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Abstract

Recent methodological researches produced permutation methods to test parameters
in presence of nuisance variables in linear models or repeated measures ANOVA. This
methods are briefly described in this article. Permutation tests are particularely usefull for
the multiple comparisons problem as used to test the effect of factors or variables on signals
while controling the family-wise error rate (FWER). This article introduces the permuco

package that allows several permutation methods as well as functions implementing those
methods jointly with cluster-mass tests or threshold-free cluster enhancement (TFCE).
The permuco package is designed, first, for univariate permutation tests with nuisance
variables; and secondly, for comparing signals as required, for example, for the analysis
of event-related potential (ERP) of experiments using electroencephalography (EEG). A
tutorial for each of this cases is provided.

This articles has been submitted to peer-review journal.
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1. Introduction

Permutation tests are exact for simple models like one-way ANOVA and t-test (Lehmann
and Romano 2008, pp. 176-177). Moreover it has been shown that they have some robust
propreties under non normality (Lehmann and Romano 2008). However they require the as-
sumption of exchangeability under the null hypothesis and it is not fulfilled in a multifactorial
setting. Several authors (Draper and Stoneman 1966; Freedman and Lane 1983; Manly 1991;
Kennedy 1995; Huh and Jhun 2001, Dekker, Krackhardt, and Snijders (2007); Kherad Pajouh
and Renaud 2010; ter Braak 1992) had proposed ways to handle those models and Winkler,
Ridgway, Webster, Smith, and Nichols (2014) give a simple and unique notation to compare
those different methods.

Repeated measures ANOVA including one or several within subject effects are the most
widely used models in the field of psychology. In the simplest case of one random factor,
an exact permutation procedure consists of restricted permutations within the subjects. In
a more general case, permutations in repeated measures ANOVA violate the exchangeability
assumption. In particular the random effects due to the subjects and its interaction(s) with
fixed effects imply a complex structure for the covariance matrix of the observations which
means that the second moment is not more conserved after permutations. Kherad-Pajouh
and Renaud (2014) proposed several methods to handle those designs.
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For linear model, permutation tests are useful when the assumption of normality is violated
or when the sample size is to small to apply asymptotic theory. In addition they have been
shown to be useful for controlling the family wise error rate (FWER) for multiple comparisons
(Troendle 1995; Maris and Oostenveld 2007; Smith and Nichols 2009). Those methods have
been successfully applied for comparing conditions in experimental design using functional
magnetic resonance imaging (fMRI) or electroencephalography (EEG) because they use the
spatial and/or temporal correlation of the data.

The aim of the present article is to provide an overview of the use of permutation tests in
all the above settings and explains how it can be used in R (Chambers 2009). Note that
the presentation and discussion of the available packages that handle permutation tests in
related settings is deferred to section 5.1, when all the notion are introduced. Appendix A
show the comparison of the relevant code and output. But first, Section 2 is focused on the
fixed effect models. It explains the model used for ANOVA and regression and the various
permutation methods proposed in the literature. The Section 3 introduces the methods for
repeated measures ANOVA. The Section 4 explains the multiple comparisons procedures used
for comparing signals between experimental conditions and how permutation tests are applied
in this setting. The Section 5 explains programming details and some of the choices for the
default setting in the permuco package. The Section 6 introduces real data analyses from a
control trial in psychology and from an experiment in neurosciences using EEG and the code
to obtain them.

2. The fixed effects model

2.1. Model and notation

For each hypothesis of interest, the fixed effects model (regression or ANOVA) can be written
as :

y = Dη +Xβ + ǫ, (1)

where y
n×1

is the response variable,
[

D
n×(p−q)

X
n×q

]

is a design matrix split into the nuisance

variables D and the variables of interest X associated with the tested hypothesis. We assume
without loss of generality that D and X are full rank matrices that may be correlated. The

parameters of the full model

[

η⊤

1×(p−q)
β⊤

1×q

]⊤

are also split into the parameters associated

to the nuisance variables η and the one associated to the interest variables β. ǫ is an error
term that follows a distribution (0, σ2In). In this models we are interested by testing the
hypothesis :

H0 : β = 0 vs. H1 : β 6= 0. (2)

We will write a permutation of a vector v using Pv and the permutation of the rows of a matrix
M using PM where P is a permutation matrix (Gentle 2007, pp. 66-67). The notation for
the “hat”matrix of a design matrix M will be HM = M(M⊤M)−1M⊤ and for the “residuals”
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Table 1: Permutation methods in the presence of nuisance variables. See text for explanations
of the symbols.

method/Authors y∗ D∗ X∗

manly (Manly 1991) Py D X
draper_stoneman (Draper and Stoneman 1966) y D PX
dekker(Dekker et al. 2007) y D PRDX
kennedy (Kennedy 1995) (PRD)y RDX
huh_jhun (Huh and Jhun 2001) (PV ⊤

D RD)y V ⊤
D RDX

freedman_lane (Freedman and Lane 1983) (HD + PRD)y D X
terBraak (ter Braak 1992) (HX,D + PRX,D)y D X

matrix on the same design will be RM = I −M(M⊤M)−1M⊤ (Greene 2011, pp. 24-25). The
full QR-decomposition is :

[

M 0
]

n×n

=
[

QM VM

]

[

UM 0
0 0

]

, (3)

with QM
n×p

, VM
n×(n−p)

, two matrices representing together an orthogonal basis of Rn and UM
p×p

is

interpreted as M in the subspace of QM . Then we write HM = QMQ⊤
M and RM = VMV ⊤

M

(Seber and Lee 2012, pp. 340-341).

2.2. Permutation methods for linear model or factorial ANOVA

The permutation methods are function that transform the data and reduce the effect of
the nuisances variables. We define them as functions that transform the data through a
permutation P ∈ P where P is the set of all nP distinct permutation matrices of same size.
From the observed data {y,D,X} we compute the set of permuted data {y∗, D∗, X∗} that
depend on the observed data, on a permutation matrix P and a permutation method.

The permuco provide several permutation methods that are presented in table 1 using a
notation inspired by Winkler et al. (2014).

