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Introduction

Many portfolio managers measure performance with
reference to a benchmark. The difference in return
between a portfolio and its benchmark is the ac-
tive return of the portfolio. Portfolio managers and
their clients want to know what caused this active re-
turn. Performance attribution decomposes the active
return. The two most common approaches are the
Brinson-Hood-Beebower (hereafter referred to as the
Brinson model) and a regression-based analysis.1

Portfolio managers use different variations of the
two models to assess the performance of their port-
folios. Managers of fixed income portfolios include
yield-curve movements in the model Lord (1997) while
equity managers who focus on the effect of currency
movements use variations of the Brinson model to in-
corporate “local risk premium” Singer and Karnosky
(1995). In contrast, in this paper we focus on attribu-
tion models for equity portfolios without considering
any currency effect.

The pa package provides tools for conducting
both methods for equity portfolios. The Brinson
model takes an ANOVA-type approach and decom-
poses the active return of any portfolio into asset
allocation, stock selection, and interaction effects.
The regression-based analysis utilizes estimated coef-
ficients from a linear model to attribute active return
to different factors. After describing the Brinson and
regression approaches and demonstrating their use via
the pa package, we show that the Brinson model is
just a special case of the regression approach.

Data

We demonstrate the use of the pa package with
a series of examples based on real-world data sets
from MSCI Barra’s Global Equity Model II(GEM2).2

MSCI Barra is a leading provider of investment de-
cision support tools to investment institutions world-
wide. According to the company:

GEM2 is the latest Barra global multi-factor
equity model. It provides a foundation for
investment decision support tools via a broad
range of insightful analytics for developed and
emerging market portfolios. The latest model
version provides:

• Improved accuracy of risk forecasts and
increased explanatory power.

• An intuitive structure that accommo-
dates different investment processes in
developed vs. emerging markets.

• Greater responsiveness to market dy-
namics.

• Comprehensive market coverage.

GEM2 leverages the decades of experience
that MSCI Barra has in developing and main-
taining global equity multi-factor models and
indices, and offers important enhancements
over GEM, which is utilized by hundreds of
institutional fund managers worldwide.

The original data set contains selected attributes
such as industry, size, country, and various style fac-
tors for a universe of approximately 48,000 securities
on a monthly basis.

For illustrative purposes, this article uses three
modified versions of the original data set, containing
3000 securities, namely year, quarter, and jan. The
data frame, quarter, is a subset of year, containing
the data of the first quarter. The data frame, jan,
is a subset of quarter with the data from January,
2010.

> data(year)

> names(year)

[1] "barrid" "name" "return"

[4] "date" "sector" "momentum"

[7] "value" "size" "growth"

[10] "cap.usd" "yield" "country"

[13] "currency" "portfolio" "benchmark"

• barrid: security identifier by Barra.

• name: name of a security.

• return: monthly total return in trading cur-
rency.

• date: the starting date of the month to which
the data belong.

• sector: consolidated sector categories based on
the GICS.3

• momentum: capture sustained relative perfor-
mance.

• value: capture the extent to which a stock is
priced inexpensively in the market.

• size: differentiate between large and small cap
companies.

1See Brinson et˜al. (1986) and Grinold (2006) for more information.
2See www.msci.com and Menchero et˜al. (2008) for more information.
3Global Industry Classification Standard
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• growth: capture stock’s growth prospects.

• cap.usd: capitalization in model base currency
USD.

• yield: dividend of a security.

• country: the country in which the company is
traded.

• currency: currency of exposure.

• portfolio: top 200 securities based on value

scores in January are selected as portfolio hold-
ings and are held through December 2010. This
is to avoid the complexity of trading in the anal-
yses.

• benchmark: top 1000 securities based on size
each month. The benchmark is cap-weighted.

Here is a sample of rows and columns from the
data frame year:

name

44557 BLUE STAR OPPORTUNITIES CORP

25345 SEADRILL

264017 BUXLY PAINTS (PKR10)

380927 CDN IMPERIAL BK OF COMMERCE

388340 CDN IMPERIAL BK OF COMMERCE

return date sector size

44557 0.00000 2010-01-01 Energy 0.00

25345 -0.07905 2010-01-01 Energy -0.27

264017 -0.01754 2010-05-01 Materials 0.00

380927 0.02613 2010-08-01 Financials 0.52

388340 -0.00079 2010-11-01 Financials 0.55

country portfolio benchmark

44557 USA 0.000 0.000000

25345 NOR 0.000 0.000427

264017 PAK 0.005 0.000000

380927 CAN 0.005 0.000012

388340 CAN 0.005 0.000012

The portfolio has 200 equal-weighted holdings.
The row for Canadian Imperial Bank of Commerce
indicates that it is one of the 200 portfolio holdings
with a weight of 0.5% in 2010. Its return was 2.61%
in August, and almost flat in November.

