
Drew Schmidt, Wei-Chen Chen, George Ostrouchov, Pragneshkumar Patel i

A Quick Guide for the pbdBASE Package

Drew Schmidt1, Wei-Chen Chen2, George Ostrouchov1,2,
Pragneshkumar Patel1

1Remote Data Analysis and Visualization Center
University of Tennessee,

Knoxville, TN, USA

2Computer Science and Mathematics Division,
Oak Ridge National Laboratory,

Oak Ridge, TN, USA

Contents

Acknowledgement iii

Abstract 1

1. Introduction 1

1.1. Achievements . 1

1.2. Installation . 2

1.3. Package Examples . 2

2. Classes and Methods 3

3. Information for Users 4

3.1. The General Procedure for Using the System . 4

3.2. Printing in Parallel . 5

3.3. Process Grid Size . 5

3.4. Distributing Data . 6

3.5. Reading Data In Parallel . 6

4. Basic Example 7

5. Using Information for Advanced Users 9

5.1. Blocking Factor . 9

5.2. Different BLACS Contexts . 12

5.3. Exiting BLACS Contexts . 12

6. Advanced Example 12

ii Quick Guide for pbdBASE

7. Information for Developers 15

7.1. Class ddmatrix . 15

7.2. BLACS . 16

References 17

© 2012 pbdR Core Team.

Permission is granted to make and distribute verbatim copies of this vignette and its source
provided the copyright notice and this permission notice are preserved on all copies.

This publication was typeset using LATEX.

Drew Schmidt, Wei-Chen Chen, George Ostrouchov, Pragneshkumar Patel iii

Acknowledgement

Ostrouchov, Schmidt, and Patel were supported in part by the project “NICS Remote Data
Analysis and Visualization Center” funded by the Office of Cyberinfrastructure of the U.S.
National Science Foundation under Award No. ARRA-NSF-OCI-0906324 for NICS-RDAV
center. Chen and Ostrouchov were supported in part by the project “Visual Data Exploration
and Analysis of Ultra-large Climate Data” funded by U.S. DOE Office of Science under Con-
tract No. DE-AC05-00OR22725.

This work used resources of National Institute for Computational Sciences at the University
of Tennessee, Knoxville, which is supported by the Office of Cyberinfrastructure of the U.S.
National Science Foundation under Award No. ARRA-NSF-OCI-0906324 for NICS-RDAV
center. This work also used resources of the Oak Ridge Leadership Computing Facility at
the Oak Ridge National Laboratory, which is supported by the Office of Science of the U.S.
Department of Energy under Contract No. DE-AC05-00OR22725. This work used resources
of the Newton HPC Program at the University of Tennessee, Knoxville.

We thank our colleague, Ed D’Azevedo from the Computational Mathematics Group, Com-
puter Science and Mathematics Division, Oak Ridge National Laboratory (ORNL), for his
discussions and illuminating advice using ScaLAPACK and distributed matrix computation.

We also thank Brian D. Ripley, Kurt Hornik, Uwe Ligges, and Simon Urbanek from the R
Core Team for discussing package release issues and helping us solve portability problems on
different platforms.

Drew Schmidt, Wei-Chen Chen, George Ostrouchov, Pragneshkumar Patel 1

Abstract

With the size of data ever growing, the use of multiple processors in a single analysis
becomes more and more a necessity. The Programming Big Data (pbd) project attempts
to address the R language’s current shortcomings in parallel distributed computations.
The pbdBASE package for R provides a distributed matrix datatype and low-level methods
for this data type, including extraction via [, as well as NA removal. Further, the package
contains a set of BLACS, PBLAS, and ScaLAPACK wrappers. In addition to performance
improvements through parallelism, use of this system with more than one processor allows
the user to break R’s local memory barrier, namely the requirement that a vector be
indexed by a 32-bit integer, by only storing subsets of the vector on each processor.

1. Introduction

The Programming with Big Data: BASE system, the R˜(R Core Team 2012) package pbd-
BASE˜(Schmidt et˜al. 2012a), is a (mostly) implicitly parallel foundational infrastructure to
support higher level pbd packages, such as pbdDMAT˜(Schmidt et˜al. 2012b). Much of what
it does is meant to live behind the scenes of packages further up the chain of the pbd ecosys-
tem, and is largely targeted at developers. However, it does offer some essential functionality
for all users.

In many ways, the pbdBASE package serves the pbd project in much the same way as R’s
base package serves it. The principal goal of the pbdBASE package is to provide distributed
classes (presently, a distributed dense matrix class), and many low-level functions for inter-
acting with these classes. Many of these functions are wrappers of and for the distributed
matrix algebra libraries BLACS, PBLAS, and ScaLAPACK.˜(Blackford et˜al. 1997) A set of
S4 methods for R’s linear algebra functions using these wrappers is provided by a separate
package, pbdDMAT.

Updates and bug releases for this and other pbd projects may, especially while in infancy,
be much more frequent than CRAN releases. So for up to date packages, as well as evolving
information about the pbd project, see the website “Programming with Big Data in R” at
http://r-pbd.org/.

1.1. Achievements

The pbdBASE package, together with its sister packages in the pbd chain, offer the R user
several new advancements. First, by making use of ScaLAPACK “under the hood”, we offer
(near) ScaLAPACK speeds and scaling to many cores, but with R syntax. Second, by dis-
tributing the objects across processors, we are able to largely overcome R’s memory barrier.

