5385 0 0

8 286.4615 0 0

9 287.3846 0 0

10 288.3077 0 0

..

two_suns.mspct$sun1

Object: source_spct [522 x 3]

Wavelength range 280 to 800 nm, step 0.9230769 to 1 nm

Measured on 2010-06-22 09:51:00 UTC

Measured at 60.20942 N, 24.96424 E

Time unit 1s

##

w.length s.e.irrad s.q.irrad

(dbl) (dbl) (dbl)

1 280.0000 0 0

23

2 280.9231 0 0

3 281.8462 0 0

4 282.7692 0 0

5 283.6923 0 0

6 284.6154 0 0

7 285.5385 0 0

8 286.4615 0 0

9 287.3846 0 0

10 288.3077 0 0

..

two_suns.mspct[["sun1"]]

Object: source_spct [522 x 3]

Wavelength range 280 to 800 nm, step 0.9230769 to 1 nm

Measured on 2010-06-22 09:51:00 UTC

Measured at 60.20942 N, 24.96424 E

Time unit 1s

##

w.length s.e.irrad s.q.irrad

(dbl) (dbl) (dbl)

1 280.0000 0 0

2 280.9231 0 0

3 281.8462 0 0

4 282.7692 0 0

5 283.6923 0 0

6 284.6154 0 0

7 285.5385 0 0

8 286.4615 0 0

9 287.3846 0 0

10 288.3077 0 0

..

two_suns.mspct[["sun1"]] <- sun.spct * 2

two_suns.mspct[["sun2"]] <- NULL

two_suns.mspct

Object: source_mspct [2 x 1]

--- Member: sun1 ---

Object: source_spct [522 x 2]

Wavelength range 280 to 800 nm, step 0.9230769 to 1 nm

Measured on 2010-06-22 09:51:00 UTC

Measured at 60.20942 N, 24.96424 E

Time unit 1s

##

w.length s.e.irrad

(dbl) (dbl)

1 280.0000 0

2 280.9231 0

3 281.8462 0

4 282.7692 0

5 283.6923 0

6 284.6154 0

7 285.5385 0

8 286.4615 0

9 287.3846 0

24

10 288.3077 0

..

##

--- END ---

We can use the combine method c() with collections of spectra (but not to
create new collections from individual spectra).

c(two_suns.mspct, mixed.mspct)

Object: generic_mspct [3 x 1]

--- Member: sun1 ---

Object: source_spct [522 x 2]

Wavelength range 280 to 800 nm, step 0.9230769 to 1 nm

Measured on 2010-06-22 09:51:00 UTC

Measured at 60.20942 N, 24.96424 E

Time unit 1s

##

w.length s.e.irrad

(dbl) (dbl)

1 280.0000 0

2 280.9231 0

3 281.8462 0

4 282.7692 0

5 283.6923 0

6 284.6154 0

7 285.5385 0

8 286.4615 0

9 287.3846 0

10 288.3077 0

..

--- Member: filter ---

Object: filter_spct [4 x 2]

Wavelength range 100 to 5000 nm, step 1 to 4898 nm

##

w.length Tfr

(dbl) (dbl)

1 100 1

2 101 1

3 4999 1

4 5000 1

--- Member: source ---

Object: source_spct [522 x 3]

Wavelength range 280 to 800 nm, step 0.9230769 to 1 nm

Measured on 2010-06-22 09:51:00 UTC

Measured at 60.20942 N, 24.96424 E

Time unit 1s

##

w.length s.e.irrad s.q.irrad

(dbl) (dbl) (dbl)

1 280.0000 0 0

2 280.9231 0 0

3 281.8462 0 0

4 282.7692 0 0

5 283.6923 0 0

6 284.6154 0 0

7 285.5385 0 0

25

Table 4: Apply functions for collections of spectra. Key: v., value returned by ‘ap-
ply’ function; f.v., value returned by the applied function (argument .fun). In the table
generic mspct and generic spct indicate objects of these classes or any class derived
from them. The exact class of the collection of spectra object returned will be determined
by the class(es) of the values returned by the applied function.

‘apply’ function first arg. class v. class f.v. class f.v. length f.v. dims

msmsply generic mspct generic mspct generic spct 1 any
msdply generic mspct data.frame numeric 1 . . . n 1
mslply generic mspct list any any any
msaply generic mspct vector any simple 1 0
msaply generic mspct matrix any simple 2 . . . n 2 . . . n
concolve each generic mspct generic mspct generic spct 1 any

8 286.4615 0 0

9 287.3846 0 0

10 288.3077 0 0

..

##

--- END ---

4.5 Transform or apply functions

For our ‘apply’ functions we follow the naming convention used in package plyr,
but using ms as prefix for mspct objects. The ‘apply’ functions implemented
in the ’photobiology’ package are msmsply, msdply, mslply and msaply which
both accepts a collections of spectra as first argument and return a collection
of spectra, a data frame, a list, or an array respectively (Table 4).

Functions msmsply(), msdply and mslply can be used to apply a function
to each member spectrum in a collection. The ‘apply’ function to use depends
on the return value of the applied function.

In the case of msmsply() the applied function is expected to return a ‘trans-
formed’ spectrum as another object of class generic spct or a class derived
from it. The value returned by msmsply is a collection of spectra, of a type
determined by the class(es) of the member spectra in the new collection.

We start with a simple example in which we add a constant to each spectrum
in the collection

two.mspct <- source_mspct(list(A = sun.spct * 1, B = sun.spct * 2))

msmsply(two.mspct, `+`, 0.1)

Object: source_mspct [2 x 1]

--- Member: A ---

Object: source_spct [522 x 2]

Wavelength range 280 to 800 nm, step 0.9230769 to 1 nm

Measured on 2010-06-22 09:51:00 UTC

Measured at 60.20942 N, 24.96424 E

Time unit 1s

##

w.length s.e.irrad

26

(dbl) (dbl)

1 280.0000 0.1

2 280.9231 0.1

3 281.8462 0.1

4 282.7692 0.1

5 283.6923 0.1

6 284.6154 0.1

7 285.5385 0.1

8 286.4615 0.1

9 287.3846 0.1

10 288.3077 0.1

..

--- Member: B ---

Object: source_spct [522 x 2]

Wavelength range 280 to 800 nm, step 0.9230769 to 1 nm

Measured on 2010-06-22 09:51:00 UTC

Measured at 60.20942 N, 24.96424 E

Time unit 1s

##

w.length s.e.irrad

(dbl) (dbl)

1 280.0000 0.1

2 280.9231 0.1

3 281.8462 0.1

4 282.7692 0.1

5 283.6923 0.1

6 284.6154 0.1

7 285.5385 0.1

8 286.4615 0.1

9 287.3846 0.1

10 288.3077 0.1

..

##

--- END ---

and continue with a more complex example in which we trim each spectrum

msmsply(two.mspct, trim_wl, range = c(281, 500), fill = NA)

Object: source_mspct [2 x 1]

--- Member: A ---

Object: source_spct [525 x 2]

Wavelength range 280 to 800 nm, step 1.023182e-12 to 1 nm

Measured on 2010-06-22 09:51:00 UTC

Measured at 60.20942 N, 24.96424 E

Time unit 1s

##

w.length s.e.irrad

(dbl) (dbl)

1 280.0000 NA

2 280.9231 NA

3 281.0000 NA

4 281.0000 0

5 281.8462 0

6 282.7692 0

7 283.6923 0

27

8 284.6154 0

9 285.5385 0

10 286.4615 0

..

--- Member: B ---

Object: source_spct [525 x 2]

Wavelength range 280 to 800 nm, step 1.023182e-12 to 1 nm

Measured on 2010-06-22 09:51:00 UTC

Measured at 60.20942 N, 24.96424 E

Time unit 1s

##

w.length s.e.irrad

(dbl) (dbl)

1 280.0000 NA

2 280.9231 NA

3 281.0000 NA

4 281.0000 0

5 281.8462 0

6 282.7692 0

7 283.6923 0

8 284.6154 0

9 285.5385 0

10 286.4615 0

..

##

--- END ---

In the second example we pass two arguments by name to the applied func-
tion. The number of arguments is not fixed, but the spectrum will be always
passed as the first argument to the function.

In the case of msdply() the applied function is expected to return an R
object of the same length for each of the member spectra.

msdply(two.mspct, max)

Source: local data frame [2 x 2]

##

spct.idx max.wl

(fctr) (dbl)

1 A 800

2 B 800

ranges.df <- msdply(two.mspct, range)

ranges.df

Source: local data frame [2 x 3]

##

spct.idx min.wl max.wl

(fctr) (dbl) (dbl)

1 A 280 800

2 B 280 800

cat(comment(ranges.df))

Applied function: 'range'.

28

msdply(two.mspct, range, na.rm = TRUE)

Source: local data frame [2 x 3]

##

spct.idx min.wl max.wl

(fctr) (dbl) (dbl)

1 A 280 800

2 B 280 800

In the case of mslply() the applied function is expected to return an R
object of any length, possibly variable among members.

str(mslply(two.mspct, names))

List of 2

$ A: chr [1:2] "w.length" "s.e.irrad"

$ B: chr [1:2] "w.length" "s.e.irrad"

- attr(*, "comment")= chr "Applied function: 'names'.\n"

In the case of msaply() the applied function is expected to return an R
object of length 1, although a list with dimensions will be returned for longer
return values.

str(msaply(two.mspct, max))

atomic [1:2] 800 800

- attr(*, "comment")= chr "Applied function: 'max'.\n"

str(msaply(two.mspct, range))

num [1:2, 1:2] 280 280 800 800

- attr(*, "dimnames")=List of 2

..$: NULL

..$: chr [1:2] "1" "2"

- attr(*, "comment")= chr "Applied function: 'range'.\n"

4.6 Convolution

By convolution we normally mean the multiplication value by value at matching
wavelengths of two spectra. The function described in this section facilitates
this and similar operations among collections of spectra. An example use case
could be the convolution of spectral irradiance by spectral transmittance for all
combinations of light sources and filters in a collection of source spectra and a
collection of filter spectra.

Default operator (or function) is that for multiplication, either one or both
of the two first arguments must be a collection of spectra. When only one
argument is a collection of spectra, the other one can be a spectrum, or even
a numeric vector. For multiplication the order of the operands does not affect
the returned value. With operators or functions for non-transitive operations
the order does matter.

29

convolve_each(two.mspct, sun.spct)

Object: source_mspct [2 x 1]

--- Member: A ---

Object: source_spct [522 x 2]

Wavelength range 280 to 800 nm, step 0.9230769 to 1 nm

Time unit 1s

##

w.length s.e.irrad

(dbl) (dbl)

1 280.0000 0

2 280.9231 0

3 281.8462 0

4 282.7692 0

5 283.6923 0

6 284.6154 0

7 285.5385 0

8 286.4615 0

9 287.3846 0

10 288.3077 0

..

--- Member: B ---

Object: source_spct [522 x 2]

Wavelength range 280 to 800 nm, step 0.9230769 to 1 nm

Time unit 1s

##

w.length s.e.irrad

(dbl) (dbl)

1 280.0000 0

2 280.9231 0

3 281.8462 0

4 282.7692 0

5 283.6923 0

6 284.6154 0

7 285.5385 0

8 286.4615 0

9 287.3846 0

10 288.3077 0

..

##

--- END ---

convolve_each(sun.spct, two.mspct)

Object: source_mspct [2 x 1]

--- Member: A ---

Object: source_spct [522 x 2]

Wavelength range 280 to 800 nm, step 0.9230769 to 1 nm

Time unit 1s

##

w.length s.e.irrad

(dbl) (dbl)

1 280.0000 0

2 280.9231 0

3 281.8462 0

4 282.7692 0

30

5 283.6923 0

6 284.6154 0

7 285.5385 0

8 286.4615 0

9 287.3846 0

10 288.3077 0

..

--- Member: B ---

Object: source_spct [522 x 2]

Wavelength range 280 to 800 nm, step 0.9230769 to 1 nm

Time unit 1s

##

w.length s.e.irrad

(dbl) (dbl)

1 280.0000 0

2 280.9231 0

3 281.8462 0

4 282.7692 0

5 283.6923 0

6 284.6154 0

7 285.5385 0

8 286.4615 0

9 287.3846 0

10 288.3077 0

..

##

--- END ---

another_two.mspct <- two.mspct

names(another_two.mspct) <- c("a", "b")

convolve_each(another_two.mspct, two.mspct)

Object: source_mspct [2 x 2]

--- Member: a_A ---

Object: source_spct [522 x 2]

Wavelength range 280 to 800 nm, step 0.9230769 to 1 nm

Time unit 1s

##

w.length s.e.irrad

(dbl) (dbl)

1 280.0000 0

2 280.9231 0

3 281.8462 0

4 282.7692 0

5 283.6923 0

6 284.6154 0

7 285.5385 0

8 286.4615 0

9 287.3846 0

10 288.3077 0

..