The Brinson Model

Single-Period Brinson Model

Consider an equity portfolio manager who uses the
S&P 500 as the benchmark. In a given month, she
outperformed the S&P by 3%. Part of that perfor-
mance was due to the fact that she allocated more
weight of the portfolio to certain sectors that per-
formed well. Call this the allocation effect. Part of
her outperformance was due to the fact that some of
the stocks she selected did better than their sector as
a whole. Call this the selection effect. The residual

can then be attributed to an interaction between al-
location and selection – the interaction effect. The
Brinson model provides mathematical definitions for
these terms and methods for calculating them.

The example above uses sector as the classification
scheme when calculating the allocation effect. But
the same approach can work with any other variable
which places each security into one, and only one, dis-
crete category: country, industry, and so on. In fact,
a similar approach can work with continuous variables
that are split into discrete ranges: the highest quin-
tile of market cap, the second highest quintile and so
forth. For generality, we will use the term “category”
to describe any classification scheme which places each
security in one, and only one, category.

Notations:

• wB
i is the weight of security i in the benchmark.

• wP
i is the weight of security i in the portfolio.

• WB
j is the weight of category j in the benchmark.

WB
j = ∑ wB

i , i ∈ j.

• WP
j is the weight of a category j in the portfolio.

WP
j = ∑ wP

i , i ∈ j.

• The sum of the weight wB
i , wP

i , WB
j , and WP

j is

1, respectively.

• ri is the return of security i.

• RB
j is the return of a category j in the bench-

mark. RB
j = ∑ wB

i ri, i ∈ j.

• RP
j is the return of a category j in the portfolio.

RP
j = ∑ wP

i ri, i ∈ j.

The return of a portfolio, RP, can be calculated in
two ways:

• On an individual security level by summing over

n stocks: RP =
n
∑

i=1
wP

i ri.

• On a category level by summing over N cate-

gories: RP =
N
∑

j=1
WP

j RP
j .

Similar definitions apply to the return of the
benchmark, RB,

• RB =
n
∑

i=1
wB

i ri.

• RB =
N
∑

j=1
WB

j RB
j .
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Active return of a portfolio, Ractive, is a perfor-
mance measure of a portfolio relative to its bench-
mark. The two conventional measures of active return
are arithmetic and geometric. The pa package imple-
ments the arithmetic measure of the active return for
a single-period Brinson model because an arithmetic
difference is more intuitive than a ratio over a single
period.

The arithmetic active return of a portfolio, Ractive,
is the portfolio return RP less the benchmark return
RB:

Ractive = RP − RB.

Since the category allocation of the portfolio is
generally different from that of the benchmark, al-
location plays a role in the active return, Ractive. The
same applies to stock selection where assuming that
the portfolio has the exact same categorical exposures
as the benchmark does, equities within each category
are different. This contributes to Ractive as well. Al-
location effect Rallocation and selection effect Rselection
over N categories are defined as:

Rallocation =
N
∑

j=1
WP

j RB
j −

N
∑

j=1
WB

j RB
j ,

Rselection =
N
∑

j=1
WB

j RP
j −

N
∑

j=1
WB

j RB
j .

The intuition behind the allocation effect is that a
portfolio would produce different returns with differ-
ent allocation schemes (WP

j vs. WB
j ) while having the

same stock selection and thus the same return (RB
j )

for each category. The difference between the two re-
turns, caused by the allocation scheme, is called the
allocation effect (Rallocation). Similarly, two different
returns can be produced when two portfolios have the
same allocation (WB

j ) yet dissimilar returns due to dif-

ferences in stock selection within each category (Rp
j vs.

RB
j ). This difference is the selection effect (Rselection).

Interaction effect, Rinteraction, is the result of sub-
tracting return due to allocation Rallocation and return
due to selection Rselection from the active return Ractive:

Rinteraction = Ractive − Rallocation − Rselection.

Weakness of the Brinson Model

The Brinson model allows portfolio managers to an-
alyze the relative return of a portfolio using any at-
tribute of a security, such as country or sector. One
weakness of the model is to expand the analysis be-
yond two categories.4 As the number of categories
increases, this procedure is subject to the curse of di-
mensionality.

Suppose an equity portfolio manager wants to find
out the contributions of any two categories (for in-
stance, country and sector) to her portfolio based on

the Brinson model. She can decompose the active re-
turn into three broad terms – Rallocation, Rselection, and
Rinteraction. The allocation effect can be further split
into country allocation effect, sector allocation effect
and the product of country and sector allocation ef-
fects:

Rallocation = Rcountry allocation + Rsector allocation +
Rcountry allocationRsector allocation.

Specifically, the country allocation effect is the re-
turn caused by the difference between the actual coun-
try allocation and the benchmark country allocation
while assuming the same benchmark return within
each level of the category country, that is,

Rcountry allocation =
N
∑

j=1
CWP

j CRB
j −

N
∑

j=1
CWB

j CRB
j ,

where

• CWP
j and CWB

j refer to the weight of each coun-

try j (NC countries in total) in the portfolio and
that in the benchmark, respectively.