At present1, it is impossible to index native R objects with a 32-bit integer. Since a matrix
in R is really just an array, this means that the largest square matrix it is possible to store
in R is roughly a 46, 000 × 46, 000 matrix. This imposes two restrictions on the pbd system.
First, the global dimension of any matrix used at this time with the pbd toolchain must have
dimensions indexable by a 32-bit integer. Namely, no single dimension of the “full”, global

1Though this is expected to change by summer 2013

http://cran.r-project.org/
http://r-pbd.org/

2 Quick Guide for pbdBASE

matrix may have more than (
232−1 − 1

)2 ≈ 4.612 × 1018

because each dimension must be an integer, and in R terms, that means a 32-bit integer.

By comparison, the largest matrix which a single R process can hold has

232−1 − 1 = 2, 147, 483, 647

≈ 2 × 109 (1)

numeric elements. However, we note that getting near the theoretical upper bound in (1)
with the pbd system is effectively impossible, because each local R process will store at most
roughly 109 elements. So even with 100,000 cores, you are still solidly within this boundary.
Indeed, a user with N processors is able to store a square distributed matrix up to size

N ×
(
232−1 − 1

)
So at this time, a user would need 1024 cores to comfortably be able to analyze a terabyte of
data, and over 100,000 cores to approach petabyte scale.

1.2. Installation

The pbdBASE package is available from the CRAN at http://cran.r-project.org, and
can be installed via a simple

Installing pbdBASE� �
install.packages("pbdBASE")� �
This assumes only that you have MPI installed and properly configured on your system. If
the user can successfully install the package’s two principal dependencies, pbdMPI˜(Chen
et˜al. 2012a) and pbdSLAP˜(Chen et˜al. 2012c) (each available from the CRAN), then the
installation for pbdBASE should go smoothly. If you experience difficulty installing either
these packages, you should see their documentation.

1.3. Package Examples

One can quickly get started with pbdBASE by learning from the following three examples:� �
Under command mode , run the demo with 2 processors by

(Use Rscript.exe for windows system)

mpiexec -np 2 Rscript -e "demo(example1 ,'pbdBASE ',ask=F,echo=F)"
mpiexec -np 2 Rscript -e "demo(example2 ,'pbdBASE ',ask=F,echo=F)"
mpiexec -np 2 Rscript -e "demo(example3 ,'pbdBASE ',ask=F,echo=F)"� �
1.4. Terminology

Before beginning, we will make frequent use of concepts from the Single Program/Multiple
Data (SPMD) paradigm. If you are entirely unfamiliar with this approach to parallelism, or

http://cran.r-project.org

Drew Schmidt, Wei-Chen Chen, George Ostrouchov, Pragneshkumar Patel 3

if you are unfamiliar with the pbdMPI package, then you are strongly encouraged to read
the vignette˜(Chen et˜al. 2012b) contained in the pbdMPI package, as well as examine and
digest its many examples in order to better understand what follows.

A concise explanation of SPMD is that it is an approach to parallel, distributed program-
ming in which one program is written, and each processor runs that same program, though
that program locally will often be interacting with different data. This, in contrast to the
manager/worker paradigm where one processor, the manager, is in charge of its workers, each
of whom swear fealty to the manager. So in SPMD, each processor believes itself to be the
manager, the one in charge. As a colleague, Dr. Russell Zaretzki put it, “it’s like academia.”

Throughout the remainder, we will be discussing distributed data objects such as matrices,
and wish to do so with some standardized terminology. A matrix is of course a rectangular
collection of numbers. A distributed matrix then is just a matrix which has been decom-
posed in some fashion so that each processor only owns a piece of the “whole” matrix. The
“whole” matrix (which need not ever actually exist, except theoretically, at any time), rather
than pieces of it distributed among the processors, will be referred to as a/the global matrix.
Loosely speaking, the global matrix is what we are really thinking of when we deal with the
distributed matrix.

In the SPMD paradigm, each processor, though only owning a piece of the whole (henceforth
referred to as the local matrix or submatrix, relative to that processor), will call functions on
that matrix exactly as one would with an ordinary, non-distributed matrix on a single pro-
cessor. The difference for the user is minimal; all the “heavy lifting” which explicitly handles
the distributed nature of the object is performed in the background.

Matrices, distributed or otherwise, have dimensions — that is, lengths of the number of rows
and the number of columns in the rectangle. The global matrix has a global dimension, and
this is a global value, i.e., this value does not vary from processor to processor. Every pro-
cessor agrees as to the size of the “full” matrix, otherwise we would have anarchy. However,
the local matrices, in practice, will differ from processor to processor, and so too should their
local dimensions. A local dimension, as the name implies, is the dimension of the submatrix,
relative to a particular processor.

2. Classes and Methods

Presently, package pbdBASE contains one new class, namely the class ddmatrix which stands
for distributed dense matrix. This S4 class serves as a container for a distributed matrix
type, consisting of the members:

ddmatrix =



Data S4 slot containing the object’s submatrix, an R matrix

dim S4 slot containing the dimension of the global matrix, a numeric pair

ldim S4 slot containing the dimension of the local submatrix, a numeric pair

bldim S4 slot containing the ScaLAPACK blocking factor, a numeric pair

CTXT S4 slot containing the BLACS context, an numeric singleton

4 Quick Guide for pbdBASE

with prototype

new("ddmatrix") =



Data = matrix(0)

dim = c(1,1)

ldim = c(1,1)

bldim = c(1,1)

CTXT = 0

We will discuss the last two items in more detail in the later sections, particularly Section˜5
and Section˜7.