The manly method simply permute the response (this method is sometimes called raw permu-
tation). draper_stoneman permute the design of interest, ignoring the correlation between D
and X. The dekker method orthogonalizes X with respect to D before permuting the design
of interest. The kennedy method orthogonalizes all the data with respect to the nuisance
variables before permuting the response. The huh_jhun method is similar to kennedy but it
apply a second transformation to the data to ensure exchangeability up to the second mo-
ment. The VD matrix comes from the equation (3) and has a dimension of n× (n− (p− q)).
It implies that the P ’s matrices for the huh_jhun method have smaller dimensions. The
freedman_lane method permutes the residuals of the smaller model and adds them to its
fitted values. The terBraak is similar to freedman_lane but uses the full model. However
it uses a different null hypothesis H0 : β = (X⊤RDX)−1X⊤RDY , where the right part of
the equation correspond to the estimated effect under the full model implicitly using pivotal
assumptions. Note that the notation RD,X means that the residuals matrix is based on the
concatenation of the matrices D and X. See section 5.2 for advises on the choice of the
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method.

Using table 1 permutations can be computed under a specific method for several statistics.
The permuco package gives the choice of a F statistic used in a marginal test (or type III
sum of square) (Searle 2006, pp. 53-54) and a t statistic for a univariate β

1×1
. We write the F

statistic as :

F =
y⊤HRDXy

y⊤RD,Xy

n− p

p− q
. (4)

And when q = 1, the t statistic is :

tSt =
(X⊤RDX)−1XRDy

√

y⊤RD,Xy(X⊤RDX)−1

√
n− p, (5)

where the numerator correspond to the estimate of β and can be simplified by a factor of
(X⊤RDX)−1 . Those two statistics can be applied to the original data leading to the value
t = t(y,D,X) and to the permuted data leading to the values t∗ = t(y∗, D∗, X∗). Then the
permutation distribution called T is the set of t∗ for all P ∈ P. We define the p-value,
p = 1

nP

∑

t∗∈T
I (|t∗| ≥ |t|), for a bilateral t-test, p = 1

nP

∑

t∗∈T
I (t∗ ≥ t), for a unilateral

right sided t-test or a F-test and finally p = 1
nP

∑

t∗∈T
I (t∗ ≤ t), for a unilateral left sided

t-test, where I(·) is the indicator function.

3. Repeated measures ANOVA

3.1. Model and notation

We define the repeated measures ANOVA in a mixed linear form :

y = Dη +Xβ + E0κ+ Z0γ + ǫ (6)

where y
n×1

is the response, the fixed part of the design is split into the nuisance variables

D
n×(p1−q1)

, and the variables of interest X
n×(p1)

. The specificity of the model allows us to split

the random part into E0

n×(p02−q02)
and Z0

n×q02

with the random effects associated with D and X re-

spectively (Kherad-Pajouh and Renaud 2014). The fixed parameters are

[

η⊤

1×(p1−q1)
β⊤

1×q1

]⊤

.

The random part is

[

κ⊤
1×(p02−q02)

γ⊤

1×q02

]⊤

∼ (0,Ω) and ǫ ∼ (0, σ2I). The matrices associated

with the random effects E0 and Z0 can be computed :

E0 = (D0′
within ∗ Z0′

∆)
⊤ and Z0 = (X0′

within ∗ Z0′
∆)

⊤, (7)

where D0
within and X0

within are overparametrized matrices and are associated to the within
effects in the design D and X, Z0

∆ is the overparametrized design matrix associated to the
subjects and ∗ is the column-wise Khatri-Rao product (Khatri and Rao 1968). Since the



Jaromil Frossard, Olivier Renaud 5

Table 2: Permutation methods in the presence of nuisance variables for repeated measures
ANOVA.

method y∗ D∗ X∗ E∗ Z∗

Rd_keradPajouh_renaud (RD) PRDy RDX RDZ
Rde_keradPajouh_renaud (RD,E) PRD,Ey RD,EX RD,EZ

matrices E0 and Z0 are overparametrized they are not useful to compute the correct sum of
squares associate to random effects. We need to restrict them into the right dimensionality
by applying:

E = RD,XE0 and Z = RD,XZ0, (8)

where the matrices E and Z are respectively of rank p2 − q2 and q2 and are the ones used to
compute the F statistic. For an hypothesis on the fixed effect in the model of equation (6),
we are interested by testing:

H0 : β = 0 vs. H1 : β 6= 0. (9)

3.2. Permutation methods for repeated measures ANOVA

Similarly to the fixed effects model, we can test hypothesis using permutation methods
(Kherad-Pajouh and Renaud 2014). The one that are implemented in the permuco pack-
age are given in the table 2. The two methods are based on a similar idea. By premultiplying
the design and response variables by RD or RD,E , we orthogonalize the model to the nuisance
variables. The procedure can be viewed as an extension of the "kennedy" procedure (see
table 1) to repeated measures ANOVA.

The hypothesis in (9) is tested based on the conventional F statistic for repeated measures
ANOVA :

F =
y⊤HRDXy

y⊤HZy

p2
p1

. (10)

Similarly to the fixed effects model we write the statistic as a function of the data t =
t(y,D,X,E,Z). Then the permuted statistic t∗ = t(y∗, D∗, X∗, E∗, Z∗) is a function of the
permuted data under the chosen method. We define the p-value similarly to the fixed case.

4. Signal and multiple comparisons

In EEG data analysis we may be interested by testing the effect of a condition on the event-
related potential (ERP). It is a common practice to test it at each time of the ERP. In that
kind of experiment we are typically facing thousands of tests (e.g., one measure every 2ms
over 2 seconds) and the basic multiple hypotheses corrections like Bonferroni are useless as
their power is to low.
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Troendle (1995) proposed a multiple comparisons method that take into account the correla-
tion between the resampling data. This method do not use specifically the time-neighborhood
informations of a signal but uses wisely the general correlation between the statistics and may
be used in a more general settings.

Better known, the cluster-mass test (Maris and Oostenveld 2007) has shown to be powerful
and controlling the family-wise error rate (FWER) in EEG data analysis. And recently using
a similar idea, the threshold-free cluster-enhancement (TFCE) was developed for fMRI data
(Smith and Nichols 2009) and EEG data (Pernet, Latinus, Nichols, and Rousselet 2014), but
usually presented only for factor.