• CRB
j refers to the benchmark return of any coun-

try j.

Similarly, the sector allocation effect is the differ-
ence in return between a portfolio’s sector allocation
and the benchmark’s sector allocation while having
the same benchmark returns:

Rsector allocation =
N
∑

j=1
SWP

j SRB
j −

N
∑

j=1
SWB

j SRB
j ,

SWP
j and SWB

j refer to the weight of the sector j in the

portfolio and the weight of the sector j in the bench-
mark, respectively. SRB

j is the benchmark return of

any given sector j of all NS sectors.

In the same vein, the return as a result of the se-
lection effect Rselection is the sum of country selection
effect, sector selection effect, and the product of coun-
try and sector selection effects:

Rselection = Rcountry selection + Rsector selection

+Rcountry selection ∗ Rsector selection

=
N

∑
j=1

CWB
j CRP

j −
N

∑
j=1

CWB
j CRB

j

+
N

∑
j=1

SWB
j SRP

j −
N

∑
j=1

SWB
j SRB

j

+ (
N

∑
j=1

CWB
j CRP

j −
N

∑
j=1

CWB
j CRB

j )

∗ (
N

∑
j=1

SWB
j SRP

j −
N

∑
j=1

SWB
j SRB

j ).

4Brinson et˜al. (1991) proposed a framework to include two variables in the Brinson analysis.
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The interaction effect, Rinteraction, includes the in-
teraction between country allocation and sector selec-
tion and that between country selection and sector
allocation.

Therefore, in the case of Q categories where Q > 1,
the Brinson model becomes very complex (assume
Q ≥ 3):

Rallocation =
Q

∑
j=1

Rallocationj
+

Q

∑
j=1

Q

∑
k=1

Rallocationj
Rallocationk

+
Q

∑
j=1

Q

∑
k=1

Q

∑
p=1

Rallocationj
Rallocationk

Rallocationp

= . . . ,

Rselection =
Q

∑
j=1

Rselectionj
+

Q

∑
j=1

Q

∑
k=1

Rselectionj
Rselectionk

+
Q

∑
j=1

Q

∑
k=1

Q

∑
p=1

Rselectionj
Rselectionk

Rselectionp

= . . . ,

where Rallocationj
is the allocation effect of any given

category j, j ∈ Q and Rselectionj
is the selection effect

of any given category j, j ∈ Q. i, j, k have different
values.

As the number of categories grows, the numbers of
terms for the allocation and the selection effects grow
exponentially. Q categories will result in 2Q− 1 terms
for each of the allocation and selection effect.

Due to the interaction between allocation and se-
lection of each of the Q categories (it could be interac-
tion between 2, 3 or even all Q categories), the number
of terms included in the interaction effect grows expo-
nentially to take into all the interaction effects among
all categories.

Rinteraction =
Q

∑
j=1

Q

∑
k=1

Rallocationj
Rselectionk

+
Q

∑
j=1

Q

∑
k=1

Q

∑
p=1

Rallocationj
Rselectionk

Rallocationp

+ . . . .

Q categories has 22n − 2n+1 + 1 terms of interaction
effects.

For instance, when there are 3 categories, the
allocation effect and the selection effect each have
23 − 1 = 7 terms. The interaction effect has 26 −
24 + 1 = 49 terms. When there are 4 categories,
24 − 1 = 15 terms have to be estimated for the al-
location effect as well as the selection effect, respec-
tively. 28 − 25 + 1 = 225 terms have to be calculated
for the interaction effect of 4 categories. This poses a
significant computational challenge when a portfolio
manager performs a multivariate Brinson analysis.

To some extent, the regression-based model de-
tailed later solves the problem of multivariate attri-
bution.

Single-Period Brinson Tools

Brinson analysis is run by calling the function brin-

son to produce an object of class brinson. Below we
show the tools provided in the pa package to analyze
a single period portfolio based on the Brinson model.

> data(jan)

> br.single <- brinson(x = jan, date.var = "date",

+ cat.var = "sector",

+ bench.weight = "benchmark",

+ portfolio.weight = "portfolio",

+ ret.var = "return")

>

The data frame, jan, contains all the information
necessary to conduct a single-period Brinson analysis.
date.var, cat.var, and return identify the columns
containing the date, the factor to be analyzed, and
the return variable, respectively. bench.weight and
portfolio.weight specify the name of the bench-
mark weight column and that of the portfolio weight
column in the data frame.

Calling summary on the resulting object
br.single of class brinson reports essential informa-
tion about the input portfolio (including the number
of securities in the portfolio and the benchmark as
well as sector exposures) and the results of the Brin-
son analysis.