In addition, the pbdBASE package contains new S4 methods for class ddmatrix, many of

R S4 Method Overloading New S4 Methods

[, [<- submatrix(), submatrix<-
length(), dim(), nrow(), ncol() ldim(), bldim(), ctxt()
as.matrix(), as.vector() as.ddmatrix()

na.exclude()

print()

Table 1: Class ddmatrix Methods in Package pbdBASE

which are listed in Table˜1. Full information on these methods, as well as some new S3
methods and important non-method functions, is provided in the pbdBASE package docu-
mentation.

3. Information for Users

3.1. The General Procedure for Using the System

To use pbdBASE, and whence any package which relies on it, there are a few special con-
siderations one must keep in mind which separate the system over using ordinary R. These
are

1. In addition to the ordinary MPI communicator provided by pbdMPI, a special, rectan-
gular MPI communicator is used.˜(Dongarra and Whaley 1995)

2. Data is block cyclically distributed across the rectangular process grid.˜(Blackford et˜al.
1997) (link)

The first item is fairly simple. Simply, you will start every analysis using the pbdBASE by
making a call to the function init.grid(). The latter is slightly more complicated; for the
moment, we will merely say that one achieves this with a parallel reader or data distribution
function. See the package reference manual, as well as the later sections of this vignette for
more details.

A generic skeleton of what a typical analysis using pbdBASE looks like involves 4 steps (which
will be discussed in detail in the sections to follow):

http://netlib.org/scalapack/slug/node75.html

Drew Schmidt, Wei-Chen Chen, George Ostrouchov, Pragneshkumar Patel 5

1. Initialize the process grid. (init.grid())

2. Read the data into the processes, store it as a distributed matrix.

3. Call R functions exactly as you would with ordinary matrices (when applicable).

4. Collect your results and finalize (finalize()).

One can generally use the above steps on existing R scripts with only a few minor modifica-
tions, and quickly parallelize his or her serial code. For most users, this will amount to simply
adding in the appropriate calls to init.grid(), finalize(), and a parallel data reader or
data distributor function (such as as.ddmatrix()). However, there are a few hitches with
setting up a process grid and with distributing/parallel reading. We discuss these issues in
the following two sections.

3.2. Printing in Parallel

Printing in parallel can take some getting used to, especially in SPMD style programs. If you
simply issue the order print(x), then every process will print, but it is often a cacophony of
undecipherable writing out to the terminal, with each process trampling the others.

To this end, you should learn to make extensive use of the pbdMPI function comm.print().
For instance, if you have two processors, each with an object x, but with disagreement to what
x actually is — say for example, one thinks x is 1, and the other thinks it is 2. Then calling
comm.print(x) will print two pieces of information: the processor printing the value (here
process 0) and the value itself, 1. By default, the only processor to print is that with MPI
communicator address 0. You can have all processor ranks print using the optional argument
all.rank=TRUE. This will print all values stored for the requested object, but will do so “one
at a time”. You can also disable the printing of which processor is doing the printing via the
optional argument quiet=TRUE. See the official pbdMPI documentation for details.

Additionally, there is a method for the print() function when applied to a distributed class
such as ddmatrix. This will print some brief information about the matrix from processor 0.
This has the optional argument all=, which can be used to print the entire matrix, one line
at a time.

This function should not be called from comm.print(). Actually, one of the easiest ways to
get yourself into trouble and hang up all the processors is to call a function which requires
communication between processors from inside something like comm.print().

3.3. Process Grid Size

Recall that we will very frequently visualize the processors as being in a 2-dimensional pro-
cessor grid. This grid is initialized via the function init.grid(), which accepts the optional
arguments nprows= and npcols=. If these are left blank, then a reasonable choice will be
made based on the number of available processors. Here “reasonable” means “as close to
square as possible.” The inspired reader can find more detail within the ScaLAPACK User’s
Guide˜(Blackford et˜al. 1997) as to why this is a good choice. (link)

http://www.netlib.org/utk/papers/scalapack/node20.html

6 Quick Guide for pbdBASE

To reiterate, in most cases, taking nprow and npcol as close to each other as possible is “suf-
ficiently good”. Leaving the nprow= and npcol= options blank will make this choice for you.
For example, we note that the user should be aware that providing 37 cores to pbdDMAT
may not perform as well as providing 36 cores in the form of a 6 × 6 process grid. There is
a strong connection between the process grid and the block-cyclic distribution, which we will
discuss further in the following section.

Additionally, we note that the init.grid() function accepts an additional argument ICTXT=,
which we will discuss in Section˜7. This argument is also discussed in detail in the package
reference manual.

3.4. Distributing Data

When distributing data, you must use a blocking factor. This is a pair of numbers (a, b), and
unless you think you have a great reason to do otherwise, you should have a = b. If you
have no intuition, the just make them equal. The scale of these numbers should generally
correspond to the size of your process grid and the scale of the data. The choice of blocking
factor can seriously impact performance, because it is intimately tied to the data distribution.
We will spare the details for the moment, and merely say that the blocking factor constitutes
a tradeoff. Smaller values, down to (1, 1), mean that there will be more parallelism in many
of the matrix algebra routines but also increase communication costs. On the other hand,
larger values, which could be larger than the dimensions of any one of your matrices, will
limit communication between the processors, but naturally also limit the parallelism.