--- Member: a_B ---

Object: source_spct [522 x 2]

Wavelength range 280 to 800 nm, step 0.9230769 to 1 nm

Time unit 1s

##

31

w.length s.e.irrad

(dbl) (dbl)

1 280.0000 0

2 280.9231 0

3 281.8462 0

4 282.7692 0

5 283.6923 0

6 284.6154 0

7 285.5385 0

8 286.4615 0

9 287.3846 0

10 288.3077 0

..

--- Member: b_A ---

Object: source_spct [522 x 2]

Wavelength range 280 to 800 nm, step 0.9230769 to 1 nm

Time unit 1s

##

w.length s.e.irrad

(dbl) (dbl)

1 280.0000 0

2 280.9231 0

3 281.8462 0

4 282.7692 0

5 283.6923 0

6 284.6154 0

7 285.5385 0

8 286.4615 0

9 287.3846 0

10 288.3077 0

..

--- Member: b_B ---

Object: source_spct [522 x 2]

Wavelength range 280 to 800 nm, step 0.9230769 to 1 nm

Time unit 1s

##

w.length s.e.irrad

(dbl) (dbl)

1 280.0000 0

2 280.9231 0

3 281.8462 0

4 282.7692 0

5 283.6923 0

6 284.6154 0

7 285.5385 0

8 286.4615 0

9 287.3846 0

10 288.3077 0

..

##

--- END ---

The function convolve each will use other operators or functions and even
pass additional named arguments when these are supplied as arguments.

convolve_each(two.mspct, sun.spct, oper = `+`)

Object: source_mspct [2 x 1]

32

--- Member: A ---

Object: source_spct [522 x 2]

Wavelength range 280 to 800 nm, step 0.9230769 to 1 nm

Time unit 1s

##

w.length s.e.irrad

(dbl) (dbl)

1 280.0000 0

2 280.9231 0

3 281.8462 0

4 282.7692 0

5 283.6923 0

6 284.6154 0

7 285.5385 0

8 286.4615 0

9 287.3846 0

10 288.3077 0

..

--- Member: B ---

Object: source_spct [522 x 2]

Wavelength range 280 to 800 nm, step 0.9230769 to 1 nm

Time unit 1s

##

w.length s.e.irrad

(dbl) (dbl)

1 280.0000 0

2 280.9231 0

3 281.8462 0

4 282.7692 0

5 283.6923 0

6 284.6154 0

7 285.5385 0

8 286.4615 0

9 287.3846 0

10 288.3077 0

..

##

--- END ---

There are cases where functions convolve each() and msmsply() can
be both used, but there are also cases where their differences matter.
An example is convolving two collections of spectra, a case where only
convolve each() can be used. In contrast, when one of the arguments is
not a spectrum or a collection of spectra, msmsply() should be used instead.

4.7 Attributes

Some of the set and get functions used with attributes have method definitions
for collections of spectra. Some examples follow.

33

getWhenMeasured(two.mspct)

Source: local data frame [2 x 2]

##

spct.idx when.measured

(fctr) (time)

1 A 2010-06-22 09:51:00

2 B 2010-06-22 09:51:00

setWhenMeasured(two.mspct, ymd("2015-10-31", tz = "EET"))

getWhenMeasured(two.mspct)

Source: local data frame [2 x 2]

##

spct.idx when.measured

(fctr) (time)

1 A 2015-10-30 22:00:00

2 B 2015-10-30 22:00:00

setWhenMeasured(two.mspct,

list(ymd_hm("2015-10-31 10:00", tz = "EET"),

ymd_hm("2015-10-31 11:00", tz = "EET")))

getWhenMeasured(two.mspct)

Source: local data frame [2 x 2]

##

spct.idx when.measured

(fctr) (time)

1 A 2015-10-31 08:00:00

2 B 2015-10-31 09:00:00

two.mspct

Object: source_mspct [2 x 1]

--- Member: A ---

Object: source_spct [522 x 2]

Wavelength range 280 to 800 nm, step 0.9230769 to 1 nm

Measured on 2015-10-31 08:00:00 UTC

Measured at 60.20942 N, 24.96424 E

Time unit 1s

##

w.length s.e.irrad

(dbl) (dbl)

1 280.0000 0

2 280.9231 0

3 281.8462 0

4 282.7692 0

5 283.6923 0

6 284.6154 0

7 285.5385 0

8 286.4615 0

9 287.3846 0

10 288.3077 0

..

--- Member: B ---

Object: source_spct [522 x 2]

Wavelength range 280 to 800 nm, step 0.9230769 to 1 nm

34

Measured on 2015-10-31 09:00:00 UTC

Measured at 60.20942 N, 24.96424 E

Time unit 1s

##

w.length s.e.irrad

(dbl) (dbl)

1 280.0000 0

2 280.9231 0

3 281.8462 0

4 282.7692 0

5 283.6923 0

6 284.6154 0

7 285.5385 0

8 286.4615 0

9 287.3846 0

10 288.3077 0

..

##

--- END ---

Other methods available are getWhereMeasured and setWhereMeasured.

5 Wavebands

When a range of wavelengths or a range of wavelengths plus a spectral weighting
function (SWF) is needed for radiation summaries or transformations, methods,
operators and functions defined in package ’photobiology’ use waveband objects
to store these data. A few other bits of information can be included to fine-tune
calculations. The waveband definitions do NOT describe whether input spectral
irradiances are photon or energy based, nor whether the output irradiance will
be based on photon or energy units. All waveband objects belong to the S3
class waveband.

5.1 Construction

When defining a waveband which uses a SWF, a function can be supplied either
based on energy effectiveness, on photon effectiveness, or one function for each
one. If only one function is supplied the other one is built automatically, but if
performance is a concern it is better to provide two separate functions. Another
case when you might want to enter the same function twice, is if you are using
an absorptance spectrum as SWF, as the percent of radiation absorbed will
be independent of whether photon or energy units are used for the spectral
irradiance.

To create a waveband object we use constructor function waveband, and
optionally giving a name to it.

PAR <- waveband(c(400, 700), wb.name = "PAR")

UVA <- waveband(c(315, 400), wb.name = "UVA")

UVB <- waveband(c(280, 315), wb.name = "UVB")

UVC <- waveband(c(100, 280), wb.name = "UVC")

35

UV <- waveband(c(100, 400), wb.name = "UV")

UV_bands <- list(UVC, UVB, UVA)

When including a BSWF, we supply, one or two versions of functions return-
ing the weights as a function of wavelength. Several such functions are defined
in package ’photobiologyWavebands’ as well as constructors using them. Here
we give three examples of how equivalent wavebands can be defined based on a
SWF. Although the constructor is smart enough to derive the missing function
when only one function is supplied, performance may suffer.

CIE_e_fun <-

function(w.length){
CIE.energy <- numeric(length(w.length))

CIE.energy[w.length <= 298] <- 1

CIE.energy[(w.length > 298) & (w.length <= 328)] <-

10^(0.094*(298-w.length[(w.length > 298) & (w.length <= 328)]))

CIE.energy[(w.length > 328) & (w.length <= 400)] <-

10^(0.015*(139-w.length[(w.length > 328) & (w.length <= 400)]))

CIE.energy[w.length > 400] <- 0

return(CIE.energy)

}

CIE <- waveband(c(250, 400), weight = "SWF",

SWF.e.fun = CIE_e_fun, SWF.norm = 298)

The first argument to waveband() does not need to be a numeric vector of
length two. Any R object of a class that supplies a range() method definition
that can be interpreted as a range of wavelengths in nanometres can be used. As
a consequence, when wanting to construct a waveband covering the whole range
of a spectrum one can simply supply the spectrum as argument, or to construct
an unweighted waveband which covers exactly the same range of wavelengths
as an existing effective (weighted) waveband, one can supply a waveband object
as an argument.

waveband(sun.spct)

Total

low (nm) 280

high (nm) 800

weighted none

5.2 Querying the class

The function is.waveband can the used to query any R object. This function
returns a logical value.

is.waveband(PAR)

[1] TRUE

36

Above, we demonstrate that PAR is a waveband object, the function
photobiologyWavebands::PAR() is a waveband constructor returning a wave-
band object. See package ’photobiologyWavebands’ for details on pre-defined
waveband constructors for frequently used wavelength ranges and biological
spectral weighting functions (BSWFs).

5.3 Retrieving properties

The function is effective can the used to query any R object.

is_effective(waveband(c(400,500)))

[1] FALSE

6 Collections of wavebands

In the current implementation there is no special class used for storing collections
of waveband objects. We simply use base R’s list class.

6.1 Construction

6.1.1 List constructor

Just base R’s functions used to create a list object.

wavebands <- list(waveband(c(300,400)), waveband(c(400,500)))

wavebands

[[1]]

range.300.400

low (nm) 300

high (nm) 400

weighted none

##

[[2]]

range.400.500

low (nm) 400

high (nm) 500

weighted none

6.1.2 Special constructor

The function split bands can be used to generate lists of unweighted wave-
bands in two different ways: a) it can be used to split a range of wavelengths
given by an R object into a series of adjacent wavebands, or b) with a list of
objects returning ranges, it can be used to create non-adjacent and even over-
lapping wavebands.

37

The code chunk bellow shows an example of two variations of case a). With
the default value for length.out of NULL each numerical value in the input is
taken as a wavelength (nm) at the boundary between adjacent wavebands. If a
numerical value is supplied to length.out, then the whole wavelength range of
the input is split into this number of equally spaced adjacent wavebands.

split_bands(c(200, 225, 300))

$wb1

range.200.225

low (nm) 200

high (nm) 225

weighted none

##

$wb2

range.225.300

low (nm) 225

high (nm) 300

weighted none

split_bands(c(200, 225, 300), length.out = 2)

$wb1

range.200.250

low (nm) 200

high (nm) 250

weighted none

##

$wb2

range.250.300

low (nm) 250

high (nm) 300

weighted none

In both examples above, the output is a list of two wavebands, but the ‘split’
boundaries are at a different wavelength. The chunk bellow gives a few more
examples of the use of case a).

split_bands(sun.spct, length.out = 2)

$wb1

range.280.540

low (nm) 280

high (nm) 540

weighted none

##

$wb2

range.540.800

low (nm) 540

high (nm) 800

weighted none

split_bands(PAR, length.out = 2)

$wb1

38

range.400.550

low (nm) 400

high (nm) 550

weighted none

##

$wb2

range.550.700

low (nm) 550

high (nm) 700

weighted none

split_bands(c(200, 800), length.out = 3)

$wb1

range.200.400

low (nm) 200

high (nm) 400

weighted none

##

$wb2

range.400.600

low (nm) 400

high (nm) 600

weighted none

##

$wb3

range.600.800

low (nm) 600

high (nm) 800

weighted none

Now we demonstrate case b). This case is handled by recursion, so each list
element can be anything that is a valid input to the function, including a nested
list. However, the returned value is always a flat list of wavebands.

split_bands(list(A = c(200, 300), B = c(400, 500), C = c(250, 350)))

$A

range.200.300

low (nm) 200

high (nm) 300

weighted none

##

$B

range.400.500

low (nm) 400

high (nm) 500

weighted none

##

$C

range.250.350

low (nm) 250

high (nm) 350

weighted none

split_bands(list(c(100, 150, 200), c(800, 825)))

39

$wb.a

range.100.150

low (nm) 100

high (nm) 150

weighted none

##

$<NA>

range.150.200

low (nm) 150

high (nm) 200

weighted none

##

$wb.b

range.800.825

low (nm) 800

high (nm) 825

weighted none

In case b) if we supply a numeric value to length.out, this value is used
recursively for each element of the list.

split_bands(UV_bands, length.out = 2)

$wb.a

range.100.190

low (nm) 100

high (nm) 190

weighted none

##

$<NA>

range.190.280

low (nm) 190

high (nm) 280

weighted none

##

$wb.b

range.280.297.5

low (nm) 280

high (nm) 298

weighted none

##

$<NA>

range.297.5.315

low (nm) 298

high (nm) 315

weighted none

##

$wb.c

range.315.357.5

low (nm) 315

high (nm) 358

weighted none

##

$<NA>

range.357.5.400

low (nm) 358

40

high (nm) 400

weighted none

split_bands(list(c(100, 150, 200), c(800, 825)), length.out = 1)

$wb.a

range.100.200

low (nm) 100

high (nm) 200

weighted none

##

$wb.b

range.800.825

low (nm) 800

high (nm) 825

weighted none

7 Object ‘inspection’ methods

7.1 print()

The print() method for spectra is based on the method defined in package
dplyr, consequently, it is possible to use the options from this package to control
printing. In the code chunk below, dplyr.print max, the number of rows in
the spectral object above which only dplyr.print min rows are printed, are
both set to 5, instead of the default 20 and 10, to avoid excessive clutter in our
examples.

options(dplyr.print_max = 4)

options(dplyr.print_min = 4)

For explicit calls to print() its argument n can be used to control the
number of lines printed. If n is set to Inf the whole spectrum is always printed.
The output differs from that of the print() method from package ’dplyr’ in
that additional metadata specific to spectra are shown.

print(sun.spct, n = 3)

Specialized print() methods for collections of spectra and for waveband

objects are also defined.

7.2 summary()

The summary() method for spectra is based on base R’s summary() method for
data frames, and accepts the same arguments. The main difference is that the
attributes containing metadata and dimensions of the original spectrum object
are copied to the summary object.