All those methods use permutations and are compatible with the methods explained in the
table 1 and 2, as shown next.

4.1. Model and notation

We can construct a model at each time points s ∈ {1, . . . , k} for the fixed effects design as:

ys = Dηs +Xβs + ǫs, (11)

where each k model is the same as (1) if we define ys as the response variable for each
observation at time s and D, X is the design that is similar for the k tests. The aim is to
test simultaneously all the hypotheses Hs

0 : βs = 0 vs. Hs
1 : βs 6= 0 for s ∈ {1, . . . , k} while

controlling for the FWER through the k tests.

Likewise, the random effects model is written :

ys = Dηs +Xβs + E0κs + Z0γs + ǫs, (12)

where each k model is defined as in (6) and similarly we want to test the multiple hypotheses
Hs

0 : βs = 0 vs. Hs
1 : βs 6= 0 for s ∈ {1, . . . , k}.

Given the notation introduced previously, the p-values of the fixed and the random effects
model can be written using the same approach. For both models we can choose on of the
permutation method presented in the tables 1 or 2 and compute the k observed statistics
ts, the k permutation distributions Ts, and the k uncorrected p-values or use the procedures
described below to take into account the FWER.

4.2. Troendle’s step-wise resampling method

The method developed by Troendle (1995) take advantage of the form of the multivariate re-
sampling distribution of the t∗s. If we assume that ts is distributed according to Ts then by or-
dering the observed statistics ts we obtain t(1) ≤ · · · ≤ t(s) ≤ · · · ≤ t(k) with their correspond-
ing k null hypotheses H(1) ≤ · · · ≤ H(s) ≤ · · · ≤ H(k). Then Troendle (1995) use the following
arguments. First, for all s, controlling the FWER with PH(1),...,H(k)

(

maxi∈{1,...,k} T(i) ≤ t(s)
)

<
αFWER is a conservative approach. Secondely, if we rejectH(k) and want to testH(k−1), we can
safely assume that H(k) is false for controlling the FWER. EitherH(k) was true and we already
made a type I error or was wrong and we can go as if H(k)was absent. We can then update
our decision rule for testing H(k−1) by PH(1),...,H(k−1)

(

maxi∈{1,...,k−1} T(i) ≤ t(k−1)

)

< αFWER.
We continue until the first non-significant result and declare all s with a smaller t statistic as
non-significant.
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Then the permuted sets Ts can be interpreted as a non-parametric distribution of the Ts

and based on Troendle (1995), we can use the following algorithm to compute the corrected
p-value :

Algorithm 1 Troendle corrected p-value

1: Order the k observed statistics ts into t(1) ≤ · · · ≤ t(s) ≤ · · · ≤ t(k)
2: for i ∈ {1, . . . k} do

3: Define the null distribution S(k−i+1) for t(k−i+1) by :
4: for each P ∈ P do

5: Return the maximum over the k − i+ 1 first values t∗(s) for s ∈ {1, . . . , k − i+ 1}
6: Define the corrected p-value p(k−i+1) =

1
nP

∑

t∗∈S(k−i+1)
I
(

t∗ ≥ t(k−i+1)

)

7: Control for a stepwise procedure by :
8: if p(k−i+1) < p(k−i+2) and i > 1 then p(k−i+1) := p(k−i+2)

4.3. Cluster-mass statistic

The method proposed by Maris and Oostenveld (2007) for EEG take advantage of the fact that
the effect will appears into clusters of adjacent timeframes. Based on individual statistics, we
find those clusters using a threshold τ . All the adjacent time points for which the statistics
are above this threshold define a cluster Ci for i ∈ [1, . . . , nc], where nc is the number of
cluster founded in the k statistics. We assign to each time point in the same cluster Ci, the
same cluster-mass statistics mi = f(Ci) where f is a function that aggregates the statistics
of the whole cluster into a scalar; typically the sum of F statistics or the sum of squared of
the t statistics. The cluster-mass null distribution M is computed by repeating the process
described above for each permutation. The contribution of a permutation to the cluster-mass
null distribution is the maximum over all cluster-masses for this permutation. This process
is described in the algorithm 2.

Algorithm 2 Cluster-mass null distribution M

1: for each P ∈ P do

2: Compute the k permuted statistics t∗s for s ∈ {1, . . . , k}.
3: Compute n∗

c clusters C∗
i as the set of adjacent time points which statistic is above τ .

4: Compute the cluster-mass for each cluster m∗
i = f(C∗

i )
5: Return the maximum value over the n∗

c values m∗
i .

To test the significance of an observed cluster Ci, we compare its cluster-mass mi = f(Ci)
with the cluster-mass null distribution M . The p-value of the effect at each time of the cluster
Ci is the p-value of its cluster pi =

1
nP

∑

m∗∈M
I(m∗ ≥ mi).

In addition of the good properties of this procedure (Maris and Oostenveld 2007), this method
makes sense for EEG data analysis because if a difference of cerebral activity is believed to
happen at a time s for a given factor, it is very likely that the time s+ 1 (or s− 1) will show
this difference too.

4.4. Threshold-free cluster-enhancement
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Figure 1: 4 clusters on 600 statistics using a threshold τ = 4. Using the sum to aggregate the
statistics, the grey areas underneath the curve represent the cluster-masses mi.

Despite its advantages, the cluster-mass statistic is sensible to the choice of the threshold.
The TFCE (Smith and Nichols 2009) is closely related to the cluster-mass but get rid of this
seemingly arbitrary choice. It is defined at each time s ∈ [1, . . . , k] for the statistics ts as :

us =

∫ h=ts

h=t0

e(h)EhHdh, (13)

where e(h) is the extend at the height h and it is interpreted as the length of a cluster for
a threshold of h. E and H are free parameters named the extend power, and the height
power respectively. t0 is set close to zero. The figure 2 illustrate how the TFCE statistics is
computed for a given time point s.

We construct the TFCE null distribution U by applying the formula in (13) at each time-
point of the permuted statistics t∗s for s ∈ {1, . . . , k} to produce for each permutation, k
values u∗s. Then the contribution of a permutation to U is the maximum over all k values
u∗s. Practically the integral in (13) is approximated numerically using small dh ≤ 0.1, (Smith
and Nichols 2009, Pernet et al. (2014)).