A good choice of blocking factor can be difficult, and in the author’s opinion, requires some
intuition gained through experimentation. A discussion on this topic can be found in the
ScaLAPACK User’s Guide.˜(Blackford et˜al. 1997) (link) However, we note that pbdBASE
defaults to a 4× 4 blocking factor, which is probably an acceptable choice if you do not know
what else to do. For monstrously huge matrices, it could be a bit small, and so scaling it up
by powers of 2 (8× 8, 16× 16, . . . , 256× 256) may be warranted. The blocking does not have
to be by power of 2, but this is a convenient way to do business. The performance-hungry
user is encouraged to experiment with various blocking factors across various processor grids
with various matrix sizes to develop intuition.

3.5. Reading Data In Parallel

To really get the most out of this system, you need to read the data into R in a parallel dis-
tributed fashion. This generally necessitates the use of a parallel file system, such as Lustre.
These are the kinds of resources that one generally does not have on his/her laptop, unfor-
tunately. It is possible to read all of the data in on one core and have that core distribute
the data to all the other processes, which is what one should do in the absence of a parallel
file system. However, these added communication costs could overtake the gains provided by
distributed computation, depending on the task. Worse, the user is again trapped in the world
of 32-bit integer indexing, meaning the size of problem that it is possible to solve shrinks.

As a general rule, if you are on a smaller system with limited resources, you do what you
must. If you are on a larger system with luxurious resources, you really should know better,
and act accordingly. Failure to do so will significantly negatively impact performance with

http://www.netlib.org/utk/papers/scalapack/node19.html

Drew Schmidt, Wei-Chen Chen, George Ostrouchov, Pragneshkumar Patel 7

this system.

Some functions which are useful in this regard are as.ddmatrix(), distribute(), and
redistribute(). See the reference manual for details.

4. Basic Example

Now that you’ve come to this section directly from the abstract, skipping the other sections,
let’s take a look at an example. Since the pbdBASE package is mostly about providing
functionality to packages farther up the pbd chain, it won’t be particularly exciting. But you
have to crawl before you can drag race.

First we will generate some data on process 0, or (0,0) using the grid notation. We will do
this using a simple if() together with the pbdMPI function comm.rank(), which returns
the MPI communicator number for the calling process. Any process not initially storing any
data should store NULL for the object. This probably isn’t the way you will want to run your
production code, especially if you are randomly generating data; in that case, it would be
much more efficient to just generate what is needed on each processor. Although doing this
requires that you have access to good seeds for parallel random number generation; for more
information, see the documentation on setting seeds via comm.set.seed() in the pbdMPI
package, or for more control, see the rlecuyer or rsprng packages.

There is merit, however, in operating in this way. This is somewhat like the process necessary
for reading in data onto a subset of processors (just 1 if you do not have access to a parallel
file system) and then distributing that out to the larger grid, so it is a useful skill. For more
information about this procedure, see Section˜6.

Generating Test Data� �
library(pbdBASE , quiet=TRUE)

init.grid()

nrows <- ncols <- 10 # generate a 10x10 matrix

BL <- 2 # the blocking factor for distribution

Generate data on process 0, then distribute to the others

{

if (comm.rank()==0)

x <- matrix(rnorm(n=nrows*ncols , mean=10, sd=100),

nrow=nrows , ncol=ncols)

else

x <- NULL

}

dx <- as.ddmatrix(x=x, bldim=BL)

continued in the next block of code ...

8 Quick Guide for pbdBASE

� �
To convince ourselves that the data is distributed, we can inspect the new object in several
ways:

Printing the Object� �
print(dx)

comm.print(submatrix(dx))

comm.print(dx)

continued in the next block of code ...� �
Here, print() is a special method that shows you the slots of your distributed matrix. The
submatrix() function will show the local submatrix (syntactic sugar for printing dx@Data).
Use of pbdMPI’s comm.print() ensures that only process 0 will print the result. Finally, just
using R’s print method on the object in comm.print(dx) will produce an uglier version of
print(dx) and comm.print(submatrix(dx)).

We can also do insertions and extractions:

Insertion and Extraction� �
dx[1,1] <- NA # insertion indices are global

comm.print(submatrix(dx)[1,1], all.rank=T) # see?

comm.print(dim(dx))

dx <- dx[, -2]

comm.print(dim(dx))

nona <- na.exclude(dx)

continued in the next block of code ...� �
Finally, we can convert the distributed matrix back into an ordinary R matrix on processor 0.
You probably will not need to do this very often in production code, because in practice, you
could be dealing with matrices with so many elements that they will not fit into a single R
process. For testing however, this process can be very useful. It could also conceivably have
utility for dealing with n× 1 matrices.

Insertion and Extraction� �
convert back

nona <- as.matrix(nona , proc.dest =0)

compare our results with R --- notice the syntax is

essentially identical

if (comm.rank()==0){

x[1,1] <- NA

Drew Schmidt, Wei-Chen Chen, George Ostrouchov, Pragneshkumar Patel 9

x <- x[, -2]

r_nona <- na.exclude(x)

all.equal(r_nona , nona)

}

finalize ()� �
In the above script, there is one addition over the previous pieces. Namely, we include several
calls to comm.cat(). All this does is demand line breaks (via the regular expression \n) for
more human-readable printing.

The script file is available in the pbdBASE directory, under inst/examples/base_eg.R, and
you can run this script from the command line with the following command:� �
replace the 4 below with your number of processors

mpirun -np 4 Rscript pbdbase_example.R� �
If you want to ramp up the size of the problem and the number of cores, you may want to
change the nrows, ncols, and BL definitions (these are good to experiment with regardless).