41

Table 5: Binary operators and operands. Validity and class of result. All operations
marked ‘Y’ are allowed, those marked ‘N’ are forbidden and return NA and issue a warning.
Operators %/% and %% follow /.

e1 + - * / ^ e2 value

raw spct Y Y Y Y Y raw spct raw spct

cps spct Y Y Y Y Y cps spct cps spct

source spct Y Y Y Y Y source spct source spct

filter spct (T) N N Y Y N filter spct filter spct

filter spct (A) Y Y N N N filter spct filter spct

reflector spct N N Y Y N reflector spct reflector spct

object spct N N N N N object spct --

response spct Y Y Y Y N response spct response spct

chroma spct Y Y Y Y Y chroma spct chroma spct

raw spct Y Y Y Y Y numeric raw spct

cps spct Y Y Y Y Y numeric cps spct

source spct Y Y Y Y Y numeric source spct

filter spct Y Y Y Y Y numeric filter spct

reflector spct Y Y Y Y Y numeric reflector spct

object spct N N N N N numeric --

response spct Y Y Y Y Y numeric response spct

chroma spct Y Y Y Y Y numeric chroma spct

source spct N N Y Y N response spct response spct

source spct N N Y Y N filter spct (T) source spct

source spct N N Y Y N filter spct (A) source spct

source spct N N Y Y N reflector spct source spct

source spct N N N N N object spct --

source spct N N Y N N waveband (no BSWF) source spct

source spct N N Y N N waveband (BSWF) source spct

summary(sun.spct)

Specialized print() methods for summaries of spectra are defined. The
output differs from that of the print() method from base R in that additional
metadata specific to spectra are shown.

8 Transformations: using operators

8.1 Binary operators

The basic maths operators have definitions for spectra. It is possible to sum,
subtract, multiply and divide spectra. These operators can be used even if the
spectral data is on different arbitrary sets of wavelengths. Operators by default
use values expressed in energy units. Only certain operations are meaningful for
a given combination of objects belonging to different classes, and meaningless
combinations return NA also issuing a warning (see Table 5). By default opera-
tions are carried out on spectral energy irradiance for source spct objects and
transmittance for filter spct objects.

42

sun.spct * sun.spct

Object: source_spct [522 x 2]

Wavelength range 280 to 800 nm, step 0.9230769 to 1 nm

Time unit 1s

##

w.length s.e.irrad

(dbl) (dbl)

1 280.0000 0

2 280.9231 0

3 281.8462 0

4 282.7692 0

..

When meaningful, operations between different spectra are also allowed.
For example, it is possible to simulate the effect of a filter on a light source by
multiplying (or convolving) the two spectra.

sun.spct * polyester.spct

Object: source_spct [533 x 2]

Wavelength range 280 to 800 nm, step 0.07692308 to 1 nm

Time unit 1s

##

w.length s.e.irrad

(dbl) (dbl)

1 280.0000 0

2 280.9231 0

3 281.0000 0

4 281.8462 0

..

If we have two layers of the filter, this can be approximated using either of
these two statements.

sun.spct * polyester.spct * polyester.spct

Object: source_spct [533 x 2]

Wavelength range 280 to 800 nm, step 0.07692308 to 1 nm

Time unit 1s

##

w.length s.e.irrad

(dbl) (dbl)

1 280.0000 0

2 280.9231 0

3 281.0000 0

4 281.8462 0

..

sun.spct * polyester.spct^2

Object: source_spct [533 x 2]

Wavelength range 280 to 800 nm, step 0.07692308 to 1 nm

Time unit 1s

##

w.length s.e.irrad

43

(dbl) (dbl)

1 280.0000 0

2 280.9231 0

3 281.0000 0

4 281.8462 0

..

Operators are also defined for operations between a spectrum and a numeric
vector (with normal recycling).

sun.spct * 2

Object: source_spct [522 x 2]

Wavelength range 280 to 800 nm, step 0.9230769 to 1 nm

Measured on 2010-06-22 09:51:00 UTC

Measured at 60.20942 N, 24.96424 E

Time unit 1s

##

w.length s.e.irrad

(dbl) (dbl)

1 280.0000 0

2 280.9231 0

3 281.8462 0

4 282.7692 0

..

2 * sun.spct

Object: source_spct [522 x 2]

Wavelength range 280 to 800 nm, step 0.9230769 to 1 nm

Measured on 2010-06-22 09:51:00 UTC

Measured at 60.20942 N, 24.96424 E

Time unit 1s

##

w.length s.e.irrad

(dbl) (dbl)

1 280.0000 0

2 280.9231 0

3 281.8462 0

4 282.7692 0

..

sun.spct * c(0,1)

Object: source_spct [522 x 2]

Wavelength range 280 to 800 nm, step 0.9230769 to 1 nm

Measured on 2010-06-22 09:51:00 UTC

Measured at 60.20942 N, 24.96424 E

Time unit 1s

##

w.length s.e.irrad

(dbl) (dbl)

1 280.0000 0

2 280.9231 0

3 281.8462 0

4 282.7692 0

..

44

There is one special case, for chroma spct: if the numeric operand has length
three, containing three named values ‘x’, ‘y’ and ‘z’, the corresponding value
is used for each of the chromaticity ‘columns’ in the chroma spct. Un-named
values or differently named values are not treated specially.

Operators are also defined for operations between an spectrum and a
waveband object. The next to code chunks demonstrate how the class of the
result depends on whether the waveband object describes a range of wavelengths
or a range of wavelengths plus a BSWF.

sun.spct * UVB

Object: source_spct [37 x 2]

Wavelength range 280 to 315 nm, step 0.9230769 to 1 nm

Time unit 1s

##

w.length s.e.irrad

(dbl) (dbl)

1 280.0000 0

2 280.9231 0

3 281.8462 0

4 282.7692 0

..

sun.spct * CIE

And of course these operations can be combined into more complex state-
ments, including parentheses, when needed. The example below estimates the
difference in effective spectral irradiance according to the CIE98 definition, be-
tween sunlight and sunlight filtered with a polyester film. Of course, the result
is valid only for the solar spectral data used, which corresponds to Southern
Finland.

sun.spct * CIE - sun.spct * polyester.spct * CIE

Object: source_spct [133 x 2]

Wavelength range 280 to 400 nm, step 0.07692308 to 1 nm

Time unit 1s

Data weighted using 'range.250.400.wtd' BSWF

##

w.length s.e.irrad

(dbl) (dbl)

1 280.0000 0

2 280.9231 0

3 281.0000 0

4 281.8462 0

..

8.2 Unary operators and maths functions

The most common maths functions, as well as unary minus and plus, are also
implemented for spectral objects (see Table 6).

45

Table 6: Unary operators and maths functions for spectra. Classes for which
they are implemented and class of the result. All operations marked ‘Y’ are al-
lowed, those marked ‘N’ are not implemented and return NA and issue a warning.
Additional supported functions: log2, log10, sin, cos, tan, asin, acos, atan,

sinpi, cospi, tanpi, signif, floor, ceiling, trunc, sign, abs.

e1 +, - log, exp trig. round sqrt value

raw spct Y Y Y Y Y raw spct

cps spct Y Y Y Y Y cps spct

source spct Y Y Y Y Y source spct

filter spct Y Y Y Y Y filter spct

reflector spct Y Y Y Y Y reflector spct

object spct N N N N N --

response spct Y Y Y Y Y response spct

chroma spct Y Y Y Y Y chroma spct

-sun.spct

Object: source_spct [522 x 2]

Wavelength range 280 to 800 nm, step 0.9230769 to 1 nm

Measured on 2010-06-22 09:51:00 UTC

Measured at 60.20942 N, 24.96424 E

Time unit 1s

##

w.length s.e.irrad

(dbl) (dbl)

1 280.0000 0

2 280.9231 0

3 281.8462 0

4 282.7692 0

..

sqrt(sun.spct)

Object: source_spct [522 x 2]

Wavelength range 280 to 800 nm, step 0.9230769 to 1 nm

Measured on 2010-06-22 09:51:00 UTC

Measured at 60.20942 N, 24.96424 E

Time unit 1s

##

w.length s.e.irrad

(dbl) (dbl)

1 280.0000 0

2 280.9231 0

3 281.8462 0

4 282.7692 0

..

8.3 Options

Table 7 lists all the recognized options affecting maths operators and functions,
and their default values. Within the suite all functions have a default value

46

Table 7: Options recognized by functions in the ’photobiology’ package and the values
they can take.

Option values, default function

Base R

digits 7 d− 3 used by summary

photobiology.radiation.unit "energy" output (W m−2 nm−1)

"photon" output (mol m−2 s−1 nm−1)

photobiology.filter.qty "transmittance" output (/1)
"absorptance" output (/1)
"absorbance" output (a.u. log10 base)

photobiology.strict.range NA skip range test
TRUE trigger and error
FALSE trigger a warning

photobiology.waveband.trim FALSE exclude
TRUE trim or exclude

photobiology.use.cached.mult FALSE do not cache intermediate results
TRUE cache intermediate results

which is used when the options are undefined. Options are set using base R’s
function options, and queried with functions options and getOption.

The behaviour of the operators defined in this package depends on the value
of two global options. For example, if we would like the operators to operate
on spectral photon irradiance and return spectral photon irradiance instead of
spectral energy irradiance, this behaviour can be set, and will remain active
until unset or reset.

options(photobiology.radiation.unit = "photon")

sun.spct * UVB

Object: source_spct [37 x 2]

Wavelength range 280 to 315 nm, step 0.9230769 to 1 nm

Time unit 1s

##

w.length s.q.irrad

(dbl) (dbl)

1 280.0000 0

2 280.9231 0

3 281.8462 0

4 282.7692 0

..

options(photobiology.radiation.unit = "energy")

sun.spct * UVB

Object: source_spct [37 x 2]

Wavelength range 280 to 315 nm, step 0.9230769 to 1 nm

Time unit 1s

##

47

Table 8: Transformation methods for spectra. Key: + available, – not available, f available
in the future.

methods raw/cps source response filter reflector object chroma

merge + + + + + + +
rbindspct + + + + + + +

e2q, q2e – + + – – – –
A2T, T2A – – – + – – –
subset + + + + + + +
clip wl + + + + + + +
trim wl + + + + + + +
(trim spct) + + + + + + +
interpolate wl – + + + + + +
(interpolate spct) – + + + + + +
fscale + + + + + – –
fshift + + + + + – –
normalize + + + + + – –
clean – + + + + – –
math operators + + + + + + +
math functions + + + + + + +
tag – + + + + + +
untag – + + + + + +

w.length s.e.irrad

(dbl) (dbl)

1 280.0000 0

2 280.9231 0

3 281.8462 0

4 282.7692 0

..

The other options listed in Table 7 can be set similarly, to unset any option,
they can be given a NULL value.

9 Transformations: methods and functions

In this section we describe methods and functions that take one or more spectral
objects, and in some cases also waveband objects, as arguments and return
another spectral object (Table 8) or that take a collection of spectral objects,
and in some cases also waveband objects, as arguments and return a collection
of spectral objects (Table 9).

9.1 Manipulating spectra

Sometimes, especially for plotting, we may want to row-bind spectra. When
the aim is that the returned object retains its class and other attributes like the
time unit. Package ’photobiology’ provides function rbinspct for row-binding
spectra, with the necessary checks for consistency of the bound spectra.

STOPGAP

shade.spct <- sun.spct

By default an ID factor named spct.idx is added allow to identify the source
of the observations after the binding. If the supplied list has named members,

48

Table 9: Transformation methods for collections of spectra. Key: + available, – not avail-
able, ms use msmsply() or convolve each() to apply function or operator to collection
members.

methods raw/cps source response filter reflector object chroma

convolve each – + + + + + +
msmsply + + + + + + +
msdply + + + + + + +
mslply + + + + + + +
msaply + + + + + + +

rbindspct + + + + + + +
c + + + + + + +

math operators ms ms ms ms ms ms ms
math functions ms ms ms ms ms ms ms

e2q, q2e – + + – – – –
A2T, T2A – – – + – – –
clip wl + + + + + + +
trim wl + + + + + + +
(trim mspct) + + + + + + +
interpolate wl – + + + + + +
(interpolate mspct) – + + + + + +
fscale + + + + + – –
fshift + + + + + – –
normalize + + + + + – –
clean – + + + + – –
tag – + + + + + +
untag – + + + + + +

then these names are used as factor levels. If a character value is supplied to as
idfactor argument, this is used as name for the factor.

rbindspct(list(sun.spct, shade.spct))

Object: source_spct [1,044 x 4]

containing 2 spectra in long form

Wavelength range 280 to 800 nm, step 0.9230769 to 1 nm

Time unit 1s

##

w.length s.e.irrad spct.idx s.q.irrad

(dbl) (dbl) (fctr) (dbl)

1 280.0000 0 spct_1 0

2 280.9231 0 spct_1 0

3 281.8462 0 spct_1 0

4 282.7692 0 spct_1 0

..

rbindspct(list(A = sun.spct, B = shade.spct), idfactor = "site")

Object: source_spct [1,044 x 4]

containing 2 spectra in long form

Wavelength range 280 to 800 nm, step 0.9230769 to 1 nm

Time unit 1s

##

w.length s.e.irrad site s.q.irrad

(dbl) (dbl) (fctr) (dbl)

1 280.0000 0 A 0

2 280.9231 0 A 0

3 281.8462 0 A 0

4 282.7692 0 A 0

..