> summary(br.single)

Period: 2010-01-01

Methodology: Brinson

Securities in the portfolio: 200

Securities in the benchmark: 1000

Exposures

Portfolio Benchmark Diff

Energy 0.085 0.2782 -0.19319

Materials 0.070 0.0277 0.04230

Industrials 0.045 0.0330 0.01201

ConDiscre 0.050 0.0188 0.03124

ConStaples 0.030 0.0148 0.01518

HealthCare 0.015 0.0608 -0.04576

Financials 0.370 0.2979 0.07215

InfoTech 0.005 0.0129 -0.00787

TeleSvcs 0.300 0.1921 0.10792

Utilities 0.030 0.0640 -0.03399

Returns

$`Attribution by category in bps`
Allocation Selection Interaction

Energy 110.934 -37.52 26.059

Materials -41.534 0.48 0.734

Industrials 0.361 1.30 0.473

ConDiscre -28.688 -4.23 -7.044

ConStaples 5.467 -3.59 -3.673

HealthCare -6.692 -4.07 3.063

Financials -43.998 70.13 16.988

InfoTech -3.255 -5.32 3.255

TeleSvcs -23.106 41.55 23.348
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Utilities 16.544 83.03 -44.108

Total -13.966 141.77 19.095

$Aggregate

2010-01-01

Allocation Effect -0.00140

Selection Effect 0.01418

Interaction Effect 0.00191

Active Return 0.01469

The br.single summary shows that the active
return of the portfolio, in January, 2010 was 1.47%.
This return can be decomposed into allocation effect
(-0.14%), selection effect (1.42%), and interaction ef-
fect (0.19%).

> plot(br.single, var = "sector", type = "return")

Utilities

TeleSvcs

InfoTech

Financials

HealthCare

ConStaples

ConDiscre

Industrials

Materials

Energy

−0.10 −0.05 0.00 0.05
Return

S
ec

to
r Type

Benchmark

Portfolio

Return −− Portfolio vs. Benchmark

Figure 1: Sector Return.

Figure 1 is a visual representation of the return
of both the portfolio and the benchmark sector by
sector in January, 2010. This plot shows that in abso-
lute terms, Utilities performed the best with a gain of
more than 5% and Consumer Discretionary, the worst
performing sector, lost more than 10%. Utilities was
also the sector with the highest active return in the
portfolio.

Multi-Period Brinson Model

To obtain Brinson attribution on a multi-period data
set, one calculates allocation, selection and interac-
tion within each period and aggregates them across
time. There are five methods for this – arithmetic, ge-
ometric, optimized linking by Menchero (2004), link-
ing by Davies and Laker (2001), and linking by Fron-
gello (2002). We focus on the first three methods
in this paper. Arithmetic measure calculates relative
performance of a portfolio and its benchmark by a dif-

ference; geometric measure does so by a ratio. Arith-
metic measure is more intuitive but a well-known chal-
lenge in arithmetic attribution is that active returns
do not add up over multiple periods due to geometric
compounding.5 Geometric is able to circumvent the
adding-up problem. Menchero (2004) discussed var-
ious linking algorithms to connect arithmetic return
with geometric return and argued that the optimized
linking algorithm is the best way to link attribution
over time.

Arithmetic Attribution. The arithmetic attri-
bution model calculates active return and contribu-
tions due to allocation, selection, and interaction in
each period and sums them over multiple periods.
The arithmetic active return over T periods Rarithmetic
is expressed as:

Rarithmetic =
T
∑

t=1
Ractive

t ,

and Ractive
t is the active return in a single period t.

Geometric Attribution. The geometric attri-
bution is to compound various returns over T periods
where,

1 + RP =
T
∏

t=1
(1 + RP

t ),

1 + RB =
T
∏

t=1
(1 + RB

t ),

and RP
t and RB

t are portfolio and benchmark returns
in a single period t, respectively. Geometric return
Rgeometric is thus the difference between Rp and RB:

Rgeometric = Rp − RB.

Optimized Linking Algorithm. The well-
known challenge faced in arithmetic attribution is
that the actual active return over time is not equal
to the arithmetic summation of single-period active
returns,

Rgeometric 6= Rarithmetic,

i.e.,

RP − RB 6=
T
∑

t=1
Ractive

t .

Menchero (2004) proposed an optimized linking
coefficient bopt to link arithmetic returns of individual
periods with geometric returns over time,

Rp − RB =
T
∑

t=1
bopt

t Ractive
t ,

where bopt
t is the optimized linking coefficient in a sin-

gle period t.
The optimized linking coefficient bopt

t is the sum-
mation of a natural scaling A and an adjustment at
specific to a time period t,

bopt
t = A + at,

5See Bacon (2008) for a complete discussion of the complexity involved.
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where A is an coefficient for linking from the single-
period to the multi-period return and at is an adjust-
ment to eliminate residuals6.

Since active return over time RP − RB is a sum-
mation of active return in each period adjusted to the
optimized linking algorithm, the following is true:

RP−RB =
T
∑

t=1
bopt

t (Rallocation
t + Rselection

t + Rinteraction
t ),

where Rallocation
t , Rselection

t , and Rinteraction
t represent

allocation, selection and interaction in each period t,
respectively.