5. Information for Advanced Users

In this section, we will discuss the block-cyclic distribution of data across a 2-dimensional
processor grid in lengthy detail. It probably goes without saying that before beginning this
section, the reader should be familiar with all sections prior.

5.1. Blocking Factor

The motivation for the development of pbdBASE was to be able to use ScaLAPACK routines
for distributed linear algebra. The S4 methods which use these routines are in the package
pbdDMAT, but all the same, using block-cyclically distributed data is absolutely essential for
pbdBASE, since it is essential for ScaLAPACK.

Most of the difficulty in using this type of distributed data has been abstracted away for
the user of pbdBASE. However, you may still find it useful to experiment with a block
cyclic data distributor provided by˜(The ScaLAPACK Team 2010) to gain some intuition and
understanding of how the package is powered underneath, and why a simple read.table()

call will not suffice.

The idea is fairly simple, even if the execution can sometimes be cumbersome. We want to
try to evenly balance the data distribution for “large” matrices across the process grid, but
in a way that is congruent with the natural blocking of matrices when performing LAPACK
operations on them. As the name implies, we imagine taking a large global matrix and
chopping it into blocks, and assigning those blocks to the processors in the grid. The way
this is done is far from arbitrary, however.

For simplicity, let us explicitly assume for the moment that we are going to distribute a 9× 9

10 Quick Guide for pbdBASE

matrix across a 2 × 3 process grid, using a 2 × 2 blocking factor. The above link may be
extremely useful to your understanding the following. For those who flatly refuse to click the
link, we can visualize the process as follows. We can imagine our global matrix (even if we
never actually have a globally stored matrix, this is the way we would imagine it in our heads)
as looking like:

x =



x11 x12 x13 x14 x15 x16 x17 x18 x19
x21 x22 x23 x24 x25 x26 x27 x28 x29
x31 x32 x33 x34 x35 x36 x37 x38 x39
x41 x42 x43 x44 x45 x46 x47 x48 x49
x51 x52 x53 x54 x55 x56 x57 x58 x59
x61 x62 x63 x64 x65 x66 x67 x68 x69
x71 x72 x73 x74 x75 x76 x77 x78 x79
x81 x82 x83 x84 x85 x86 x87 x88 x89
x91 x92 x93 x94 x95 x96 x97 x98 x99


9×9

and our process grid looks like:∣∣∣∣ 0 1 2
3 4 5

∣∣∣∣ =

∣∣∣∣ (0,0) (0,1) (0,2)
(1,0) (1,1) (1,2)

∣∣∣∣
with the usual MPI processor rank on the left, and the corresponding BLACS processor grid
position on the right.

To distribute this data across our 6 processors in the form of a 2 × 3 process grid in 2 × 2
blocks, we go in a “round robin” fashion, assigning 2 × 2 submatrices of the original matrix
to the appropriate processor, starting with processor (0, 0). Then, if possible, we move on to
the next 2 × 2 block of x and give it to processor (0, 1). We continue in this fashion with
(0, 2) if necessary, and if there is yet more of x in that row still without ownership, we cycle
back to processor (0, 0) and start over, continuing in this fashion until there is nothing left to
distribute in that row.

After all the data in the first two rows of x has been chopped into 2-column blocks and
given to the appropriate process in process-column 1, we then move onto the next 2 rows,
proceeding in the same way but now using the second process row from our process grid. For
the next 2 rows, we cycle back to process row 1. And so on and so forth.

Two visual representations of this block cyclic data decomposition can be seen in Figure˜1
and Figure˜2˜. As you can see “all animals are equal, but some animals are more equal than
others.” Meaning that we don’t inherently penalize any processor or go out of our way to
imbalance the data load, but that it is possible to do so with poor choice of blocking factor,
and that generally process (0, 0) in the BLACS grid will receive the most data. Additionally,
notice that matrices that are closer to being square will distribute better than will vectors. In
this case, a vector (here, a 9×1 matrix) would only distribute across the processes in the first
process column, namely (0, 0) and (1, 0). This isn’t necessarily the great imbalance problem
you might instinctively think it is. These matrices are generally fairly small, so it’s not really
that big of a deal that they do not distribute well. On the other hand, things close to square
are really quite large, and so we should go out of our way to make sure that they distribute
“well”, whatever that really means.

Drew Schmidt, Wei-Chen Chen, George Ostrouchov, Pragneshkumar Patel 11

x =



x11 x12 x13 x14 x15 x16 x17 x18 x19
x21 x22 x23 x24 x25 x26 x27 x28 x29
x31 x32 x33 x34 x35 x36 x37 x38 x39
x41 x42 x43 x44 x45 x46 x47 x48 x49
x51 x52 x53 x54 x55 x56 x57 x58 x59
x61 x62 x63 x64 x65 x66 x67 x68 x69
x71 x72 x73 x74 x75 x76 x77 x78 x79
x81 x82 x83 x84 x85 x86 x87 x88 x89
x91 x92 x93 x94 x95 x96 x97 x98 x99