49

Special Extract methods for spectral objects have been implemented. These
are used by default and preserve the attributes used by this package, except
when the returned value is a single column from the spectral object.

sun.spct[1:10,]

Object: source_spct [10 x 3]

Wavelength range 280 to 288.30769 nm, step 0.9230769 nm

Measured on 2010-06-22 09:51:00 UTC

Measured at 60.20942 N, 24.96424 E

Time unit 1s

##

w.length s.e.irrad s.q.irrad

(dbl) (dbl) (dbl)

1 280.0000 0 0

2 280.9231 0 0

3 281.8462 0 0

4 282.7692 0 0

..

sun.spct[1:10, 1]

[1] 280.0000 280.9231 281.8462 282.7692 283.6923 284.6154 285.5385

[8] 286.4615 287.3846 288.3077

sun.spct[1:10, 1, drop = TRUE]

[1] 280.0000 280.9231 281.8462 282.7692 283.6923 284.6154 285.5385

[8] 286.4615 287.3846 288.3077

sun.spct[1:10, "w.length", drop = TRUE]

[1] 280.0000 280.9231 281.8462 282.7692 283.6923 284.6154 285.5385

[8] 286.4615 287.3846 288.3077

In contrast to trim spct, subset never interpolates or inserts hinges. On
the other hand, the subset argument accepts any logical expression and can
be consequently used to do subsetting, for example, based on factors. Both
subset() and trim() methods preserve attributes.

subset(sun.spct, s.e.irrad > 0.2)

Object: source_spct [475 x 3]

Wavelength range 324 to 800 nm, step 1 to 3 nm

Time unit 1s

##

w.length s.e.irrad s.q.irrad

(dbl) (dbl) (dbl)

1 324 0.2075508 5.621282e-07

2 325 0.2168055 5.890059e-07

3 326 0.2774416 7.560580e-07

4 327 0.2851096 7.793375e-07

..

subset(sun.spct, w.length > 600)

50

Object: source_spct [200 x 3]

Wavelength range 601 to 800 nm, step 1 nm

Time unit 1s

##

w.length s.e.irrad s.q.irrad

(dbl) (dbl) (dbl)

1 601 0.6295837 3.162962e-06

2 602 0.6305890 3.173284e-06

3 603 0.6360329 3.205995e-06

4 604 0.6578140 3.321284e-06

..

subset(sun.spct, c(TRUE, rep(FALSE, 99)))

Object: source_spct [6 x 3]

Wavelength range 280 to 779 nm, step 99 to 100 nm

Time unit 1s

##

w.length s.e.irrad s.q.irrad

(dbl) (dbl) (dbl)

1 280 0.0000000 0.000000e+00

2 379 0.4131498 1.308919e-06

3 479 0.7536975 3.017857e-06

4 579 0.6474340 3.133575e-06

..

R’s Extract methods $ and [[]] can be used to extract whole columns.
Replace methods $<- and [<- have definitions for spectral objects, which allow
their safe use. They work identically to those for data frames but check the
validity of the spectra after the replacement.

9.2 Conversions between radiation units

The functions e2q and q2e can be used on source spectra to convert spectral
energy irradiance into spectral photon irradiance and vice versa. A second
optional argument sets the action with "add" and "replace" as possible values.
By default these functions use normal reference semantics.

e2q(sun.spct, "add")

Object: source_spct [522 x 3]

Wavelength range 280 to 800 nm, step 0.9230769 to 1 nm

Measured on 2010-06-22 09:51:00 UTC

Measured at 60.20942 N, 24.96424 E

Time unit 1s

##

w.length s.e.irrad s.q.irrad

(dbl) (dbl) (dbl)

1 280.0000 0 0

2 280.9231 0 0

3 281.8462 0 0

4 282.7692 0 0

..

e2q(sun.spct, "replace")

51

Object: source_spct [522 x 2]

Wavelength range 280 to 800 nm, step 0.9230769 to 1 nm

Measured on 2010-06-22 09:51:00 UTC

Measured at 60.20942 N, 24.96424 E

Time unit 1s

##

w.length s.q.irrad

(dbl) (dbl)

1 280.0000 0

2 280.9231 0

3 281.8462 0

4 282.7692 0

..

For filter spct objects functions T2A and A2T allow conversion between
spectral transmittance and spectral absorbance and vice versa.

9.3 Normalizing a spectrum

Function normalize permits normalizing a spectrum to a value of one at an
arbitrary wavelength (nm) or to the wavelength of either the maximum or the
minimum spectral value. It supports the different spectral classes, we use a
source spct object as an example.

normalize(sun.spct)

Object: source_spct [522 x 2]

Wavelength range 280 to 800 nm, step 0.9230769 to 1 nm

Measured on 2010-06-22 09:51:00 UTC

Measured at 60.20942 N, 24.96424 E

Time unit 1s

Spectral data normalized to 1 at 451 nm

##

w.length s.e.irrad

(dbl) (dbl)

1 280.0000 0

2 280.9231 0

3 281.8462 0

4 282.7692 0

..

Which is equivalent to supplying "max" as argument to norm, it is also
possible to give a range within which the maximum should be searched.

normalize(sun.spct, range = PAR, norm = "max")

Object: source_spct [522 x 2]

Wavelength range 280 to 800 nm, step 0.9230769 to 1 nm

Measured on 2010-06-22 09:51:00 UTC

Measured at 60.20942 N, 24.96424 E

Time unit 1s

Spectral data normalized to 1 at 451 nm

##

w.length s.e.irrad

52

(dbl) (dbl)

1 280.0000 0

2 280.9231 0

3 281.8462 0

4 282.7692 0

..

It is also possible to normalize to an arbitrary wavelength within the range
of the data, even if it is not one of the wavelength values present in the spectral
object, as interpolation is used when needed.

normalize(sun.spct, norm = 600.3)

Object: source_spct [522 x 2]

Wavelength range 280 to 800 nm, step 0.9230769 to 1 nm

Measured on 2010-06-22 09:51:00 UTC

Measured at 60.20942 N, 24.96424 E

Time unit 1s

Spectral data normalized to 1 at 600.3 nm

##

w.length s.e.irrad

(dbl) (dbl)

1 280.0000 0

2 280.9231 0

3 281.8462 0

4 282.7692 0

..

9.4 Rescaling a spectrum

Function fscale() rescales a spectrum by dividing each spectral data value by
a value calculated with a function (f) selected by a character string (”total” or
”mean”), or an actual R function which can accept the spectrum object supplied
as its first argument.

fscale(sun.spct)

Object: source_spct [522 x 2]

Wavelength range 280 to 800 nm, step 0.9230769 to 1 nm

Measured on 2010-06-22 09:51:00 UTC

Measured at 60.20942 N, 24.96424 E

Time unit 1s

Rescaled to 'mean' = 1

##

w.length s.e.irrad

(dbl) (dbl)

1 280.0000 0

2 280.9231 0

3 281.8462 0

4 282.7692 0

..

fscale(sun.spct, f = "total")

53

Object: source_spct [522 x 2]

Wavelength range 280 to 800 nm, step 0.9230769 to 1 nm

Measured on 2010-06-22 09:51:00 UTC

Measured at 60.20942 N, 24.96424 E

Time unit 1s

Rescaled to 'total' = 1

##

w.length s.e.irrad

(dbl) (dbl)

1 280.0000 0

2 280.9231 0

3 281.8462 0

4 282.7692 0

..

fscale(sun.spct, range = PAR, f = irrad)

Object: source_spct [522 x 2]

Wavelength range 280 to 800 nm, step 0.9230769 to 1 nm

Measured on 2010-06-22 09:51:00 UTC

Measured at 60.20942 N, 24.96424 E

Time unit 1s

Rescaled to 'a user supplied R function' = 1

##

w.length s.e.irrad

(dbl) (dbl)

1 280.0000 0

2 280.9231 0

3 281.8462 0

4 282.7692 0

..

In the third example, the spectral data is rescaled so that the corresponding
photosynthetically-active irradiance is equal to one.

9.5 Shifting the zero of the spectral data scale

Function fshift() shifts the zero of the scale of a spectrum by subtracting
from each spectral data value a value calculated with a function (f) selected by
a character string (”mean”, ”min” or ”max”), or an actual R function which can
accept the spectrum object supplied as its first argument. The range argument
selects a region of the spectrum to be used as reference in the calculation of the
summary.

fshift(sun.spct, range = UVB, f = "mean")

Object: source_spct [522 x 2]

Wavelength range 280 to 800 nm, step 0.9230769 to 1 nm

Measured on 2010-06-22 09:51:00 UTC

Measured at 60.20942 N, 24.96424 E

Time unit 1s

##

w.length s.e.irrad

(dbl) (dbl)

54

1 280.0000 -0.01841458

2 280.9231 -0.01841458

3 281.8462 -0.01841458

4 282.7692 -0.01841458

..

fshift(sun.spct, range = c(280,290), f = "min")

Object: source_spct [522 x 2]

Wavelength range 280 to 800 nm, step 0.9230769 to 1 nm

Measured on 2010-06-22 09:51:00 UTC

Measured at 60.20942 N, 24.96424 E

Time unit 1s

##

w.length s.e.irrad

(dbl) (dbl)

1 280.0000 0

2 280.9231 0

3 281.8462 0

4 282.7692 0

..

In the first example, the spectral data shifted so that the mean spectral irra-
diance becomes zero for the UV-B region. In the second example the minimum
value in the range of wavelengths between 280 nm and 290 nm is used as zero
reference for the scale.

9.6 Replacing off-range spectral data values

Method clean() should be used with care as off-range values stem almost always
from calibration errors or measuring noise. This function allows one to replace
such values, but in many cases a zero shift or rescaling could be the option to
be preferred. Even when the off-range values are the result of random noise,
replacing them with the boundary values can cause bias, by censoring the data.
Here we create artificial off-range values by subtracting a constant from each
spectrum.

clean(sun.spct - 0.01, range = c(280.5, 282))

Object: source_spct [522 x 2]

Wavelength range 280 to 800 nm, step 0.9230769 to 1 nm

Measured on 2010-06-22 09:51:00 UTC

Measured at 60.20942 N, 24.96424 E

Time unit 1s

##

w.length s.e.irrad

(dbl) (dbl)

1 280.0000 -0.01

2 280.9231 0.00

3 281.8462 0.00

4 282.7692 -0.01

..

55

clean(polyester.spct - 0.053)

Warning in range check(x, strict.range = strict.range): Off-range

transmittance values [-0.05...0.87] instead of [0..1]

Object: filter_spct [611 x 2]

Wavelength range 190 to 800 nm, step 1 nm

##

w.length Tfr

(int) (dbl)

1 190 0

2 191 0

3 192 0

4 193 0

..

9.7 Wavelength interpolation

Converting spectra available at a given set of wavelengths values to a different
one, is frequently needed when operating with several spectra of different origin.
One can increase the apparent resolution by interpolation, and reduce it by local
averaging or smoothing and resampling. The same function works on all spct
objects, interpolating every column except w.length and replacing in this last
column the old wavelength values with the new ones supplied as argument. The
optional argument fill.value control what value is assigned to wavelengths in
the new data that are outside the range of the old wavelengths.

interpolate_wl(sun.spct, seq(400, 500, by = 0.1))

Object: source_spct [1,001 x 3]

Wavelength range 400 to 500 nm, step 0.1 nm

Measured on 2010-06-22 09:51:00 UTC

Measured at 60.20942 N, 24.96424 E

Time unit 1s

##

w.length s.e.irrad s.q.irrad

(dbl) (dbl) (dbl)

1 400.0 0.6081049 2.033314e-06

2 400.1 0.6099118 2.039879e-06

3 400.2 0.6117187 2.046445e-06

4 400.3 0.6135257 2.053010e-06

..

9.8 Trimming and clipping

9.8.1 Method clip wl()

Sometimes it is desirable to change the range of wavelengths included in a
spectrum. If we are interested in a given part of the spectrum, there is no need
to do calculations or plotting the whole spectrum. To select part a spectrum
based on a range of wavelengths we may use the clip wl method.

56

The range of wavelengths expressed in nanometres can be given as numeric
vector of length two.

clip_wl(sun.spct, range = c(400, 402))

Object: source_spct [3 x 3]

Wavelength range 400 to 402 nm, step 1 nm

Measured on 2010-06-22 09:51:00 UTC

Measured at 60.20942 N, 24.96424 E

Time unit 1s

##

w.length s.e.irrad s.q.irrad

(dbl) (dbl) (dbl)

1 400 0.6081049 2.033314e-06

2 401 0.6261742 2.098967e-06

3 402 0.6497388 2.183388e-06

clip_wl(sun.spct, range = c(400, NA))

Object: source_spct [401 x 3]

Wavelength range 400 to 800 nm, step 1 nm

Measured on 2010-06-22 09:51:00 UTC

Measured at 60.20942 N, 24.96424 E

Time unit 1s

##

w.length s.e.irrad s.q.irrad

(dbl) (dbl) (dbl)

1 400 0.6081049 2.033314e-06

2 401 0.6261742 2.098967e-06

3 402 0.6497388 2.183388e-06

4 403 0.6207287 2.091091e-06

..