Within each period t, the adjusted attribution is
thus expressed as

R̂allocation
t = bopt

t Rallocation
t ,

R̂selection
t = bopt

t Rselection
t ,

and

R̂interaction
t = bopt

t Rinteraction
t .

Therefore, across T periods, active return Ractive,
the difference between portfolio return RP and bench-
mark return RB, can be written as

Ractive =
T
∑

t=1
(R̂allocation

t + R̂selection
t + R̂interaction

t ),

where Ractive = RP − RB.

Multi-Period Brinson Tools

In practice, analyzing a single-period portfolio is
meaningless as portfolio managers and their clients
are more interested in the performance of a portfolio
over multiple periods. To apply the Brinson model
over time, we can use the function brinson and in-
put a multi-period data set (for instance, quarter) as
shown below.

> data(quarter)

> br.multi <- brinson(quarter, date.var = "date",

+ cat.var = "sector",

+ bench.weight = "benchmark",

+ portfolio.weight = "portfolio",

+ ret.var = "return")

The object br.multi of class brinsonMulti is an
example of a multi-period Brinson analysis.

> exposure(br.multi, var = "size")

$Portfolio

2010-01-01 2010-02-01 2010-03-01

Low 0.140 0.140 0.155

2 0.050 0.070 0.045

3 0.175 0.145 0.155

4 0.235 0.245 0.240

High 0.400 0.400 0.405

$Benchmark

2010-01-01 2010-02-01 2010-03-01

Low 0.0681 0.0568 0.0628

2 0.0122 0.0225 0.0170

3 0.1260 0.1375 0.1140

4 0.2520 0.2457 0.2506

High 0.5417 0.5374 0.5557

$Diff

2010-01-01 2010-02-01 2010-03-01

Low 0.0719 0.083157 0.0922

2 0.0378 0.047456 0.0280

3 0.0490 0.007490 0.0410

4 -0.0170 -0.000719 -0.0106

High -0.1417 -0.137385 -0.1507

The exposure method on the class br.multi ob-
ject shows the exposure of the portfolio and the bench-
mark based on a user-defined category. Here, it shows
the exposure on size. We can see that the portfolio
overweights the benchmark in the lowest quintile in
size and underweights in the highest quintile.

> returns(br.multi, type = "linking")

$Raw

2010-01-01 2010-02-01 2010-03-01

Allocation -0.0014 0.0064 0.0046

Selection 0.0146 0.0178 -0.0152

Interaction 0.0020 -0.0074 -0.0087

Active Return 0.0151 0.0168 -0.0193

$Aggregate

2010-01-01, 2010-03-01

Allocation 0.0095

Selection 0.0173

Interaction -0.0142

Active Return 0.0127

The returns method shows the results of the
Brinson analysis applied to the data from January,
2010 through March, 2010. The optimized linking al-
gorithm is applied here by setting the type to linking.
The first portion of the returns output shows the
Brinson attribution in individual periods. The sec-
ond portion shows the aggregate attribution results.
The portfolio formed by top 200 value securities in
January had an active return of 12.7% over the first
quarter of 2010. The allocation and the selection ef-
fects contributed 0.95% and 1.73% respectively; the
interaction effect made a loss of 1.42%.

6See Menchero (2000) for more information on the optimized linking coefficients.

6



REGRESSION PERFORMANCE ATTRIBUTION FOR EQUITY PORTFOLIOS

> plot(br.multi, type = "return")

2010−01−01 2010−02−01 2010−03−01

Utilities
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Industrials
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Figure 2: Sector Return Across Time.

Figure 2 depicts the returns of both the portfo-
lio and the benchmark of the allocation effect from
January, 2010 through March. 2010. This plot shows
that for the portfolio, Utilities performed the best
with a gain of more than 5% in January and February,
2010 but tanked in March, 2010.

Regression

Single-Period Regression Model

One advantage of a regression-based approach is that
such analysis allows one to define their own attribu-
tion model by easily incorporating multiple variables
in the regression formula. These variables can be ei-
ther discrete or continuous.

Suppose a portfolio manager wants to find out
how much each of the value, growth, and momen-
tum scores of her holdings contributes to the overall
performance of the portfolio. Consider the following
linear regression without the intercept term based on
a single-period portfolio of n securities with k different
variables:

rn = Xn,kfk + un

where

• rn is a column vector of length n. Each element
in rn represents the return of a security in the
portfolio.

• Xn,k is an n by k matrix. Each row represents k
attributes of a security. There are n securities
in the portfolio.

• fk is a column vector of length k. The elements
are the estimated coefficients from the regres-
sion. Each element represents the factor return
of an attribute.

• un is a column vector of length n with residuals
from the regression.

In the case of this portfolio manager, suppose that
she only has three holdings in her portfolio. r3 is thus
a 3 by 1 matrix with returns of all her three holdings.
The matrix X3,3 records the score for each of the three
factors (value, growth, and momentum) in each row.
f3 contains the estimated coefficients of a regression
r3 on X3,3.