At the time s, the statistics ts will be modified using the formula in (13). The formula can
be viewed as a function of values in the grey area.

Algorithm 3 Threshold-free cluster-enhancement null distribution U

1: for each P ∈ P do

2: Compute the k permuted statistics t∗s for s ∈ {1, . . . , k}
3: Compute the k enhanced statistics u∗s using a numerical approximation of (13)
4: Return the maximum over the k value u∗s

To test the significance of a time point s we compare its enhanced statistics us with the
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Figure 2: The TFCE transforms the statistic ts using formula in (13). The extend e(h), in
red, is showen for a given height h. The TFCE statistics us at s can be viewed as a function
of values in the grey area.

threshold-free cluster-enhancement null distribution U . For a F -test we define the p-value as
ps =

1
nP

∑

u∗∈U
I(u∗ ≥ us).

5. Comparison of packages, parameters choice and implementation details

5.1. Comparison of packages

Several packages for permutations tests are available for R in CRAN. Since permutation tests
have such a variety of applications, we only review packages – or the part of packages – that
handle regression, ANOVA or comparison of signals.

For testing one factor, the perm (Fay and Shaw 2010), wPerm (Weiss 2015) and coin (Hothorn,
Hornik, Van De Wiel, Zeileis, and others 2008) packages produce permutation tests of dif-
ferences of locations between two or several groups. The latter can also test the difference
within groups or block, corresponding to a one within factor ANOVA.

The package lmPerm (Wheeler and Torchiano 2016) produces tests for factorial ANOVA
and repeated measures ANOVA. It computes sequential (or Type I) and marginal (or Type
III) tests for factorial ANOVA and ANCOVA but only the sequential is implemented with
repeated measures, even after setting the parameter seqs = FALSE. The order of the factors
will therefore matter in this case. The permutation method is to permute the raw data,
irrespective of the presence of nuisance variables, which correspond to the "manly" method,
see table 1. For repeated measure designs, data are first projected into the "Error()" strata
and then permuted, a method that has not been validated (to our knowledge) in any peer-
reviewed journal. Additionally, lmPerm by default uses a stopping rules based on current
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p-value to define the number of permutations. By default, the permutations are not randomly
sampled but modified sequentially merely on a pair of observations. This speeds up the code
but the effect on the obtained p-value are not well documented.

The flip package (Finos, Basso, Solari, Goeman, and Rinaldo 2014) produces permutation
and rotation tests (Langsrud 2005) for fixed effect and handle nuisance variables based on
methods similar to "huh_juhn" in table 1. It performs tests in design with random effects only
for singular models (e.g. repetition of measures by subjects in each condition) with method
based on Basso and Finos (2012) and Finos and Basso (2014) to handle nuisance variables.

The GFD package Friedrich, Sarah, Konietschke, Frank, and Pauly, Markus (2017) produces
marginal permutation tests for pure factorial design (without covariates) with a Wald-type
statistic that take into account heteroscedasticity between groups. The permutation method
is "manly".

To our knowledge, only the permuco provide tests for comparison of signals.

The code and output for packages that perform ANOVA/ANCOVA are given in Appendix
and in Appendix for repeated measures. For fixed effects, this illustrates that permuco, flip
and lmPerm handle covariates and are based on the same statistic (F ) whereas GFD uses the
Wald-type statistic. It also shows that flip is testing one factor at a time (main effect of sex
in this case) whereas the other packages produce directly tests for the all the effects. Also,
the nuisance variables in flip must be carefully implemented using the appropriate coding
variables in case of factors. Note that lmPerm centers the covariates using the default setting
and that it can provide both marginal (Type III) or sequential (Type I) tests.

Concerning permutation methods, only the "manly" method is used for both lmPerm and
GFD, the flip package uses the "huh_jhun" method, whereas multiple methods can be set
by users using the permuco package. Note also that different default choices for the V ma-
trix implemented in flip (based on eigen value decomposition) and permuco (based on QR
decomposition) package do not allow to replicate identically the results (see table 1 for more
informations on permutation method).

Finally, concerning repeated measures designs, the flip cannot handle cases where measures
are not repeated in each condition for each subject, and therefore cannot be compared in
Appendix . As already said, lmPerm produces sequential tests in repeated measure designs
and permuco produces marginal tests. This explains why with unbalanced data, only the last
interaction term in each strata produces the same statistic.

5.2. Permutation method

For the fixed effects model, simulations (Kherad Pajouh and Renaud 2010; Winkler et al.
2014) show that the method freedman_lane, dekker, huh_jhun and terBraak perform well,
whereas manly, draper_stoneman and kennedy can be either liberal or conservative Moreover
Kherad Pajouh and Renaud (2010) provide a proof for an exact test of the huh_jhun method
under sphericity. However huh_jhun will reduce the dimensionality of the data and if n −
(p − q) ≤ 7 the number of permutations may be too low. Based on all the above literature
the default method is set to freedman_lane.

For the random effects model, Kherad-Pajouh and Renaud (2014) shows that a more secure
approach is to choose the Rde_keradPajouh_renaud method.

All n! permutations are not feasible already for moderate sized datasets. A large subset of
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permutation is used instead and it can be tuned with the np argument. The default value
is np = 5000. Winkler, Ridgway, Douaud, Nichols, and Smith (2016) recall that with np

= 5000 the 0.95% confidence interval around p = 0.05 is relatively small : [0.0443; 0.0564].
For replicability purpose, the P argument can be used instead of the np argument. The P

argument needs a Pmat object which stores the permutations. For small datasets, if the np

argument is greater than the number of possible permutation (n!), the tests will be done on
all permutations. This can be also be selected manually by setting type = "unique" in the
Pmat functions.

Given the inequality sign in the formulas for the p-value described at the end of section 2.2,
the minimal p-value is 1/ np. Moreover this implies that the sum of the two unilateral p-values
is slightly greater than 1.

The huh_jhun method is based on a random rotation that can be set by a random n × n
matrix in the rnd_rotation argument. This random matrix will be orthogonalized by a QR
decomposition to produce the proper rotation. Note that the random rotation in the huh_jhun
method allows us to test the intercept, which is not available for the other methods.