As for trim wl() the range can be also supplied as a waveband object, or
any other object for which range() returns a numeric range. Even a different
spectrum object is acceptable.

clip_wl(sun.spct, range = UVA)

Object: source_spct [86 x 3]

Wavelength range 315 to 400 nm, step 1 nm

Measured on 2010-06-22 09:51:00 UTC

Measured at 60.20942 N, 24.96424 E

Time unit 1s

##

w.length s.e.irrad s.q.irrad

(dbl) (dbl) (dbl)

1 315 0.1127901 2.969940e-07

2 316 0.1020587 2.695897e-07

3 317 0.1487690 3.942191e-07

4 318 0.1413919 3.758526e-07

..

The result can be a spectrum of length zero.

57

clip_wl(sun.spct, range = c(100, 200))

Object: source_spct [0 x 3]

Measured on 2010-06-22 09:51:00 UTC

Measured at 60.20942 N, 24.96424 E

Time unit 1s

##

Variables not shown: w.length (dbl), s.e.irrad (dbl), s.q.irrad (dbl)

9.8.2 Method trim wl()

Sometimes, we need more flexibility. We may want to replace the observed
values outside a certain range or expand the range of wavelengths, filling the
expansion of all other variables with a certain value (i.e. a number, or NA.).
In contrast to clipping (or functionally equivalent, indexing, or subsetting),
trimming ensures that there will be spectral data returned at the boundaries of
the trimmed region. These values are obtained by interpolation when they are
not already present in the data.

More flexibility is available in method trim wl(), to which we can supply
arguments range, use.hinges, and fill. By default interpolation is used at
the boundaries of the range.

trim_wl(sun.spct, c(282.5, NA))

Object: source_spct [520 x 3]

Wavelength range 282.5 to 800 nm, step 0.2692308 to 1 nm

Measured on 2010-06-22 09:51:00 UTC

Measured at 60.20942 N, 24.96424 E

Time unit 1s

##

w.length s.e.irrad s.q.irrad

(dbl) (dbl) (dbl)

1 282.5000 0 0

2 282.7692 0 0

3 283.6923 0 0

4 284.6154 0 0

..

clip_wl(sun.spct, c(282.5, NA))

Object: source_spct [519 x 3]

Wavelength range 282.76923 to 800 nm, step 0.9230769 to 1 nm

Measured on 2010-06-22 09:51:00 UTC

Measured at 60.20942 N, 24.96424 E

Time unit 1s

##

w.length s.e.irrad s.q.irrad

(dbl) (dbl) (dbl)

1 282.7692 0 0

2 283.6923 0 0

3 284.6154 0 0

4 285.5385 0 0

..

58

As for clip wl() the range can be also supplied as a waveband object, or
any other object for which range() returns a numeric range. Even a different
spectrum object is acceptable.

trim_wl(sun.spct, PAR)

Object: source_spct [301 x 3]

Wavelength range 400 to 700 nm, step 1 nm

Measured on 2010-06-22 09:51:00 UTC

Measured at 60.20942 N, 24.96424 E

Time unit 1s

##

w.length s.e.irrad s.q.irrad

(dbl) (dbl) (dbl)

1 400 0.6081049 2.033314e-06

2 401 0.6261742 2.098967e-06

3 402 0.6497388 2.183388e-06

4 403 0.6207287 2.091091e-06

..

The default for fill is NULL which results in deletion values outside the
trimmed region. However, it is possible to supply a different argument, to be
used to replace the off-range data values.

trim_wl(sun.spct, c(281.5, NA), fill = NA)

Object: source_spct [524 x 3]

Wavelength range 280 to 800 nm, step 1.023182e-12 to 1 nm

Measured on 2010-06-22 09:51:00 UTC

Measured at 60.20942 N, 24.96424 E

Time unit 1s

##

w.length s.e.irrad s.q.irrad

(dbl) (dbl) (dbl)

1 280.0000 NA NA

2 280.9231 NA NA

3 281.5000 NA NA

4 281.5000 0 0

..

Furthermore, when fill is not NULL, expansion is possible.

trim_wl(sun.spct, c(275, NA), fill = 0)

Object: source_spct [529 x 3]

Wavelength range 275 to 800 nm, step 1.023182e-12 to 1 nm

Measured on 2010-06-22 09:51:00 UTC

Measured at 60.20942 N, 24.96424 E

Time unit 1s

##

w.length s.e.irrad s.q.irrad

(dbl) (dbl) (dbl)

1 275.0000 0 0

2 275.8333 0 0

3 276.6667 0 0

4 277.5000 0 0

..

59

By default interpolation at the boundaries is used, but setting use.hinges

to FALSE results in clipping, a behaviour similar to that of clip wl only if fill
== NULL.

trim_wl(sun.spct, c(281.5, NA), fill = NA)

Object: source_spct [524 x 3]

Wavelength range 280 to 800 nm, step 1.023182e-12 to 1 nm

Measured on 2010-06-22 09:51:00 UTC

Measured at 60.20942 N, 24.96424 E

Time unit 1s

##

w.length s.e.irrad s.q.irrad

(dbl) (dbl) (dbl)

1 280.0000 NA NA

2 280.9231 NA NA

3 281.5000 NA NA

4 281.5000 0 0

..

trim_wl(sun.spct, c(281.5, NA), fill = NA, use.hinges = FALSE)

Object: source_spct [522 x 3]

Wavelength range 280 to 800 nm, step 0.9230769 to 1 nm

Measured on 2010-06-22 09:51:00 UTC

Measured at 60.20942 N, 24.96424 E

Time unit 1s

##

w.length s.e.irrad s.q.irrad

(dbl) (dbl) (dbl)

1 280.0000 NA NA

2 280.9231 NA NA

3 281.8462 0 0

4 282.7692 0 0

..

When use.hinges == TRUE and expansion or replacement is done, two ob-
servations are inserted at each boundary, differing in wavelength by 1×10−12 nm
to prevent rounding errors in later calculations.

9.8.3 Functions trim spct and trim spct

Functions trim spct and trim spct are not generic, and add even more flexi-
bility, but trim wl should be preferred in user scripts.

9.9 Convolving weights

It is very instructive to look at weighted spectral data to understand how effec-
tive irradiances are calculated. Plotting effective spectral irradiance data can be
very instructive when analysing the interaction of photoreceptors and ambient
radiation. It can also illustrate what a large effect that small measuring errors
can have on the estimated effective irradiances or exposures when SWFs have
a steep slope.

60

9.9.1 Individual spectra

The multiplication operator is defined for operations between a source spct

and a waveband, so this is the easiest way of doing the calculations.

sun.spct * CIE

Object: source_spct [122 x 2]

Wavelength range 280 to 400 nm, step 0.9230769 to 1 nm

Time unit 1s

Data weighted using 'range.250.400.wtd' BSWF

##

w.length s.e.irrad

(dbl) (dbl)

1 280.0000 0

2 280.9231 0

3 281.8462 0

4 282.7692 0

..

9.9.2 Vectors

It is also possible to use vectors.

weighted.s.e.irrad <-

with(sun.spct,

s.e.irrad * calc_multipliers(w.length, CIE)

)

9.10 Tagging with bands and colours

We call tagging, to the process of adding reference information to spectral data.
For example we can add a factor indicating regions or bands in the spectrum.
We can add also information on the colour, as seen by humans, for each observed
value, or for individual regions or bands of the spectrum. In most cases this
additional information is used for annotations when plotting the spectral data.

9.10.1 Individual spectra

The function tag can be used to tag different parts of a spectrum according to
wavebands.

tag(sun.spct, PAR, byref = FALSE)

Object: source_spct [524 x 6]

Wavelength range 280 to 800 nm, step 1.023182e-12 to 1 nm

Time unit 1s

##

w.length s.e.irrad s.q.irrad wl.color wb.color wb.f

(dbl) (dbl) (dbl) (chr) (chr) (fctr)

1 280.0000 0 0 #000000 NA NA

61

2 280.9231 0 0 #000000 NA NA

3 281.8462 0 0 #000000 NA NA

4 282.7692 0 0 #000000 NA NA

..

tag(sun.spct, UV_bands, byref = FALSE)

Object: source_spct [524 x 6]

Wavelength range 280 to 800 nm, step 1.023182e-12 to 1 nm

Time unit 1s

##

w.length s.e.irrad s.q.irrad wl.color wb.color wb.f

(dbl) (dbl) (dbl) (chr) (chr) (fctr)

1 280.0000 0 0 #000000 black UVB

2 280.9231 0 0 #000000 black UVB

3 281.8462 0 0 #000000 black UVB

4 282.7692 0 0 #000000 black UVB

..

The added factor and colour data can be used for further processing or for
plotting. Information about the tagging and wavebands is stored in an attribute
tag.attr in every tagged spectrum, this yields a more compact output and
keeps a ‘trace’ of the tagging.

tg.sun.spct <- tag(sun.spct, PAR, byref = FALSE)

attr(tg.sun.spct, "spct.tags")

$time.unit

[1] "second"

##

$wb.key.name

[1] "Bands"

##

$wl.color

[1] TRUE

##

$wb.color

[1] TRUE

##

$wb.num

[1] 1

##

$wb.colors

[1] "#735B57"

##

$wb.names

[1] "PAR"

##

$wb.list

$wb.list[[1]]

PAR

low (nm) 400

high (nm) 700

weighted none

62

Additional functions are available which return a tagged spectrum and take
as input a list of wavebands, but no spectral data. They ‘build’ a spectrum
from the data in the wavebands, and are useful for plotting the boundaries of
wavebands.

wb2tagged_spct(UV_bands)

Object: generic_spct [8 x 12]

Wavelength range 100 to 400 nm, step 9.947598e-13 to 180 nm

##

w.length counts cps s.e.irrad s.q.irrad Tfr Rfl s.e.response

(dbl) (dbl) (dbl) (dbl) (dbl) (dbl) (dbl) (dbl)

1 100 0 0 0 0 0 0 0

2 100 0 0 0 0 0 0 0

3 280 0 0 0 0 0 0 0

4 280 0 0 0 0 0 0 0

..

Variables not shown: wl.color (chr), wb.color (chr), wb.f (fctr), y (dbl)

wb2rect_spct(UV_bands)

Object: generic_spct [3 x 15]

Wavelength range 190 to 357.5 nm, step 60 to 107.5 nm

##

w.length counts cps s.e.irrad s.q.irrad Tfr Rfl s.e.response

(dbl) (dbl) (dbl) (dbl) (dbl) (dbl) (dbl) (dbl)

1 190.0 0 0 0 0 0 0 0

2 297.5 0 0 0 0 0 0 0

3 357.5 0 0 0 0 0 0 0

Variables not shown: wl.color (chr), wb.color (chr), wb.name (chr), wb.f

(fctr), wl.high (dbl), wl.low (dbl), y (dbl)

Function wb2tagged spct returns a tagged spectrum, with two rows for each
waveband, corresponding to the low and high wavelength boundaries, while
function wb2rect spct returns a spectrum with only one row per waveband,
with w.length set to its midpoint but with additional columns xmin and xmax

corresponding to the low and high wavelength boundaries of the wavebands.
Function is tagged can be used to query if an spectrum is tagged or not,

and function untag removes the tags.

tg.sun.spct

Object: source_spct [524 x 6]

Wavelength range 280 to 800 nm, step 1.023182e-12 to 1 nm

Time unit 1s

##

w.length s.e.irrad s.q.irrad wl.color wb.color wb.f

(dbl) (dbl) (dbl) (chr) (chr) (fctr)

1 280.0000 0 0 #000000 NA NA

2 280.9231 0 0 #000000 NA NA

3 281.8462 0 0 #000000 NA NA

4 282.7692 0 0 #000000 NA NA

..

is_tagged(tg.sun.spct)

63

[1] TRUE

untag(tg.sun.spct)

Object: source_spct [524 x 3]

Wavelength range 280 to 800 nm, step 1.023182e-12 to 1 nm

Time unit 1s

##

w.length s.e.irrad s.q.irrad

(dbl) (dbl) (dbl)

1 280.0000 0 0

2 280.9231 0 0

3 281.8462 0 0

4 282.7692 0 0

..

is_tagged(tg.sun.spct)

[1] TRUE

In the chuck above, we can see how this works, using in this case the default
byref = TRUE which adds the tags in place, or “by reference”, to the spct object
supplied as argument.

10 Summaries

Summaries can be calculated both from individual spectral objects (Table 10)
and from collections of spectral objects (Table 11). They return a simpler object
than the spectral data in their arguments. For example a vector of numeric
values, possibly of length one, in the case of individual spectra, or a data frame
containing one row of summary data for each spectrum the collection of multiple
spectra supplied as argument.