The active exposure of each of the k variables, Xi,
i ∈ k, is expressed as

Xi = wactive′xn,i,

where Xi is the value representing the active exposure
of the attribute i in the portfolio, wactive is a column
vector of length n containing the active weight of every
security in the portfolio, and xn,i is a column vector
of length n with attribute i for all securities in the
portfolio. Active weight of a security is defined as the
difference between the portfolio weight of the security
and its benchmark weight.

Using the example mentioned above, the active ex-
posure of the attribute value, Xvalue is the product of
wactive′ (containing active weight of each of the three
holdings) and x3 (containing value scores of the three
holdings).

The contribution of a variable i, Ri, is thus the
product of the factor returns for the variable i, fi and
the active exposure of the variable i, Xi. That is,

Ri = fiXi.

Continuing the example, the contribution of value is
the product of fvalue (the estimated coefficient for
value from the linear regression) and Xvalue (the active
exposure of value as shown above).

Therefore, the active return of the portfolio Ractive
is the sum of contributions of all k variables and the
residual u (a.k.a. the interaction effect),

Ractive =
k
∑

i=1
Ri + u.

For instance, a hypothetical portfolio has three
holdings (A, B, and C), each of which has two at-
tributes – size and value.

Return Name Size Value Active_Weight

1 0.3 A 1.2 3.0 0.5

2 0.4 B 2.0 2.0 0.1

3 0.5 C 0.8 1.5 -0.6

Following the procedure as mentioned, the factor
returns for size and value are -0.0313 and -0.1250. The
active exposure of size is 0.32 and that of value is 0.80.
The active return of the portfolio is -11% which can be

7
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decomposed into the contribution of size and that of
value based on the regression model. Size contributes
1% of the negative active return of the portfolio and
value causes the portfolio to lose the other 10.0%.

Single-Period Regression Tools

Another conventional attribution methodolody is the
regression-based analysis. As mentioned, the pa pack-
age provides tools to analyze both single-period and
multi-period data frames.

> rb.single <- regress(jan, date.var = "date",

+ ret.var = "return",

+ reg.var = c("sector", "growth",

+ "size"),

+ benchmark.weight = "benchmark",

+ portfolio.weight = "portfolio")

> exposure(rb.single, var = "growth")

Portfolio Benchmark Diff

Low 0.305 0.2032 0.1018

2 0.395 0.4225 -0.0275

3 0.095 0.1297 -0.0347

4 0.075 0.1664 -0.0914

High 0.130 0.0783 0.0517

reg.var specifies the columns containing variables
whose contributions are to be analyzed. Calling ex-

posure with a specified var yields information on the
exposure of both the portfolio and the benchmark by
that variable. If var is a continuous variable, for
instance, growth, the exposure will be shown in 5
quantiles. Majority of the high value securities in
the portfolio in January have relatively low growth

scores.

> summary(rb.single)

Period: 2010-01-01

Methodology: Regression

Securities in the portfolio: 200

Securities in the benchmark: 1000

Returns

2010-01-01

sector 0.003189

growth 0.000504

size 0.002905

Residual 0.008092

Portfolio Return -0.029064

Benchmark Return -0.043753

Active Return 0.014689

The summary method shows the number of secu-
rities in the portfolio and the benchmark, and the
contribution of each input variable according to the
regression-based analysis. In this case, the portfolio
made a loss of 2.91% and the benchmark lost 4.38%.
Therefore, the portfolio outperformed the benchmark
by 1.47%. Sector, growth, and size contributed
0.32%, 0.05%, and 0.29%, respectively.

Multi-Period Regression Model

The same challenge of linking arithmetic and geomet-
ric returns is present in multi-period regression model.
We apply the optimized linking algorithm proposed
by Menchero (2000) in the regression attribution as
well.

Within each period t,

Ractive
t =

k
∑

i=1
Ri,t + ut,

where Ri,t represents the contribution of a variable i of
the time period t and ut is the residual in that period.

Across T periods, the active return can be ex-
pressed by a product of the optimized linking coef-

ficient bopt
t and the individual contribution of each of

the k attributes. The adjusted contribution of each of
the k variables i, R̂i,t, is expressed by

R̂i,t = bopt
t Ri,t.

Thus, the overall active return Ractive can be de-
composed into

Ractive =
T
∑

t=1

k
∑

i=1
R̂i,t + U,

where U is the residual across T periods.

Multi-Period Regression Tools

> rb.multi <- regress(quarter, date.var = "date",

+ ret.var = "return",

+ reg.var = c("sector", "growth",

+ "size"),

+ benchmark.weight = "benchmark",

+ portfolio.weight = "portfolio")

> rb.multi

Period starts: 2010-01-01

Period ends: 2010-03-01

Methodology: Regression

Securities in the portfolio: 200

Securities in the benchmark: 1000

Regression-based analysis can be applied to a
multi-period data frame by calling the same method
regress. By typing the name of the class object
rb.multi directly, a short summary of the analysis is
provided, showing the starting and ending period of
the analysis, the methodology, and the average num-
ber of securities in both the portfolio and the bench-
mark.