5.3. Multiple comparisons

The multcomp argument can be set to "bonferroni" for the Bonferroni correction, to "holm"
for the Holm correction (Holm 1979), "benjamini_hocheberg" for the Benjamini-Hochenberg
method (Benjamini and Hochberg 1995), to "troendle", see chapter 4.2, to "clustermass",
see chapter 4.3 and to "tfce", see chapter 4.4. Those 6 methods are only available for the
p-value computed by permutation in the permuco package. The first 3 methods are general
procedure that could also be used in a parametric setting and the 3 lasts need resampling
techniques.

For the "clustermass" method, the threshold parameter of the cluster-mass statistic is usu-
ally chosen by default at the 0.95 quantile of the statistics to match the univariate parametric
significance; but the FWER is preserved for any a priori value of the threshold that the user
may set. The mass function is specified by the aggr_FUN argument. It is set by default to
the sum of squares for a t statistic and the sum for a F . It should be a function that returns
a positive scalar which will be large for uncommon event under the null hypothesis (e.g., use
the sum of absolute value of t statistics instead of the sum). It can be tuned depending on the
expected signal. For the t statistic, typically, the sum of squares will detect more efficiently
high peaks and the sum of absolute values will detect more efficiently the longer clusters.

For the "tfce" method, the default value for the extend is E = 0.5 and for the height is H = 2
for t test and, for F test, it is E = 0.5 and H = 1 following the recommendations of Smith and
Nichols (2009) and Pernet et al. (2014). The ndh parameter controls the number of terms
used in the approximation of the integral in (13) and is set to 500 by default.

The argument return_distribution is set by default to FALSE but can be set to TRUE to
return the large matrices (nP × k) with the value of the permuted statistics.

The algorithm and formula presented in the previous sections may not be efficient for very
large size of data. The permuted statistics are computed through QR decomposition using
the qr, qr.fitted, qr.resid or qr.coef functions.
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6. Tutorial

To load the permuco package :

R> install.packages("permuco")

R> library("permuco")

6.1. Fixed effects model

The emergencycost dataset contains information from 176 patients from an emergency service
(Heritier, Cantoni, Copt, and Victoria-Feser 2009). The variables are the sex, the age (in
years), the type of insurance (private/semiprivate or public), the length of the stay (LOS) and
the cost. These observational data allow us to test which variables influence the cost of the
stay of the patients. In this example we will investigate the effect of the sex and of the type
of insurance on the cost and we will control those effects by the length of the stay. In this
setting we perform an ANCOVA and must first center the covariate.

R> emergencycost$LOSc <- scale(emergencycost$LOS, scale = F)

The permutation tests can be assessed with the aovperm function. The np argument allows
us to set the number of permutations. We choose to set a high number of permutations (np
= 100000) to reduce the variablity of the permutation p-values so that they can safely be
compared to the parametric ones. The aovperm function automatically convert the coding
of factors with the contr.sum which allows us to test the main effect of factors and their
interactions.

R> mod_cost_0 <- aovperm(cost ~ LOSc * sex * insurance, data = emergencycost,

+ np = 100000)

R> mod_cost_0

Anova Table

Permutation test using freedman_lane to handle nuisance variables and

1e+05 permutations.

SS df F parametric P(>F)

LOSc 2.162e+09 1 483.4422 0.0000

sex 1.463e+07 1 3.2714 0.0723

insurance 6.184e+05 1 0.1383 0.7105

LOSc:sex 8.241e+06 1 1.8427 0.1765

LOSc:insurance 2.911e+07 1 6.5084 0.0116

sex:insurance 1.239e+05 1 0.0277 0.8680

LOSc:sex:insurance 1.346e+07 1 3.0091 0.0846

Residuals 7.514e+08 168

permutation P(>F)

LOSc 0.0000

sex 0.0763
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insurance 0.6794

LOSc:sex 0.1576

LOSc:insurance 0.0233

sex:insurance 0.8537

LOSc:sex:insurance 0.0847

Residuals

The interaction LOSc:insurance is significant both using the parametric p-value 0.0116 and
the permutation one 0.0233. The difference between the 2 p-values is 0.0117 which is high
enough to lo led to different conclusions (e.g., in case of correction for multiple tests or a
smaller α level).

If we are interested in difference between the groups for a high value of the covariate, we
center the covariate to the third quantile (14 days) and re-run the analysis.

R> emergencycost$LOS14 <- emergencycost$LOS - 14

R> mod_cost_14 <- aovperm(cost ~ LOS14 * sex * insurance, data = emergencycost,

+ np = 100000)

R> mod_cost_14

Anova Table

Permutation test using freedman_lane to handle nuisance variables and

1e+05 permutations.

SS df F parametric P(>F)

LOS14 2.162e+09 1 483.4422 0.0000

sex 2.760e+07 1 6.1703 0.0140

insurance 9.864e+05 1 0.2206 0.6392

LOS14:sex 8.241e+06 1 1.8427 0.1765

LOS14:insurance 2.911e+07 1 6.5084 0.0116

sex:insurance 7.722e+05 1 0.1727 0.6783

LOS14:sex:insurance 1.346e+07 1 3.0091 0.0846

Residuals 7.514e+08 168

permutation P(>F)

LOS14 0.0000

sex 0.0224

insurance 0.6082

LOS14:sex 0.1576

LOS14:insurance 0.0233

sex:insurance 0.6540

LOS14:sex:insurance 0.0847

Residuals

For a long length of stay, the effect of sex is significant using the parametric p-value p = 0.014
and the permutation one p = 0.0224.

If the researcher has an a priori oriented alternative hypothesis HA : βsex=M > βsex=F , the
lmperm function produces unilateral t test. To run the same models as previously, we first need
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to set the coding of the factors with the contr.sum function before running the permutation
tests.

R> contrasts(emergencycost$insurance) <- contr.sum

R> contrasts(emergencycost$sex) <- contr.sum

R> contrasts(emergencycost$insurance)

[,1]

public 1

semi_private -1

R> contrasts(emergencycost$sex)

[,1]

F 1

M -1

R> modlm_cost_14 <- lmperm(cost ~ LOS14 * sex * insurance,

+ data = emergencycost, np = 100000)

R> modlm_cost_14

Table of marginal t-test of the betas

Permutation test using freedman_lane to handle nuisance variables and

100000 permutations.