10.1 Summary

Specialized definitions of summary and the corresponding print methods are
available for spectral objects. Attributes "what.measured", "when.measured"
and "where.measured" are included in the summary print out only if set in the
spectral object summarized.

summary(sun.spct)

Summary of object: source_spct [522 x 3]

Wavelength range 280 to 800 nm, step 0.9230769 to 1 nm

Measured on 2010-06-22 09:51:00 UTC

Measured at 60.20942 N, 24.96424 E

Time unit: 1s

##

w.length s.e.irrad s.q.irrad

Min. :280.0 Min. :0.0000 Min. :0.000e+00

1st Qu.:409.2 1st Qu.:0.4115 1st Qu.:1.980e-06

64

Table 10: Summary methods for spectra. Key: + available, – not available.

methods raw/cps source response filter reflector object chroma

irrad – + – – – – –
e irrad – + – – – – –
q irrad – + – – – – –
fluence – + – – – – –
e fluence – + – – – – –
q fluence – + – – – – –
ratio – + – – – – –
e ratio – + – – – – –
q ratio – + – – – – –
qe ratio – + – – – – –
eq ratio – + – – – – –
response – – + – – – –
e response – – + – – – –
q response – – + – – – –
transmittance – – – + – + –
absorptance – – – + – + –
absorbance – – – + – + –
reflectance – – – – + + –
range + + + + + + +
min + + + + + + +
max + + + + + + +
stepsize + + + + + + +
spread + + + + + + +
midpoint + + + + + + +
labels + + + + + + +
summary + + + + + + +
peaks – + + + + (+) (+)
valleys – + + + + (+) (+)
integrate spct + + + + + + +
average spct + + + + + + +
color – + – – – – –

Table 11: Summary methods for collections of spectra. Key: + available, – not available,
ms use msmsply() to apply function to collection members, d use msdply(), l use mslply

to apply function to collection members, a use msaply to apply function to collection
members.

methods raw/cps source response filter reflector object chroma

f mspct + + + + + + +

irrad – + – – – – –
e irrad – + – – – – –
q irrad – + – – – – –
fluence – + – – – – –
e fluence – + – – – – –
q fluence – + – – – – –
ratio – + – – – – –
e ratio – + – – – – –
q ratio – + – – – – –
qe ratio – + – – – – –
eq ratio – + – – – – –
response – – + – – – –
e response – – + – – – –
q response – – + – – – –
transmittance – – – + – + –
absorptance – – – + – + –
absorbance – – – + – + –
reflectance – – – – + + –
range + + + + + + +
min + + + + + + +
max + + + + + + +
stepsize + + + + + + +
spread + + + + + + +
midpoint + + + + + + +
labels l l l l l l l
summary l l l l l l l
peaks – + + + + (+) (+)
valleys – + + + + (+) (+)
integrate spct a, d, l a, d, l a, d, l a, d, l a, d, l a, d, l a, d, l
average spct a, d, l a, d, l a, d, l a, d, l a, d, l a, d, l a, d, l
color – + – – – – –

65

Median :539.5 Median :0.5799 Median :2.929e-06

Mean :539.5 Mean :0.5160 Mean :2.407e-06

3rd Qu.:669.8 3rd Qu.:0.6664 3rd Qu.:3.154e-06

Max. :800.0 Max. :0.8205 Max. :3.375e-06

summary(two_suns.spct)

Summary of object: source_spct [1,044 x 4]

containg 2 spectra in long form

Wavelength range 280 to 800 nm, step 0.9230769 to 1 nm

Time unit: 1s

##

w.length s.e.irrad spct.idx s.q.irrad

Min. :280.0 Min. :0.0000 a:522 Min. :0.000e+00

1st Qu.:409.0 1st Qu.:0.2471 b:522 1st Qu.:1.159e-06

Median :539.5 Median :0.3494 Median :1.580e-06

Mean :539.5 Mean :0.3870 Mean :1.806e-06

3rd Qu.:670.0 3rd Qu.:0.5799 3rd Qu.:2.928e-06

Max. :800.0 Max. :0.8205 Max. :3.375e-06

10.2 Wavelength

10.2.1 Individual spectra

The ‘usual’ and a couple of new summary functions are available for spectra,
but redefined to return wavelength based summaries in nanometres (nm).

range(sun.spct)

[1] 280 800

min(sun.spct)

[1] 280

max(sun.spct)

[1] 800

midpoint(sun.spct)

[1] 540

spread(sun.spct)

[1] 520

stepsize(sun.spct)

[1] 0.9230769 1.0000000

66

10.2.2 Collections of spectra

Most frequently used summary methods are implemented for collections
of spectra. See Table 11 where methods that need to be applied with
functions msaply, msdply or mslply to members in a collection and obtain
the results in an array (vector, or matrix), a data frame or a list object
are indicated. In many cases depending of the class desired for the result,
one can chose a suitable ‘apply’ function, and sometimes it is best to use
such a function, even when the corresponding method is implemented for
collections of spectra.

Collections of spectra can be useful not only for time-series of spectra or spec-
tral images, but also when dealing with a small group of related spectra. In the
example below we show how to use a collection of spectra for calculating sum-
maries. The spectra in a collection do not need to have been measured at the
same wavelength values, or have the same number of rows or even of columns.
Consequently, in many cases applying the wavelength summary functions de-
scribed above to collections of spectra can be useful. The value returned is a
data frame, with a number of data columns equal to the length of the returned
value by the corresponding method for individual spectra.

filters.mspct <- filter_mspct(list(none = clear.spct,

pet = polyester.spct,

yellow = yellow_gel.spct))

range(filters.mspct)

Source: local data frame [3 x 3]

##

spct.idx min.wl max.wl

(fctr) (dbl) (dbl)

1 none 100 5000

2 pet 190 800

3 yellow 190 800

10.3 Peaks and valleys

10.3.1 Individual spectra

Functions peaks and valleys take spectra as first argument and return a subset
of the spectral object data corresponding to local maxima and local minima of
the measured variable. span defines the width of the ‘window’ used as a number
of observations.

peaks(sun.spct, span = 51)

Object: source_spct [3 x 2]

Wavelength range 451 to 747 nm, step 44 to 252 nm

67

Measured on 2010-06-22 09:51:00 UTC

Measured at 60.20942 N, 24.96424 E

Time unit 1s

##

w.length s.e.irrad

(dbl) (dbl)

1 451 0.8204633

2 495 0.7899872

3 747 0.5025733

valleys(sun.spct, span = 51)

Object: source_spct [9 x 2]

Wavelength range 358 to 761 nm, step 30 to 72 nm

Measured on 2010-06-22 09:51:00 UTC

Measured at 60.20942 N, 24.96424 E

Time unit 1s

##

w.length s.e.irrad

(dbl) (dbl)

1 358 0.2544907

2 393 0.2422023

3 431 0.4136900

4 487 0.6511654

..

In the case of source spct and response spct methods unit.out

can be used to force peaks to be searched using either energy or pho-
ton based spectral irradiance. The default is energy, or the option
"photobiology.radiation.unit" if set.

peaks(sun.spct, span = 51, unit.out = "photon")

Object: source_spct [7 x 2]

Wavelength range 451 to 754 nm, step 36 to 90 nm

Measured on 2010-06-22 09:51:00 UTC

Measured at 60.20942 N, 24.96424 E

Time unit 1s

##

w.length s.q.irrad

(dbl) (dbl)

1 451 3.093155e-06

2 495 3.268822e-06

3 531 3.374912e-06

4 621 3.355564e-06

..

It is possible to approximately set the width of the windows in nanometres
by using function step size. However, here we simply use an odd number of
wavelengths ‘steps’.

peaks(sun.spct, span = 21)

Object: source_spct [18 x 2]

Wavelength range 354 to 774 nm, step 11 to 51 nm

68

Measured on 2010-06-22 09:51:00 UTC

Measured at 60.20942 N, 24.96424 E

Time unit 1s

##

w.length s.e.irrad

(dbl) (dbl)

1 354 0.3758625

2 366 0.4491898

3 378 0.4969714

4 416 0.6761818

..

Low level functions find peaks, get peaks and get valleys take numeric
vectors as arguments.

10.3.2 Collections of spectra

We can use msmsply() to extract the peaks of a collection of spectra.

msmsply(filters.mspct, peaks, span = 11)

Object: filter_mspct [3 x 1]

--- Member: none ---

Object: filter_spct [0 x 2]

##

Variables not shown: w.length (dbl), Tfr (dbl)

--- Member: pet ---

Object: filter_spct [8 x 2]

Wavelength range 453 to 648 nm, step 6 to 76 nm

##

w.length Tfr

(int) (dbl)

1 453 0.926

2 503 0.926

3 579 0.921

4 609 0.919

..

--- Member: yellow ---

Object: filter_spct [5 x 2]

Wavelength range 642 to 755 nm, step 8 to 64 nm

##

w.length Tfr

(int) (dbl)

1 642 0.8980

2 706 0.9005

3 714 0.9005

4 744 0.9015

..

##

--- END ---

Two of the filters in the collection do not have peaks, and a spectrum object
of length zero is returned for them.

69

10.4 Irradiance

10.4.1 Individual spectra

The code using spct objects is simple, to integrate the whole spectrum we can
use

irrad(sun.spct)

Total

269.1249

attr(,"time.unit")

[1] "second"

attr(,"radiation.unit")

[1] "energy irradiance total"

and, to integrate a range of wavelengths, in the example, photosynthetically
active radiation, we use the waveband PAR we earlier defined.

irrad(sun.spct, PAR)

PAR

196.6343

attr(,"time.unit")

[1] "second"

attr(,"radiation.unit")

[1] "energy irradiance total"

It is also valid to pass as argument for w.band a numeric range representing
wavelengths in nanometres.

irrad(sun.spct, c(400, 700))

range.400.700

196.6343

attr(,"time.unit")

[1] "second"

attr(,"radiation.unit")

[1] "energy irradiance total"

The default for irrad, when no argument unit.out is supplied, is to
return the irradiance value in energy irradiance units, unless the R option
photobiology.radiation.unit is set.

Functions e irrad and q irrad save some typing, and always return the
same type of spectral irradiance quantity, independently of global option
photobiology.radiation.unit.

e_irrad(sun.spct, PAR) # W m-2

PAR

196.6343

attr(,"time.unit")

[1] "second"

attr(,"radiation.unit")

[1] "energy irradiance total"

70

q_irrad(sun.spct, PAR) * 1e6 # umol s-1 m-2

PAR

894.1352

attr(,"time.unit")

[1] "second"

attr(,"radiation.unit")

[1] "photon irradiance total"

It is also possible to supply a time unit to use as basis of expression for the
returned value, but be aware that conversion into a logger time unit is only valid
for sources like lamps, which have an output the remains constant in time.

irrad(sun.spct, PAR, time.unit = "hour")

PAR

707883.4

attr(,"time.unit")

[1] "hour"

attr(,"radiation.unit")

[1] "energy irradiance total"

irrad(sun.spct, PAR, time.unit = duration(8, "hours"))

PAR

5663067

attr(,"time.unit")

[1] "28800s (~8 hours)"

attr(,"radiation.unit")

[1] "energy irradiance total"

Using a shorter time unit than the original, yields an average value re-
expressed on a new time unit base.

irrad(sun.daily.spct, PAR, time.unit = "second")

PAR

92.16251

attr(,"time.unit")

[1] "second"

attr(,"radiation.unit")

[1] "energy irradiance total"

Lists of wavebands are also accepted as argument.

e_irrad(sun.spct, UV_bands) # W m-2

UVB UVA

0.6445105 27.9842061

attr(,"time.unit")

[1] "second"

attr(,"radiation.unit")

[1] "energy irradiance total"

71

These functions have an additional argument quantity, with default
"total", which can take values controlling the output. The value ”total”
yields irradiance in W m−2, integrated over wavelengths for each waveband,
while ”average” yields the mean spectral irradiance within each waveband
in W m−2 nm−1. The value ”contribution” is relative to the irradiance for the
whole spectrum, expressed as a fraction of one, while the value ”relative” is rela-
tive to the sum of the irradiances for the different wavebands given as argument,
also expressed as a fraction of one.

irrad(sun.spct, UV_bands, quantity = "total")

UVB UVA

0.6445105 27.9842061

attr(,"time.unit")

[1] "second"

attr(,"radiation.unit")

[1] "energy irradiance total"

irrad(sun.spct, UV_bands, quantity = "contribution")

UVB UVA

0.002394838 0.103982226

attr(,"time.unit")

[1] "second"

attr(,"radiation.unit")

[1] "energy irradiance contribution"

irrad(sun.spct, UV_bands, quantity = "relative")

UVB UVA

0.02251273 0.97748727

attr(,"time.unit")

[1] "second"

attr(,"radiation.unit")

[1] "energy irradiance relative"

irrad(sun.spct, UV_bands, quantity = "average")

UVB UVA

0.01841458 0.32922595

attr(,"time.unit")

[1] "second"

attr(,"radiation.unit")

[1] "energy irradiance average"

10.4.2 Collections of spectra

Collections of spectra can be useful not only for time-series of spectra or spec-
tral images, but also when dealing with a small group of related spectra. In
the example below we show how to use a collection of spectra for estimating
irradiances under different filters set up in sunlight.