9×9

Figure 1: Block Cyclic Data Decomposition Example


x11 x12 x17 x18
x21 x22 x27 x28
x51 x52 x57 x58
x61 x62 x67 x68
x91 x92 x97 x98


5×4


x13 x14 x19
x23 x24 x29
x53 x54 x59
x63 x64 x69
x93 x94 x99


5×3


x15 x16
x25 x26
x55 x56
x65 x66
x95 x96


5×2

x31 x32 x37 x38
x41 x42 x47 x48
x71 x72 x77 x78
x81 x82 x87 x88


4×4


x33 x34 x39
x43 x44 x49
x73 x74 x79
x83 x84 x89


4×3


x35 x36
x45 x46
x75 x76
x85 x86


4×2

Figure 2: Local Processor Storage View of the Block Cyclic Data Decomposition

Now, the user should never need to develop an algorithm to perform this kind of block-cyclic
decomposition of the data; it may be necessary, especially for a developer who wishes to use
this system, to have to deal with this data distribution business in a very up-front way, but
many helper functions are provided by the package to that end. We bring up this issue to
illustrate a critical point: the choice of blocking can make a large difference in performance,
and generally should be tailored to the process grid.

If the blocking factor (in the above, 2 × 2) is too “big” (relative to the process
grid), then the data distribution will be very uneven. This has the net effect of
reducing communication times between processes, but also limiting the amount
of parallelism possible. On the other hand, if the blocking factor is too “small”,
then the data distribution is “too fair”, gaining much parallelism but massively
inflating communication costs. At the extreme ends of this are, for the former, using a
blocking factor that would encompass the entirety of the matrix (so that the data is distributed
to only one process — no communnication, no parallelism), and for the latter, using a blocking
factor of (1, 1), so that there is effectively nothing but communication and parallelism.

Very loosely speaking, parallelism is good and communication is bad, but in practice, we can’t
really have one without the other.

12 Quick Guide for pbdBASE

5.2. Different BLACS Contexts

A very advanced user, perhaps someone already familiar with ScaLAPACK, may wish to be
able to use a variety of BLACS contexts. Herein, we shall discuss in depth the BLACS system
and pbdBASE’s relationship with it.

Suppose you have np processors. When a call to init.grid() is first made, contexts 0, 1,
and 2 are created. These are, respectively, the P ×Q processor grid, where P = nprows and
Q = npcols (with an optimal choice made for each of P and Q if the nprows= and npcols=

arguments are missing), 1 is the 1 × np process grid, and 2 is the np × 1 process grid. For
this reason, contexts 0, 1, and 2 are reserved. Additional contexts can be created via
init.grid() by passing integer values of 3 or greater to the ICTXT= argument. The function
minctxt() returns the smallest integer which is not being used as a BLACS context.

Throughout pbdBASE (and pbdDMAT), if a function does not accept an argument for
BLACS context, you can rest assured that it does not alter context. However, there are
some functions which will implicitly change context, such as na.exclude(), and some explic-
itly such as redistribute(). For this particular function, the data is redistributed across
context 1, because in this distribution, dropping rows (namely those containing NA’s) does
not destroy block-cyclicality. For this reason, an optional context argument is provided, and
the default will simply convert the matrix back to its incoming context (from the slot @CTXT).

5.3. Exiting BLACS Contexts

You can create BLACS contexts, and you can also free them. To free a particular context,
you would use the gridexit() function. You can not free contexts 0, 1, or 2, as these are
protected values that much of the internals rely on for the vast majority of users. You can
free any other context number, assuming that you created one.

You can also shut down all BLACS contexts at once without shutting down all MPI com-
municators using the blacsexit() function. This is automatically called, as necessary, when
you call finalize(), because a failure to shut down all BLACS communicators can result in
memory leaks.

The names of these functions are the same as the names of the corresponding BLACS routines
that they rely on.

6. Advanced Example

In this section, we will look at an example of how to create and utilize additional BLACS
contexts, and make a pretend parallel reader.

Let’s take a look at an example using the ideas discussed in Section˜5. We will again be
using 4 processors in the form of a 2 × 2 grid. However, this time, we are going to randomly
generate a matrix on 2 processors and then distribute that data onto the full 2 × 2 grid. We
will achieve this by creating a new BLACS context with 2 processor rows and 1 processor
column. Processors not in this grid will have the BLACS communicator grid locatiosn of
(−1,−1).

Drew Schmidt, Wei-Chen Chen, George Ostrouchov, Pragneshkumar Patel 13

For clarity, because this can be a confusing and deeply frustrating concept at first. Every
processor is part of the BLACS context; all of them. The context is just a collection of infor-
mation that makes it possible to perform local operations with global communications. Think
of it like an R list; it’s just a place to put things. Each processor stores its own copy of this
“list”, with some pieces common to all processors and some differing from process to process.
The objects within that list are the BLACS context number (just an identifying name more so
than actual information), the number of global processor rows/columns, and that processor’s
position in that grid. Whenever a function relying on BLACS (like all PBLAS and ScaLA-
PACK functions) is called, a context is required. The local processor’s grid location value of
(−1,−1) when that processor is not really part of the grid is the BLACS equivalent of NULL.
It’s just a placeholder that lets the local processor know that it isn’t part of the party. But
that processor is still aware of the BLACS context, which is a global number, and the total
number of processor rows/columns (also global). So it is the location in the processor grid
that is (−1,−1), not the context. The context is just a “name”, which happens to be a global
integer common to all processors.

The choice of 1 processor column is not random. Doing so demands that contiguous rows
are stored on the processes, and the cyclic distribution is occurring between rows. This is a
very convenient way to do business if you must read in data from files (rather than randomly
generate it in memory). Here, we can think of each processor “reading in” the parts of the
(imaginary) file, and then distributing that data out to BLACS grid 0 for analytics. Other,
“non-vector” BLACS grids are certainly possible as well.