Estimate Std. Error t value parametric Pr(>|t|)

(Intercept) 14217.0 360.17 39.4730 0.0000

LOS14 845.5 38.45 21.9873 0.0000

sex1 -894.7 360.17 -2.4840 0.0140

insurance1 169.1 360.17 0.4696 0.6392

LOS14:sex1 -52.2 38.45 -1.3575 0.1765

LOS14:insurance1 98.1 38.45 2.5512 0.0116

sex1:insurance1 -149.7 360.17 -0.4155 0.6783

LOS14:sex1:insurance1 -66.7 38.45 -1.7347 0.0846

permutation Pr(<t) permutation Pr(>t)

(Intercept)

LOS14 1.0000 0.0000

sex1 0.0152 0.9848

insurance1 0.6823 0.3177

LOS14:sex1 0.0796 0.9204

LOS14:insurance1 0.9868 0.0132

sex1:insurance1 0.3337 0.6663

LOS14:sex1:insurance1 0.0395 0.9605

permutation Pr(>|t|)

(Intercept)

LOS14 0.0000
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sex1 0.0224

insurance1 0.6082

LOS14:sex1 0.1576

LOS14:insurance1 0.0233

sex1:insurance1 0.6540

LOS14:sex1:insurance1 0.0847

The effect sex1 is significant for both the parametric unilateral p-value p = 0.007 and the
permutation unilateral p-value p = 0.0152. Which indicate that when the length of the stay
is high, men have a positive influence on the cost in comparison to women.

To test the effect of the sex within the public insured persons (called simple effect), we code
the factors using the contr.treatment function and use the argument coding_sum = FALSE

to disable the recoding of factors.

R> contrasts(emergencycost$insurance) <- contr.treatment

R> contrasts(emergencycost$sex) <- contr.sum

R> emergencycost$insurance <- relevel(emergencycost$insurance, ref = "public")

R> contrasts(emergencycost$insurance)

semi_private

public 0

semi_private 1

R> contrasts(emergencycost$sex)

[,1]

F 1

M -1

R> mod_cost_se <- aovperm(cost ~ LOSc * sex * insurance, data = emergencycost,

+ np = 100000, coding_sum = FALSE)

R> mod_cost_se

Anova Table

Permutation test using freedman_lane to handle nuisance variables and

1e+05 permutations.

SS df F parametric P(>F)

LOSc 9.512e+09 1 2126.7539 0.0000

sex 6.092e+07 1 13.6210 0.0003

insurance 6.184e+05 1 0.1383 0.7105

LOSc:sex 1.510e+08 1 33.7708 0.0000

LOSc:insurance 2.911e+07 1 6.5084 0.0116

sex:insurance 1.239e+05 1 0.0277 0.8680

LOSc:sex:insurance 1.346e+07 1 3.0091 0.0846

Residuals 7.514e+08 168
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permutation P(>F)

LOSc 0.0000

sex 0.0004

insurance 0.6794

LOSc:sex 0.0000

LOSc:insurance 0.0233

sex:insurance 0.8537

LOSc:sex:insurance 0.0847

Residuals

The sex row can be interpreted as the effect of sex for the public insured persons for an
average length of stay. Both the parametric p = 0.0003 and permutation p-value p = 0.0004
show significant effect of sex within the public insured persons.

Given the skewness of the data for each case where the permutation test differs from the
parametric result, we tend to put more faith on the permutation result since it does not rely
on assumption of normality.

6.2. Repeated measures ANCOVA

The jpah2016 dataset contains a subset of a control trial in impulsive approach tendencies
toward physical activity or sedentary behaviors. It contains several predictors like, the body
mass index, the age, the sex, and the experimental conditions. For the latter, the subjects were
asked to perform different tasks : to approach physical activity and avoid sedentary behavior
(ApSB_AvPA), to approach sedentary behavior and avoid physical activity (ApPA_AvSB) and a
control task. The dependent variables are measures of impulsive approach toward physical
activity (iapa) or sedentary behavior (iasb). See Cheval, Sarrazin, Pelletier, and Friese
(2016) for details on the experiment. We will analyze here only a part of the data.

R> jpah2016$bmic <- scale(jpah2016$bmi, scale = F)

We perform the permutation tests by running the aovperm function. The within subject
factor should be written using + Error(...) similarly to the aov function from the stats

package :

R> mod_jpah2016 <- aovperm(iapa ~ bmic * condition * time + Error(id/(time)),

+ data = jpah2016, method = "Rd_kheradPajouh_renaud")

The results are shown in an ANOVA table by printing the object :

R> mod_jpah2016

Permutation test using Rd_kheradPajouh_renaud to handle nuisance

variables and 5000 permutations.

SSn dfn SSd dfd MSEn MSEd

bmic 18.6817 1 106883.5 13 18.6817 8221.808
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Figure 3: The permutation distributions of the F statistics for the effects bmic, condition
and bmic:condition. The vertical lines indicate the observed statistics.

condition 27878.1976 2 106883.5 13 13939.0988 8221.808

bmic:condition 89238.4780 2 106883.5 13 44619.2390 8221.808

time 268.8368 1 167304.9 13 268.8368 12869.607

bmic:time 366.4888 1 167304.9 13 366.4888 12869.607

condition:time 21159.7735 2 167304.9 13 10579.8867 12869.607

bmic:condition:time 29145.7201 2 167304.9 13 14572.8601 12869.607

F parametric P(>F) permutation P(>F)

bmic 0.0023 0.9627 0.9602

condition 1.6954 0.2217 0.2282

bmic:condition 5.4269 0.0193 0.0216

time 0.0209 0.8873 0.8806

bmic:time 0.0285 0.8686 0.8714

condition:time 0.8221 0.4611 0.4526

bmic:condition:time 1.1323 0.3521 0.3438

This analysis reveals a significant p-value for the effect of the interaction bmic:condition

with a statistic F = 5.4269 , which led to a permutation p-value p = 0.0216 not far for the
parametric one. For this example, the permutation tests backs the parametric analysis. The
permutation distributions can be viewed using the plot function like in figure 3.