We reuse collection of filter spectra filters.mspct from section 10.2.2 on
page 67.

72

names(filters.mspct)

[1] "none" "pet" "yellow"

We then convolve each filter’s spectral transmittance by the spectral irradi-
ance of the light source

filtered_sun <- convolve_each(filters.mspct, sun.spct)

irrad(filtered_sun, list(UVA, PAR))

Source: local data frame [3 x 3]

##

spct.idx irrad_UVA irrad_PAR

(fctr) (dbl) (dbl)

1 none 27.98420611 196.6343

2 pet 22.98282851 181.0213

3 yellow 0.03726539 106.9680

The code above can also be written as a single statement

irrad(convolve_each(filters.mspct, sun.spct), list(UVA, PAR))

Source: local data frame [3 x 3]

##

spct.idx irrad_UVA irrad_PAR

(fctr) (dbl) (dbl)

1 none 27.98420611 196.6343

2 pet 22.98282851 181.0213

3 yellow 0.03726539 106.9680

It is also possible to use an ‘apply’ function. Syntax parallels that of base
R’s and package plyr’s. See sections 4.5 and 4.6 for more details.

One thing to remember, is that operators in R are just normal functions
with special names and call syntax. They can also be called with the usual
function call syntax by enclosing their name in backquotes. We use this to pass
as argument the multiplication operator ‘*‘ in a call to msmsply which returns,
in this case, a source multi spct object. After this we just call the irrad

method on the collection of spectra and obtain the result as a data frame with
one row per spectrum and one column by waveband.

filtered_sun <- msmsply(filters.mspct, `*`, sun.spct)

irrad(filtered_sun, list(UVA, PAR))

Source: local data frame [3 x 3]

##

spct.idx irrad_UVA irrad_PAR

(fctr) (dbl) (dbl)

1 none 27.98420611 196.6343

2 pet 22.98282851 181.0213

3 yellow 0.03726539 106.9680

73

10.4.3 Numeric vectors

The code using numeric vectors is more complicated, but adds some additional
flexibility for tweaking performance. Under normal circumstances it is easier to
use the functions described above.

Function irradiance takes an array of wavelengths (sorted in strictly in-
creasing order), and the corresponding values of spectral irradiance. By default
the input is assumed to be in energy units, but parameter unit.in can be
used to change this default. The type of unit used for the returned quantity is
set by unit.out with no default. The behaviour with respect to wavebands is
as described above for spectral objects. The functions photon irradiance()

and energy irradiance(), just call irradiance() with the unit.out set to
"photon" or "energy" respectively.

The functions taking numerical vectors as arguments can be used with data
stored as vectors, or using with with data frames, data tables, lists, and spectra
objects.

with(sun.spct, photon_irradiance(w.length, s.e.irrad, PAR))

PAR

0.0008941352

The recommended practice is to use with, as above.

10.5 Fluence

10.5.1 Individual spectra

The calculation of fluence values (time-integrated irradiance) is identical to that
for irradiance, except that a exposure.time argument needs to be supplied. The
exposure time must be a lubridate::duration, but any argument accepted by
as.duration can also be used. Functions fluence, e fluence and q fluence

correspond to irrad, e irrad and q irrad,

fluence(sun.spct, exposure.time = duration(1, "hours"))

Total

968849.6

attr(,"radiation.unit")

[1] "energy fluence (J m-2)"

attr(,"exposure.duration")

[1] "3600s (~1 hours)"

fluence(sun.spct, exposure.time = 3600) # seconds

converting ’time.unit’ 3600 into a lubridate::duration

Total

968849.6

attr(,"radiation.unit")

[1] "energy fluence (J m-2)"

attr(,"exposure.duration")

[1] 3600

74

and, to obtain the photon fluence for a range of wavelengths, in the example,
photosynthetically active radiation, we use the PAR waveband object earlier
defined, for 25 minutes of exposure.

e_fluence(sun.spct, PAR, exposure.time = duration(25, "minutes"))

PAR

294951.4

attr(,"radiation.unit")

[1] "energy fluence (J m-2)"

attr(,"exposure.duration")

[1] "1500s (~25 minutes)"

10.6 Photon and energy ratios

10.6.1 Individual spectra

The functions described here, in there simplest use, calculate a ratio between
two wavebands. The function q ratio returning photon ratios. However both
waveband parameters can take lists of wavebands as arguments, with normal
recycling rules in effect. The corresponding function e ratio returns energy
ratios.

q_ratio(sun.spct, UVB, PAR)

UVB: PAR(q:q)

0.001873724

attr(,"radiation.unit")

[1] "q:q ratio"

q_ratio(sun.spct,

list(UVC, UVB, UVA,

UV))

UVB: Total(q:q) UVA: Total(q:q) UV.tr.lo: Total(q:q)

0.001334593 0.067567343 0.068901936

attr(,"radiation.unit")

[1] "q:q ratio"

q_ratio(sun.spct,

UVB,

list(UV, PAR))

UVB: UV.tr.lo(q:q) UVB: PAR(q:q)

0.019369458 0.001873724

attr(,"radiation.unit")

[1] "q:q ratio"

Function qe ratio, has only one waveband parameter, and returns the ‘pho-
ton’ to ‘energy’ ratio, while its complement eq ratio returns the ‘energy’ to
‘photon’ ratio.

75

qe_ratio(sun.spct, list(UVB, PAR))

q:e(UVB) q:e(PAR)

2.599434e-06 4.547199e-06

attr(,"radiation.unit")

[1] "q:e ratio"

10.6.2 Collections of spectra

q_ratio(filtered_sun, list(UVB, UVA, PAR))

Source: local data frame [3 x 4]

##

spct.idx q_ratio_UVB:Total(q:q) q_ratio_UVA:Total(q:q)

(fctr) (dbl) (dbl)

1 none 1.334593e-03 0.0675673430

2 pet 3.700698e-05 0.0614239749

3 yellow 2.540715e-06 0.0001339225

Variables not shown: q_ratio_PAR:Total(q:q) (dbl)

10.6.3 Vectors

The function waveband ratio() takes basically the same parameters as
irradiance, but two waveband definitions instead of one, and two unit.out

definitions instead of one. This is the base function used in all the vector based
‘ratio’ functions in the ’photobiology’ package.

Similar functions photon ratio(), energy ratio(), and
photons energy ratio return the other ratios described above. In con-
trast to the functions described in the previous section, these functions only
accept individual waveband definitions (not lists of them).

To calculate the photon ratio between UVB and PAR photon irradiance in
these to regions we use.

with(sun.data,

photon_ratio(w.length, s.e.irrad, UVB, PAR))

[1] 0.00187372

10.7 Normalized difference indexes

10.8 Individual spectra

These indexes are frequently used to summarize reflectance data, for example
in remote sensing the NDVI (normalized difference vegetation index). Here we
give an unusual example to demonstrate that function normalized diff ind()

can be used to calculate, or define any similar index.

76

normalized_diff_ind(sun.spct,

waveband(c(400, 700)), waveband(c(700, 1100)),

irrad)

NDI irrad [400.700] - [700.1100]

0.6352382

10.9 Transmittance, reflectance, absorptance and ab-
sorbance

10.9.1 Individual spectra

The functions transmittance, absorptance and absorbance take filter spct

as argument, while function reflectance takes reflector spct objects as ar-
gument. Functions transmittance, reflectance and absorptance are also
implemented for object spct. These functions return as default an average
value for these quantities assuming a light source with a flat spectral energy
output, but this can be changed as described above for irrad().

transmittance(polyester.spct, list(UVB, UVA, PAR))

UVB UVA PAR

0.007671429 0.782682353 0.920245000

attr(,"Tfr.type")

[1] "total"

attr(,"radiation.unit")

[1] "transmittance average"

It is more likely that we would like to calculate these values with reference
to light of a certain spectral quality. This needs to be calculated by hand, which
is not difficult.

irrad(sun.spct * polyester.spct, list(UVB, UVA, PAR, wb.trim = TRUE)) /

irrad(sun.spct, list(UVB, UVA, PAR, wb.trim = TRUE))

UVB UVA PAR

0.02506541 0.82127856 0.92059898

attr(,"time.unit")

[1] "second"

attr(,"radiation.unit")

[1] "energy irradiance total"

10.9.2 Collections of spectra

Here we construct a collection of filter spectra, and then we calculate the trans-
mittance of these filters for two wavebands, obtaining the results as a data
frame, with one row per filter, and one column per waveband. We reuse once
more filters.mspct from section 10.2.2 on page 67.

77

transmittance(filters.mspct, list(UVA, PAR))

Source: local data frame [3 x 3]

##

spct.idx transmittance_UVA transmittance_PAR

(fctr) (dbl) (dbl)

1 none 1.000000000 1.0000000

2 pet 0.782682353 0.9202450

3 yellow 0.001601353 0.5655132

10.10 Integrated response

10.10.1 Individual spectra

The functions response, e response and q response take response spct ob-
jects as arguments, and return the integrated value for each waveband (inte-
grated over wavelength) assuming a light source with a flat spectral energy or
photon output respectively. If no waveband is supplied as argument, the whole
spectrum is integrated.

response(photodiode.spct)

Total

25.37446

attr(,"time.unit")

[1] "second"

attr(,"radiation.unit")

[1] "energy response total"

When a waveband, or list of wavebands, is supplied the response is calculated
for the wavebands.

e_response(photodiode.spct, list(UVB, UVA))

UVB UVA

0.7002548 5.9818181

attr(,"time.unit")

[1] "second"

attr(,"radiation.unit")

[1] "energy response total"

This function has an additional argument quantity, with default "total",
as described for irrad().

10.10.2 Collections of spectra

sensors <- response_mspct(list(GaAsP = photodiode.spct,

CCD = ccd.spct))

response(sensors, list(UVB, UVA, PAR), quantity = "contribution")

78

Source: local data frame [2 x 4]

##

spct.idx response_UVB response_UVA response_PAR.tr.hi

(fctr) (dbl) (dbl) (dbl)

1 GaAsP 0.02759684 0.23574173 0.7152528

2 CCD 0.02146115 0.06323201 0.4098033

10.11 Integration over wavelengths

When we need to integrate some non-standard numeric variable stored in a
spectral object we can use functions integrate spct or average spct.

10.11.1 Calculation from individual spectra

We can integrate the values of arbitrary numeric columns other than w.length

in an spectral object. All spectral classes are derived from generic spct, so the
examples in this section apply to objects of any of the derived spectral classes
as well.

integrate_spct(sun.spct)

e.irrad q.irrad

2.691249e+02 1.255336e-03

The function average spct integrates every column holding numeric values
from a spectrum object, except for w.length, and divides the result by the
spread or width of the wavelength range integrated, returning a value expressed
in the same units as the spectral data.

average_spct(sun.spct)

e.irrad q.irrad

5.175479e-01 2.414107e-06

11 Astronomy

11.1 Position of the sun

In photobiology research we sometimes need to calculate the position on the
sun at arbitrary locations and positions. The function sun angles returns the
azimuth in degrees eastwards, altitude in degrees above the horizon, solar disk
diameter in degrees and sun to earth distance in astronomical units. The time
should be a POSIXct vector, possibly of length one, and it is easiest to use
package lubridate for working with time and dates.

sun_angles(now(), lat = 34, lon = 0)

79

$time

[1] "2016-05-19 22:44:47 EEST"

##

$longitude

[1] 0

##

$latitude

[1] 34

##

$azimuth

[1] 301.9794

##

$elevation

[1] -9.403298

##

$diameter

[1] 0.5269328

##

$distance

[1] 1.011894

sun_angles(ymd_hms("2014-01-01 0:0:0", tz = "UTC"))

$time

[1] "2014-01-01 UTC"

##

$longitude

[1] 0

##

$latitude

[1] 0

##

$azimuth

[1] 181.9507

##

$elevation

[1] -66.96255

##

$diameter

[1] 0.5422513

##

$distance

[1] 0.9833078

When spectra contain suitable metadata, the position of the sun for the
spectral irradiance data measurement can be easily obtained.

sun_angles(getWhenMeasured(sun.spct), geocode = getWhereMeasured(sun.spct))

$time

[1] "2010-06-22 09:51:00 UTC"

##

$longitude

[1] 24.96424

##

$latitude

80

[1] 60.20942

##

$azimuth

[1] 168.1455

##

$elevation

[1] 52.82587

##

$diameter

[1] 0.5246387

##

$distance

[1] 1.016318

The object to be supplied as argument for geocode is a data frame
with variables lon and lat. This matches the return value of function
ggmap::geocode(), function that can be used to find the coordinates using
any ‘address’ entered as a character string understood by the Google maps
API. We will not demonstrate this below, but all functions taking lat and lon

arguments described can alternatively be supplied a geocode argument instead
of separate latitude and longitude numeric values.

11.2 Times of sunrise, solar noon and sunset

Functions sunrise time, sunset time, noon time, day length and
night length have all the same parameter signature. In addition, func-
tion day night returns a list containing all the quantities returned by the other
functions. They are all vectorized for the date parameter.