A word of caution; the seeds here on the different processors are not guaranteed to be inde-
pendent. This is just for the sake of demonstration. Refer back to the comments in Section˜4.

Generating in Parallel� �
library(pbdBASE , quiet=TRUE)

init.grid(nprow=2, npcol =2)

find the minimum value possible for a new BLACS context

the value should be 3

newctxt <- minctxt ()

comm.print(newctxt)

create new grid

init.grid(nprow=2, npcol=1, ICTXT=newctxt)

store new grid information

grid <- blacs(ICTXT=newctxt)

"read in" the data and distribute

if (grid$MYROW == -1 || grid$MYCOL == -1){

x <- matrix (0)

} else {

x <- matrix(rnorm (50), ncol =10)

14 Quick Guide for pbdBASE

}

dx <- new("ddmatrix",

Data=x,

dim=c(10 ,10), ldim=dim(x), bldim=c(5,10),

CTXT=newctxt)

dx <- redistribute(dx, bldim=2, ICTXT =0)

print(dx)

close grid

gridexit(newctxt)

blacsexit ()

comm.print("MPI still works")

finalize ()� �

A few comments. First, we do not technically need to call gridexit(), since the following
blacsexit() call will shut down all BLACS grids. However, inbetween those two calls, we
could make more calls to routines using BLACS grids 0, 1, and 2. Second, if we explicitly call
blacsexit() as we do here, then all BLACS grids are shut down without shutting down the
MPI communicator. However, finalize() will do this for us if we forget, because a failure
to do so can cause memory leaks. So you do not have to explicitly call blacsexit() unless
you are done with BLACS, have yet more MPI work to do, and want to free up the resources.

Additionally, notice that here we get friendly with the new constructor. This call is part of
R’s S4 methods, and instantiates a — as the name implies — new object of specified class
with specified slots. Notice that the blocking dimension is the dimension of the local matrix.
This is so because we are imagining reading in large, contiguous blocks for each processor
(here with just 1 cycle). This is fairly ad hoc, but is useful for demonstration purposes. A
more advanced example, which generates only what is needed on each processor by making
use of the function pbdBASE::numroc() can be found in the vignette for pbdDMAT.

Finally, you may be wondering why we would even bother with this approach with contexts
rather than simply explicitly choosing a subset of processors from context 0. We could do this
as well, but this isn’t quite as simple as you might think, especially with the tools already
built (meaning you may have to work much, much harder for this). You are encouraged to
simply construct a new BLACS context as in the example, because for this very low-level
data wrangling, it can make your life much simpler.

Finally, this script is available in the pbdBASE directory, under inst/examples/base_eg.R

and is meant to be run with 4 processors.

Drew Schmidt, Wei-Chen Chen, George Ostrouchov, Pragneshkumar Patel 15

7. Information for Developers

In this section, we will discuss some issues that are not really important for anyone except
those who need to develop new methods which rely on pbdBASE. For the remainder, we
will make mention and use of R’s S4 method of object oriented programming, and we will
assume that the reader has at least a working familiarity with S4. There are several fine
introductions to S4 methods available, including those from˜(Chambers 2006) and˜(Genolini
2008). It probably goes without saying that before beginning this section, the reader should
be familiar with all sections prior.

7.1. Class ddmatrix

Every local submatrix must be a matrix containing at least one value, even if it techni-
cally should not have anything. You will unleash unspeakable misery on yourself if you use
matrix(nrow=0, ncol=0) for the submatrix, in particular when passing down to ScaLA-
PACK routines (the motivating example for the existence of pbdBASE). Instead, you should
use the routine ownany(), a simple wrapper on numroc(), to determine if the process actually
owns any data from the global matrix. If you consider this an extravagant waste of memory,
then I have some very interesting things to tell you about R.

Likewise, the slot @ldim is the dimension of the local storage, and not, necessarily, the“actual”
local dimension (which could effectively be NULL). So for example, if you imagine all data for
a distributed matrix living on process 0, then all the other processes should store matrix(0)

in the @Data slot, and c(1,1) in the @ldim slot.

Let’s take a look at an example. Suppose we want to develop a way of taking logs of the entries
of our distributed matrix in a way that is a natural extension to that of R (this is actually
already done in pbdDMAT, but is a good illustration). A quick call to isGeneric(f="log")

shows that the function log() in R is already S4 generic, so we can easily enough define a
new method for it.

For some problems, some processors will own matrix(0) under the @Data slot when really,
technically, they store nothing. We don’t want to take the log of these zeros, since there is
no real point. Worse, failure to exclude these values across several methods can accumulate
in incorrect answers (think of taking the log on all submatrices and then running a sum()

method on a distributed matrix). Using ownany(), this is trivial.

Generating in Parallel� �
mylog <- function(x, base=exp(1))

{

if (ownany(dim=x@dim , bldim=x@bldim , CTXT=x@CTXT))

x@Data <- log(x=x@Data , base=base)

return(x)

}� �
Now we just need to set the method:

Generating in Parallel

16 Quick Guide for pbdBASE

� �
setMethod("log", signature(x="ddmatrix"),

mylog

)� �
This is more or less how things are done in pbdDMAT.