R> plot(mod_jpah2016, effect = c("bmic", "condition", "bmic:condition"))

6.3. EEG experiment in attention shifting

The permuco package provides the sets attentionshifting_signal and attentionshifting_design.
It comes from an EEG recording of an experiment using 15 participants watching images of
either neutral or angry faces (Tipura, Renaud, and Pegna 2017). Those faces were shown
at a different visibility : subliminal (16ms) and supraliminal (166ms) and were displayed
to the left or to the right of a screen. The recording is at 1024Hz for 800ms. Time 0 is
when the image appears (event-related potential or ERP). The attentionshifting_signal
dataset contains the ERP of the electrode O1. The design of experiment is given in the
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Table 3: Variables in the attentionshifting_design dataset

Variable name Description Levels

id number of identification 15 subjects
visibility time that the image is shown 16ms 166ms

emotion emotion of the shown faces angry, neutral
direction position of the faces on the screen left, right
laterality_id measure of the laterality of the subjects scale from 25 to 100
age age of the subjects from 18 to 25
sex sex of the subjects male, female
STAIS_state state anxiety score of the subjects
STAIS_trait trait anxiety score of the subjects

attentionshifting_design dataset along with the laterality, sex, age, and 2 measures of
anxiety of each subjects.

This experiment is designed for a repeated measures ANOVA. Using the permuco package, we
can test each time points of the ERP for the main effects and the interactions of the variables
visibility, emotion and direction. We perform F tests using a threshold at the 95%
quantile, the sum as a cluster-mass statistics and 5000 permutations. We handle nuisance
variables with the method Rd_kheradPajouh_renaud :

R> electrod_O1 <-

+ clusterlm(attentionshifting_signal ~ visibility * emotion * direction

+ + Error(id/(visibility * emotion * direction)),

+ data = attentionshifting_design)

The plotmethod produced a graphical representation of the tests that allows us to see quickly
the significant time frames corrected by clustermass. The results are shown in the figure 4.

R> plot(electrod_O1)

Only one significant result appears for the main effect of visibility. This cluster is corrected
using the clustermass method. Printing the clusterlm object gives more information about
all clusters for the main effect of visibility, whether they are significant or not :

R> print(electrod_O1, effect = "visibility")

Cluster fisher test using Rd_kheradPajouh_renaud to handle nuisance variables

with 5000 permutations and the sum as mass function.

Alternative Hypothesis : bilateral.

visibility, threshold = 4.60011.
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fisher statistic : clustermass correction

Figure 4: The plot method on a clusterlm object displays the observed statistics of the
three main effects and their interactions. One cluster is significant for the main effect of
visibility using the clustermass method, as shown by the red part. The print method will
specified the details.

start end cluster mass P(>mass)

1 142 142 4.634852 0.5048

2 332 462 3559.149739 0.0018

3 499 514 85.019645 0.4060

4 596 632 234.877913 0.2290

5 711 738 191.576178 0.2680

The only significant effect appears between the measures 332 and 462 that correspond to the
123.7ms and 250.9ms after the event. The cluster-mass statistic is 3559.1 with a p-value of
0.0018. The threshold is set to 4.60011 which is the 95% quantile of the F statistic. If we
want to use other multiple comparisons procedures, we use multcomp argument :

R> full_electrod_O1 <-

+ clusterlm(attentionshifting_signal ~ visibility * emotion * direction

+ + Error(id/(visibility * emotion * direction)),

+ data = attentionshifting_design, P = electrod_O1[["P"]]

+ method = "Rde_kheradPajouh_renaud",

+ multcomp = c("troendle", "tfce", "clustermass",

+ "bonferroni", "holm", "benjaminin_hochberg"))

Note that we retrieve the exact permutation from the previous model usint the P argument.
The computation time for those tests is reasonable: it takes less than 12 minutes on a desktop
computer (i7 3770CPU 3.4GHz, 8Go RAM) to compute the 7 permutation tests with all the
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fisher statistic : tfce correction

Figure 5: Setting the multcomp to "tfce" in the plot function will display the TFCE p-
values. The argument enhanced_stat = TRUE shows the TFCE statistics us of equation
(13)

multiple comparison procedures available. To see quickly the results of the threshold-free
cluster enhancement-procedure, we set the multcomp argument of plot to "tfce" as shown
in figure 5.

R> plot(full_electrod_O1, multcomp = "tfce", enhanced_stat = TRUE)

This procedure gets approximately a similar significant period for the same effect. However
we get two smaller and separated significant periods rather than one longer. If the lines in
the plot showing the TFCE statistics happen to show some small steps (which is not the case
in 5) it may be because of a too small number of terms in the approximation of the integral
of the tfce statistics of equation (13). In that case it would be reasonable to increase the
value of the parameter ndh.

7. Conclusion

This article presents recent methodological advances in permutations tests and their im-
plementation in the permco package. Hypotheses in linear models framework or repeated
measures ANOVA can be tested using several methods to handle nuisance variables using
permuco. Moreover permutations tests can solve the multiple comparisons problem and con-
trol the FWER trough cluster-mass tests or TFCE, and the clusterlm function is implements
those procedures for analysis of signal like EEG data. Section 6 shows readers some real data
example of tests that can be performed for regression, repeated measures ANCOVA and ERP
signal comparison.
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We hope that further developments of permuco expand cluster-mass tests to multidimensional
adjacency (space and time) to handle full scalp ERP tests that control the FWER over all
electrodes. Another evolution will concern permutation procedures for mixed effects models
to allows researchers to performs tests in models containing subject and item specific random
effects.