> summary(rb.multi)

Period starts: 2010-01-01

Period ends: 2010-03-01

Methodology: Regression

Avg securities in the portfolio: 200

Avg securities in the benchmark: 1000

Returns

$Raw

2010-01-01 2010-02-01 2010-03-01
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sector 0.0032 0.0031 0.0002

growth 0.0005 0.0009 -0.0001

size 0.0029 0.0295 0.0105

Residual 0.0081 -0.0172 -0.0302

Portfolio Return -0.0291 0.0192 0.0298

Benchmark Return -0.0438 0.0029 0.0494

Active Return 0.0147 0.0163 -0.0196

$Aggregate

2010-01-01, 2010-03-01

sector 0.0065

growth 0.0013

size 0.0433

Residual -0.0392

Portfolio Return 0.0190

Benchmark Return 0.0064

Active Return 0.0127

The regression-based summary shows that the
contribution of each input variable in addition to the
basic information on the portfolio. The summary sug-
gests that the active return of the portfolio in year
2010 is 1.27%. The Residual number indicates the
contribution of the interaction among various vari-
ables including sector, growth, and growth.

Visual representation of relative performance of a
portfolio against its benchmark is best viewed across
a longer time span. Here, we use the data frame year

for illustrative purposes.

> rb.multi2 <- regress(year, date.var = "date",

+ ret.var = "return",

+ reg.var = c("sector", "growth",

+ "size"),

+ benchmark.weight = "benchmark",

+ portfolio.weight = "portfolio")

> returns(rb.multi2, type = "linking")

$Raw

2010-01-01 2010-02-01 2010-03-01

sector 0.0035 0.0034 0.0002

growth 0.0005 0.0010 -0.0001

size 0.0031 0.0320 0.0109

Residual 0.0088 -0.0187 -0.0312

Active Return 0.0159 0.0177 -0.0203

2010-04-01 2010-05-01 2010-06-01

sector 0.0017 0.0044 0.0077

growth 0.0001 0.0002 0.0004

size 0.0145 0.0041 0.0020

Residual -0.0043 0.0346 0.0201

Active Return 0.0122 0.0433 0.0304

2010-07-01 2010-08-01 2010-09-01

sector 0.0016 0.0051 -0.0023

growth -0.0005 0.0005 -0.0006

size 0.0066 0.0000 0.0100

Residual -0.0333 0.0189 -0.0229

Active Return -0.0256 0.0246 -0.0158

2010-10-01 2010-11-01 2010-12-01

sector 0.0016 -0.0048 -0.0084

growth -0.0011 -0.0004 0.0010

size 0.0024 0.0143 0.0057

Residual 0.0149 0.0192 -0.0253

Active Return 0.0179 0.0282 -0.0270

$Aggregate

2010-01-01, 2010-12-01

sector 0.0137

growth 0.0011

size 0.1056

Residual -0.0193

Active Return 0.1014

We obtained an object rb.multi2 of class regress-
Multi based on the data set from January, 2010
through December, 2010. The portfolio beat the
benchmark by 10.1% over this period. Based on the
regression model, size contributed to the lion share
of the active return.

> plot(rb.multi2, var = "sector", type = "return")
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Figure 3: Performance Attribution.

Figure 3 displays both the cumulative portfolio
and benchmark returns from January, 2010 through
December, 2010. It suggests that the portfolio, con-
sisted of high value securities in January, consistently
outperformed the benchmark in 2010. Outperfor-
mance in May and June helped the overall positive
active return in 2010 to a large extent.

Brinson as Regression

Another way to think about the analysis as Brinson
et˜al. (1986) have done is to consider it in the context
of a regression model. Conducting a Brinson attribu-
tion is similar to running a linear regression without
the intercept term. Estimated coefficients will then
be the mean return of each category of the attributed
specified in the universe, a.k.a. the factor return of
each category. The mean return of each category also
appears in the Brinson analysis. The equivalent to the
allocation effect for the universe in the Brinson model
is the sum of the product of the estimated coefficient
and the active weight of each category.
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Using the same regression model as before,

Rallocation =
N

∑
j=1

WP
j RB

j −
N

∑
j=1

WB
j RB

j

= (WP −WB)′f,

where WP is a column vector indicating the portfolio
weight of each category within the attributed speci-
fied by the manager; WB, a column vector indicating
the benchmark weight of each category, and f is the
column vector which has benchmark return of all the
categories. Assuming that in this case, the bench-
mark is the universe and the portfolio holdings are all
from the benchmark, RB can be estimated by regress-
ing returns on the attribute specified by the portfolio
manager:

rn = Xn,pf + U,

where

• rn is a column vector of length n. Each element
in rn represents the return of a security in the
portfolio.