7.2. BLACS

The most critical piece of information to impart is that no matter what, “block-cyclicality”
can not be destroyed. Most of the routines for distributed matrices (and almost all of the
really complicated ones) assume this structure. This is why 3 BLACS contexts are created by
default when initializing the process grid; namely, context 0 is the optimal (unless otherwise
specified) rectangular process grid, context 1 is the PQ× 1 process grid (assuming P process
rows and Q process columns), and context 2 is the 1 × PQ process grid. As defined above,
context 0 is optimal for many linear algebra routines, and not really any worse (aside from
being cumbersome) for most other computations. The other contexts are important because
they are more natural for adding/removing columns and rows (respectively).

Redistributing the data from a P × Q process grid to a 1 × PQ process grid can be very
useful, despite the communication overhead involved. When a matrix is distributed across
this context, while it is not trivial to “drop” rows (certainly not as easy as it is in context
1), doing so, whichever rows we do indeed drop, results in a block-cyclically distributed
matrix. In general, the same cannot be said for other contexts. The ddmatrix methods [and
na.exclude() rely on such a redistribution (two redistributions in the case of the former).

Drew Schmidt, Wei-Chen Chen, George Ostrouchov, Pragneshkumar Patel 17

References

Blackford LS, Choi J, Cleary A, D’Azevedo E, Demmel J, Dhillon I, Dongarra J, Hammarling
S, Henry G, Petitet A, Stanley K, Walker D, Whaley RC (1997). ScaLAPACK Users’
Guide. Society for Industrial and Applied Mathematics, Philadelphia, PA. ISBN 0-89871-
397-8 (paperback). URL http://netlib.org/scalapack/slug/scalapack_slug.html/.

Chambers J (2006). “How S4 Methods Work.” Technical report, The R-Project for Statistical
Computing. URL http://developer.r-project.org/howMethodsWork.pdf.

Chen WC, Ostrouchov G, Schmidt D, Patel P, Yu H (2012a). “pbdMPI: Programming with
Big Data – Interface to MPI.” R Package, URL http://cran.r-project.org/package=

pbdMPI.

Chen WC, Ostrouchov G, Schmidt D, Patel P, Yu H (2012b). “A Quick Guide for the pbdMPI
package.” R Vignette, URL http://cran.r-project.org/package=pbdMPI.

Chen WC, Schmidt D, Ostrouchov G, Patel P (2012c). “pbdSLAP: Programming with Big
Data – Scalable Linear Algebra Packages.” R Package, URL http://cran.r-project.

org/package=pbdSLAP.

Dongarra J, Whaley RC (1995). “A User’s Guide to the BLACS.” Technical report, University
of Tennessee. UT-CS-95-281, URL http://www.netlib.org/lapack/lawnspdf/lawn94.

pdf.

Genolini C (2008). “A (Not So) Short Introduction to S4.” Technical report, The R-
Project for Statistical Computing. URL http://cran.r-project.org/doc/contrib/

Genolini-S4tutorialV0-5en.pdf.

R Core Team (2012). R: A Language and Environment for Statistical Computing. R Foun-
dation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, URL http:

//www.r-project.org/.

Schmidt D, Chen WC, Ostrouchov G, Patel P (2012a). “pbdBASE: Programming with Big
Data – Core pbd Classes and Methods.” R Package, URL http://cran.r-project.org/

package=pbdBASE.

Schmidt D, Chen WC, Ostrouchov G, Patel P (2012b). “pbdDMAT: Programming with
Big Data – Distributed Matrix Algebra Computation.” R Package, URL http://cran.

r-project.org/package=pbdDMAT.

The ScaLAPACK Team (2010). “Block Cyclic Data Distribution.” URL http://acts.nersc.

gov/scalapack/hands-on/datadist.html/.

http://netlib.org/scalapack/slug/scalapack_slug.html/
http://developer.r-project.org/howMethodsWork.pdf
http://cran.r-project.org/package=pbdMPI
http://cran.r-project.org/package=pbdMPI
http://cran.r-project.org/package=pbdMPI
http://cran.r-project.org/package=pbdSLAP
http://cran.r-project.org/package=pbdSLAP
http://www.netlib.org/lapack/lawnspdf/lawn94.pdf
http://www.netlib.org/lapack/lawnspdf/lawn94.pdf
http://cran.r-project.org/doc/contrib/Genolini-S4tutorialV0-5en.pdf
http://cran.r-project.org/doc/contrib/Genolini-S4tutorialV0-5en.pdf
http://www.r-project.org/
http://www.r-project.org/
http://cran.r-project.org/package=pbdBASE
http://cran.r-project.org/package=pbdBASE
http://cran.r-project.org/package=pbdDMAT
http://cran.r-project.org/package=pbdDMAT
http://acts.nersc.gov/scalapack/hands-on/datadist.html/
http://acts.nersc.gov/scalapack/hands-on/datadist.html/

	Acknowledgement -0.3cm
	Abstract -0.3cm
	1. Introduction
	1.1. Achievements
	1.2. Installation
	1.3. Package Examples

	2. Classes and Methods
	3. Information for Users
	3.1. The General Procedure for Using the System
	3.2. Printing in Parallel
	3.3. Process Grid Size
	3.4. Distributing Data
	3.5. Reading Data In Parallel

	4. Basic Example
	5. Using Information for Advanced Users
	5.1. Blocking Factor
	5.2. Different BLACS Contexts
	5.3. Exiting BLACS Contexts

	6. Advanced Example
	7. Information for Developers
	7.1. Class `_12`12`$12=-1 ddmatrix
	7.2. BLACS

	References