A. Comparisons of existing packages

A.1. ANOVA and ANCOVA

R> install.packages("lmPerm")

R> install.packages("flip")

R> install.packages("GFD")

R> library("lmPerm")

R> library("flip")

R> library("GFD")

R> emergencycost$LOSc <- scale(emergencycost$LOS, scale = FALSE)

R> contrasts(emergencycost$sex) <- contr.sum

R> contrasts(emergencycost$insurance) <- contr.sum

R>

R> X <- model.matrix( ~ sex+insurance, data = emergencycost)[, -1]

R> colnames(X) <- c("sex_num", "insurance_num")

R> emergencycost <- data.frame(emergencycost, X)

R>

R> anova_permuco <- aovperm(cost ~ sex * insurance, data = emergencycost)

R> anova_GFD <- GFD(cost ~ sex * insurance, data = emergencycost,

+ CI.method = "perm", nperm = 5000)

R>

R> ancova_permuco <- aovperm(cost ~ LOSc * sex * insurance, data = emergencycost,

+ method = "huh_jhun")

R> ancova_flip <- flip(cost ~1, X = ~ sex_num, Z = ~ LOSc * insurance_num * sex_num

+ - sex_num, data = emergencycost, statTest = "ANOVA",

+ perms = 5000)

R> ancova_lmPerm <- aovp(cost ~ LOS * sex * insurance, data = emergencycost,

+ seqs = FALSE, nCycle = 1)

R> anova_permuco

Anova Table

Permutation test using freedman_lane to handle nuisance variables and

5000 permutations.

SS df F parametric P(>F)

sex 60470803 1 0.7193 0.3975
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insurance 598973609 1 7.1249 0.0083

sex:insurance 334349436 1 3.9771 0.0477

Residuals 14459666504 172

permutation P(>F)

sex 0.3978

insurance 0.0120

sex:insurance 0.0508

Residuals

R> anova_GFD

Call:

cost ~ sex * insurance

Wald-Type Statistic (WTS):

Test statistic df p-value p-value WTPS

sex 0.6397413 1 0.42380448 0.4662

insurance 6.3367469 1 0.01182616 0.0584

sex:insurance 3.5371972 1 0.06000678 0.0730

ANOVA-Type Statistic (ATS):

Test statistic df1 df2 p-value

sex 0.6397413 1 5.743756 0.4556003

insurance 6.3367469 1 5.743756 0.0471947

sex:insurance 3.5371972 1 5.743756 0.1112178

R> ancova_permuco

Anova Table

Permutation test using huh_jhun to handle nuisance variables and

5000, 5000, 5000, 5000, 5000, 5000, 5000 permutations.

SS df F parametric P(>F)

LOSc 2162110751 1 483.4422 0.0000

sex 14630732 1 3.2714 0.0723

insurance 618366 1 0.1383 0.7105

LOSc:sex 8241073 1 1.8427 0.1765

LOSc:insurance 29107536 1 6.5084 0.0116

sex:insurance 123892 1 0.0277 0.8680

LOSc:sex:insurance 13457877 1 3.0091 0.0846

Residuals 751350616 168

permutation P(>F)

LOSc 0.0002

sex 0.0736

insurance 0.7224

LOSc:sex 0.1756
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LOSc:insurance 0.0102

sex:insurance 0.8704

LOSc:sex:insurance 0.0820

Residuals

R> summary(ancova_lmPerm)

Component 1 :

Df R Sum Sq R Mean Sq Iter Pr(Prob)

LOS 1 2162110751 2162110751 5000 <0.0000000000000002

sex 1 14630732 14630732 4159 0.0236

LOS:sex 1 8241073 8241073 1525 0.0616

insurance 1 618366 618366 94 0.5213

LOS:insurance 1 29107536 29107536 5000 0.0010

sex:insurance 1 123892 123892 80 0.5625

LOS:sex:insurance 1 13457877 13457877 2238 0.0429

Residuals 168 751350616 4472325

LOS ***

sex *

LOS:sex .

insurance

LOS:insurance ***

sex:insurance

LOS:sex:insurance *

Residuals

---

Signif. codes: 0 ✬***✬ 0.001 ✬**✬ 0.01 ✬*✬ 0.05 ✬.✬ 0.1 ✬ ✬ 1

R> ancova_flip

Test Stat tail p-value

cost F 3.271 > 0.0724

A.2. Repeated measures ANOVA

R> jpah2016$id <- as.factor(jpah2016$id)

R> jpah2016$bmic <- scale(jpah2016$bmi,scale = FALSE)

R> contrasts(jpah2016$time) <- contr.sum

R> contrasts(jpah2016$condition) <- contr.sum

R>

R> rancova_permuco <- aovperm(iapa ~ bmic * condition * time + Error(id/(time)),

+ data = jpah2016)

R> rancova_lmPerm <- aovp(iapa ~ bmic * condition * time + Error(id/(time)),

+ data = jpah2016, nCycle = 1, seqs = FALSE)
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R> rancova_permuco

Permutation test using Rd_kheradPajouh_renaud to handle nuisance

variables and 5000 permutations.

SSn dfn SSd dfd MSEn MSEd

bmic 18.6817 1 106883.5 13 18.6817 8221.808

condition 27878.1976 2 106883.5 13 13939.0988 8221.808

bmic:condition 89238.4780 2 106883.5 13 44619.2390 8221.808

time 268.8368 1 167304.9 13 268.8368 12869.607

bmic:time 366.4888 1 167304.9 13 366.4888 12869.607

condition:time 21159.7735 2 167304.9 13 10579.8867 12869.607

bmic:condition:time 29145.7201 2 167304.9 13 14572.8601 12869.607

F parametric P(>F) permutation P(>F)

bmic 0.0023 0.9627 0.9660

condition 1.6954 0.2217 0.2180

bmic:condition 5.4269 0.0193 0.0248

time 0.0209 0.8873 0.8856

bmic:time 0.0285 0.8686 0.8666

condition:time 0.8221 0.4611 0.4392

bmic:condition:time 1.1323 0.3521 0.3528

R> summary(rancova_lmPerm)

Error: id

Component 1 :

Df R Sum Sq R Mean Sq Iter Pr(Prob)

bmic 1 3270 3270 51 0.8824

condition 2 20000 10000 801 0.3009

bmic:condition 2 89238 44619 4863 0.0255 *

Residuals 13 106884 8222

---

Signif. codes: 0 ✬***✬ 0.001 ✬**✬ 0.01 ✬*✬ 0.05 ✬.✬ 0.1 ✬ ✬ 1

Error: id:time

Component 1 :

Df R Sum Sq R Mean Sq Iter Pr(Prob)

time 1 1047 1047.4 51 0.9412

bmic:time 1 31 31.5 51 0.8039

condition:time 2 29793 14896.4 320 0.3875

bmic:condition:time 2 29146 14572.9 419 0.3914

Residuals 13 167305 12869.6
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