• Xn,p is an n by p matrix where n refers to the
number of securities in the portfolio and p refers
to the number of levels within the attribute
specified.

• f is the estimated coefficients on the regression
without the intercept term. The estimated co-
efficient of each attribute is the mean return for
each of the attribute.

• U is the column vector with all the residual
terms.

Since RB is the same as f, the allocation effect in
the Brinson model is a special case of the regression
approach.

In order to estimate the selection effect in the Brin-
son model, one can calculate the mean return of each
category within the attribute in both the portfolio and
the benchmark under a regression framework and use
the benchmark weights to calculate the selection ef-
fect.

Rselection =
N

∑
j=1

WB
j RP

j −
N

∑
j=1

WB
j RB

j

= WB′(fP − fB),

where WB is the column vector with the benchmark
weight of each category within the attribute specified;
fP and fB are the column vectors indicating the mean
return of the portfolio and that of the benchmark,
respectively. As mentioned above, fP and fB can be
estimated by running a linear regression without the
intercept term with respect to stocks in the portfolio
and benchmark separately. Hence, the selection effect

in the Brinson model can be calculated by using linear
regression.

Interaction effect is the difference between a port-
folio’s actual return and the sum of the allocation and
selection effects.

An numerical example of showing that the Brin-
son model is a special case of the regression approach
is as follows.

Suppose that an equity portfolio manager has a
portfolio named test with the universe as the bench-
mark.

> data(test)

> test.br <- brinson(x = test, date.var = "date",

+ cat.var = "sector",

+ bench.weight = "benchmark",

+ portfolio.weight = "portfolio",

+ ret.var = "return")

> returns(test.br)

$`Attribution by category in bps`
Allocation Selection Interaction

Energy -10.4405 6.01 1.7761

Materials 4.6486 -1.59 0.1544

Industrials 1.7606 -19.03 -1.5726

ConDiscre -1.0970 -13.47 2.2158

ConStaples 0.1907 -16.79 2.1560

HealthCare 0.0861 19.69 0.6350

Financials 0.0908 8.35 -0.0116

InfoTech 0.5057 -32.40 -1.9313

TeleSvcs -1.7611 15.52 3.0745

Utilities 2.6190 -8.81 3.5853

Total -3.3971 -42.54 10.0816

$Aggregate

2010-01-01

Allocation Effect -0.00034

Selection Effect -0.00425

Interaction Effect 0.00101

Active Return -0.00359

When we apply the standard single-period Brin-
son anaysis, we obtain an active return of -35.9 bps
which can be further decomposed into allocation (-3.4
bps), selection (-42.5 bps), and interaction (10.1 bps).

We can also show the allocation effect by running
a regression model based on sector only.

> test.reg <- regress(x =test,

+ date.var = "date",

+ ret.var = "return",

+ reg.var = "sector",

+ benchmark.weight = "benchmark",

+ portfolio.weight = "portfolio")

> returns(test.reg)

2010-01-01

sector -0.00034

Residual -0.00325

Portfolio Return -0.01621

Benchmark Return -0.01263

Active Return -0.00359
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The contribution from sector based on the regres-
sion approach (-3.4 bps) matches the allocation effect
from the Brinson model as shown above.

However, in order to calculate the selection effect
from the regression approach, we need to apply an-
other regression model to a universe limited to the se-
curities held in the portfolio. Using the factor returns
from the regress class object, test.reg, and those
from the linear regression, we can obtain the selection
effect (-42.5 bps) via the regression approach.

> lm.test <- lm(return ~ sector - 1,

+ data = test[test$portfolio != 0, ])

> lm.test$coefficients

sectorEnergy sectorMaterials

-0.03561 -0.05146

sectorIndustrials sectorConDiscre

0.00194 -0.00533

sectorConStaples sectorHealthCare

-0.02514 0.04327

sectorFinancials sectorInfoTech

-0.02376 -0.02376

sectorTeleSvcs sectorUtilities

0.00916 -0.03878

> exposure(br.single, var = "sector")[ ,2] %*%

+ (lm.test$coefficients - test.reg@coefficients)

[,1]

[1,] 0.00653

Conclusion

In this paper, we describe two widely-used methods
for performance attribution – the Brinson model and
the regression-based approach, and provide a simple
collection of tools to implement these two methods in
R with the pa package. We also show that the Brin-
son model is a special case of the regression method.
A comprehensive package, portfolio Enos and Kane
(2006), provides facilities to calculate exposures and
returns for equity portfolios. It is possible to use the
pa package based on the output from the portfo-

lio package. Further, the flexibility of R itself allows
users to extend and modify these packages to suit their
own needs and/or execute their preferred attribution
methodology. Before reaching that level of complex-
ity, however, pa provides a good starting point for
basic performance attribution.

Yang Lu and David Kane
yang.lu@williams.edu and
dave.kane@gmail.com
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