We create a vector of dates to use in the examples—default time zone of ymd
is UTC or GMT.

dates <- seq(from = ymd("2015-03-01"), to = ymd("2015-07-1"), length.out = 3)

Default latitude is zero (the Equator), the default longitude is zero (Green-
wich), and default time zone for the functions in the photobiology package is
"UTC". Be also aware that for summer dates the times are expressed accord-
ingly. In the examples below this can be recognized for example, by the time
zone being reported as EEST instead of EET for Eastern Europe.

noon_time(dates, tz = "UTC", lat = 60)

[1] "2015-03-01 12:12:39 UTC" "2015-05-01 11:57:27 UTC"

[3] "2015-07-01 12:03:50 UTC"

noon_time(dates, tz = "CET", lat = 60)

[1] "2015-03-01 13:12:39 CET" "2015-05-01 13:57:27 CEST"

[3] "2015-07-01 14:03:50 CEST"

81

day_night(dates, lat = 60)

$day

[1] "2015-03-01" "2015-05-01" "2015-07-01"

##

$sunrise

[1] "2015-03-01 07:06:26 UTC" "2015-05-01 04:06:51 UTC"

[3] "2015-07-01 02:52:50 UTC"

##

$noon

[1] "2015-03-01 12:12:39 UTC" "2015-05-01 11:57:27 UTC"

[3] "2015-07-01 12:03:50 UTC"

##

$sunset

[1] "2015-03-01 17:19:30 UTC" "2015-05-01 19:49:05 UTC"

[3] "2015-07-01 21:14:09 UTC"

##

$daylength

[1] 10.21778 15.70382 18.35536

##

$nightlength

[1] 13.782215 8.296180 5.644636

The default for date is the current day.

sunrise_time(lat = 60)

[1] "2016-05-19 03:21:44 UTC"

Both latitude and longitude can be supplied, but be aware that if the re-
turned value is desired in the local time coordinates, the time zone should match
the longitude.

sunrise_time(today(tz = "UTC"), tz = "UTC", lat = 60, lon = 0)

[1] "2016-05-19 03:21:44 UTC"

sunrise_time(today(tz = "EET"), tz = "EET", lat = 60, lon = 25)

[1] "2016-05-19 04:41:52 EEST"

Southern hemisphere latitudes as well as longitudes to the West of the Green-
wich meridian should be supplied as negative numbers.

sunrise_time(dates, lat = 60)

[1] "2015-03-01 07:06:26 UTC" "2015-05-01 04:06:51 UTC"

[3] "2015-07-01 02:52:50 UTC"

sunrise_time(dates, lat = -60)

[1] "2015-03-01 05:18:13 UTC" "2015-05-01 07:47:52 UTC"

[3] "2015-07-01 09:14:28 UTC"

82

The angle used in the twilight calculation can be supplied, either as the name
of a standard definition, or as an angle in degrees (negative for sun positions
below the horizon). Positive angles can be used when the time of sun occlusion
behind a building, mountain, or other obstacle needs to be calculated.

sunrise_time(today(tz = "EET"), tz = "EET", lat = 60, lon = 25,

twilight = "civil")

[1] "2016-05-19 03:25:11 EEST"

sunrise_time(today(tz = "EET"), tz = "EET", lat = 60, lon = 25,

twilight = -10)

[1] "2016-05-19 01:44:01 EEST"

sunrise_time(today(tz = "EET"), tz = "EET", lat = 60, lon = 25,

twilight = +12)

[1] "2016-05-19 06:34:17 EEST"

Parameter unit.out can be used to obtain the returned value expressed as
time-of-day in hours, minutes, or seconds since midnight.

sunrise_time(today(tz = "EET"), tz = "EET", lat = 60, lon = 25,

unit.out = "hour")

[1] 4.698009

Functions day length and night length return by default the length of
time in hours.

day_length(dates, lat = 60)

[1] 10.21778 15.70382 18.35536

night_length(dates, lat = 60)

[1] 13.782215 8.296180 5.644636

Function day night returns a list.

day_night(dates, lat = 60)

$day

[1] "2015-03-01" "2015-05-01" "2015-07-01"

##

$sunrise

[1] "2015-03-01 07:06:26 UTC" "2015-05-01 04:06:51 UTC"

[3] "2015-07-01 02:52:50 UTC"

##

$noon

[1] "2015-03-01 12:12:39 UTC" "2015-05-01 11:57:27 UTC"

[3] "2015-07-01 12:03:50 UTC"

##

83

$sunset

[1] "2015-03-01 17:19:30 UTC" "2015-05-01 19:49:05 UTC"

[3] "2015-07-01 21:14:09 UTC"

##

$daylength

[1] 10.21778 15.70382 18.35536

##

$nightlength

[1] 13.782215 8.296180 5.644636

day_night(dates, lat = 60, unit.out = "hour")

$day

[1] "2015-03-01" "2015-05-01" "2015-07-01"

##

$sunrise

[1] 7.107340 4.114251 2.880713

##

$noon

[1] 12.21107 11.95760 12.06399

##

$sunset

[1] 17.32512 19.81807 21.23608

##

$daylength

[1] 10.21778 15.70382 18.35536

##

$nightlength

[1] 13.782215 8.296180 5.644636

12 RGB colours

Two functions allow calculation of simulated colour of light sources as R colour
definitions. Three different functions are available, one for monochromatic light
taking as argument wavelength values, and one for polychromatic light taking
as argument spectral energy irradiances and the corresponding wave length val-
ues. The third function can be used to calculate a representative RGB colour
for a band of the spectrum represented as a range of wavelength, based on the
assumption of a flat energy irradiance across the range. By default CIE coor-
dinates for typical human vision are used, but the functions have a parameter
that can be used for supplying a different chromaticity definition.

Examples for monochromatic light:

w_length2rgb(550) # green

wl.550.nm

"#00FF00"

w_length2rgb(630) # red

wl.630.nm

"#FF0000"

84

w_length2rgb(c(550, 630, 380, 750)) # vectorized

wl.550.nm wl.630.nm wl.380.nm wl.750.nm

"#00FF00" "#FF0000" "#000000" "#000000"

Examples for wavelength ranges:

w_length_range2rgb(c(400,700))

400-700 nm

"#735B57"

Examples for spectra as vectors, in this case for the solar spectrum:

with(sun.spct, s_e_irrad2rgb(w.length, s.e.irrad))

[1] "#544F4B"

with(sun.spct, s_e_irrad2rgb(w.length, s.e.irrad, sens = ciexyzCMF2.spct))

[1] "#544F4B"

Examples with source spct objects.

rgb_spct(sun.spct)

[1] "#544F4B"

rgb_spct(sun.spct, sens = ciexyzCMF2.spct)

[1] "#544F4B"

And also a color method for source spct.

color(sun.spct)

source CMF

"#544F4B"

color(sun.spct * yellow_gel.spct)

source CMF

"#946000"

13 Optimizing performance

When developing package ’photobiology’ quite a lot of effort was spent in opti-
mizing performance, especially of the functions accepting vectors as arguments,
as in one of our experiments, we need to process several hundred thousands
of measured spectra. The defaults should provide good performance in most

85

cases, however, some further improvements are achievable, when a series of dif-
ferent calculations are done on the same spectrum, or when a series of spectra
measured at exactly the same wavelengths are used for calculating weighted
irradiances or exposures.

In the case of doing calculations repeatedly on the same spectrum, a
small improvement in performance can be achieved by setting the parame-
ter check.spectrum = FALSE for all but the first call to irradiance(), or
photon irradiance(), or energy irradiance(), or the equivalent function for
ratios. It is also possible to set this parameter to FALSE in all calls, and do the
check beforehand by explicitly calling check spectrum().

In the case of calculating weighted irradiances on many spectra having ex-
actly the same wavelength values, then a significant improvement in the per-
formance can be achieved by setting use.cached.mult = TRUE, as this reuses
the multipliers calculated during successive calls based on the same waveband.
However, to achieve this increase in performance, the tests to ensure that the
wavelength values have not changed, have to be kept to the minimum. Cur-
rently only the length of the wavelength array is checked, and the cached values
discarded and recalculated if the length changes. For this reason, this is not the
default, and when using caching the user is responsible for making sure that the
array of wavelengths has not changed between calls.

You can use the package microbenchmark to time the code and find the
‘regions’ that slow it down. I have used it, and also I have used profiling to
optimize the code for speed. The choice of defaults is based on what is best
when processing a moderate number of spectra, say less than a few hundreds,
as opposed to many thousands.

14 Example data

A few example spectra are included in this package for use in examples and
vignettes, and testing (Tables 12 and 13).

86

Table 12: Data sets included in the package: spectra. The CIE standard illuminant data
in this package are normalized to one at λ = 560 nm, while in the CIE standard they are
normalized to 100 at the same wavelength.

Object class units data description

sun.spct source spct W m−2 nm−1 solar spectral irradiance
sun.daily.spct source spct J m−2 d−1 nm−1 solar spectral exposure
sun.data data.frame W m−2 nm−1 solar spectral irradiance
sun.daily.data data.frame J m−2 d−1 nm−1 solar spectral exposure
D65.illuminant.spct source spct (norm. 560 nm) CIE standard
A.illuminant.spct source spct (norm. 560 nm) CIE standard
clear.spct filter spct fraction ideal transparent filter
opaque.spct filter spct fraction ideal opaque filter
polyester.spct filter spct fraction plastic film
yellow gel.spct filter spct fraction theatrical “gel” filter
clear body.spct object spct fraction ideal transparent body
black body.spct object spct fraction ideal black body
white body.spct object spct fraction ideal white body
photodiode.spct response spct A / W typical Si photodiode
ccd.spct response spct A / W typical CCD array
filter cps.mspct cps spct counts / s example “raw“ data

Table 13: Data sets included in the package: chromaticity data

Object class data description

ciexyzCC2.spct chroma spct human chromaticity coordinates 2◦

ciexyzCC10.spct chroma spct human chromaticity coordinates 10◦

ciexyzCMF2.spct chroma spct human colour matching function 2◦

ciexyzCMF10.spct chroma spct human colour matching function 10◦

ciev2.spct chroma spct human luminous efficiency 2◦

ciev10.spct chroma spct human luminous efficiency 10◦

beesxyzCMF.spct chroma spct bee colour matching function

87

	1 Introduction
	2 Installation and use
	3 Spectra
	3.1 Classes
	3.2 Data assumptions
	3.3 Querying the class
	3.4 Construction
	3.5 Special attributes

	4 Collections of spectra
	4.1 Classes
	4.2 Construction
	4.2.1 Constructors
	4.2.2 Using `as' functions
	4.2.3 Converting `tidy' data
	4.2.4 Converting `untidy' data frames

	4.3 Querying the class
	4.4 Extract, replace and combine
	4.5 Transform or apply functions
	4.6 Convolution
	4.7 Attributes

	5 Wavebands
	5.1 Construction
	5.2 Querying the class
	5.3 Retrieving properties

	6 Collections of wavebands
	6.1 Construction
	6.1.1 List constructor
	6.1.2 Special constructor

	7 Object `inspection' methods
	7.1 print()
	7.2 summary()

	8 Transformations: using operators
	8.1 Binary operators
	8.2 Unary operators and maths functions
	8.3 Options

	9 Transformations: methods and functions
	9.1 Manipulating spectra
	9.2 Conversions between radiation units
	9.3 Normalizing a spectrum
	9.4 Rescaling a spectrum
	9.5 Shifting the zero of the spectral data scale
	9.6 Replacing off-range spectral data values
	9.7 Wavelength interpolation
	9.8 Trimming and clipping
	9.8.1 Method clip_wl()
	9.8.2 Method trim_wl()
	9.8.3 Functions trim_spct and trim_spct

	9.9 Convolving weights
	9.9.1 Individual spectra
	9.9.2 Vectors

	9.10 Tagging with bands and colours
	9.10.1 Individual spectra

	10 Summaries
	10.1 Summary
	10.2 Wavelength
	10.2.1 Individual spectra
	10.2.2 Collections of spectra

	10.3 Peaks and valleys
	10.3.1 Individual spectra
	10.3.2 Collections of spectra

	10.4 Irradiance
	10.4.1 Individual spectra
	10.4.2 Collections of spectra
	10.4.3 Numeric vectors

	10.5 Fluence
	10.5.1 Individual spectra

	10.6 Photon and energy ratios
	10.6.1 Individual spectra
	10.6.2 Collections of spectra
	10.6.3 Vectors

	10.7 Normalized difference indexes
	10.8 Individual spectra
	10.9 Transmittance, reflectance, absorptance and absorbance
	10.9.1 Individual spectra
	10.9.2 Collections of spectra

	10.10 Integrated response
	10.10.1 Individual spectra
	10.10.2 Collections of spectra

	10.11 Integration over wavelengths
	10.11.1 Calculation from individual spectra

	11 Astronomy
	11.1 Position of the sun
	11.2 Times of sunrise, solar noon and sunset

	12 RGB colours
	13 Optimizing performance
	14 Example data

