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Abstract

This is the substrate-information tutorial of opm in the version of November 10, 2013.
The precomputed information on the known Phenotype Microarray (PM) substrates is
explained, as well as the methods available to query this information. IDs for a variety
of databases are stored within opm and can be used to conduct web queries to obtain
comprehensive information on the substrates of interest. We show how these data can
be used to visualise results from PM experiments, including the outcome from advanced
multiple-comparison statistics, within biochemical pathway maps. Visually comparing
genome annotation and PM results is easily possible in that manner. Moreover, meth-
ods are described to automatically detect the substrate features that potentially explain
a given experimental outcome. This includes determining the relevant pathways to be
used in the visualisations. More examples for the powerful feature-selection approaches
available within R will be explained in future versions of this tutorial.

Keywords: Respiration Kinetics, pathways, CAS, MeSH, ChEBI, MetaCyc, KEGG, pathview.

1. Introduction

A detailed description of the OmniLog➤ Phenotype Microarray (PM) system, its measur-
ing procedure and data characteristics are found in the vignette “opm: An R Package for
Analysing OmniLog➤ Phenotype Microarray Data” (called “main tutorial” in the following).
The description of the methods below presupposes that the user is familiar with the usage
of opm and has studied the main tutorial as well as the entries of the opm manual relevant
to her or his research. Especially the concepts behind, and the methods available for, the
different classes of opm objects should be known before starting with this tutorial.

In addition to visual inspection or statistical comparative analyses of PM data, as described
in the main tutorial, users might be interested in specific information on the substrates used
in PM assays. The opm package contains a large variety of additional data on PM substrates.
Beside methods for assessing this information directly, this tutorial introduces strategies for
visualising the measured PM results by mapping them on pathway maps. Furthermore,
analysis methods are described for modelling the effect of substrate features on the PM
results and thus, e.g., for the identification of those pathways that are particularly suitable
for visualising the PM results in pathway graphs.

2. Preparation

For just downloading information from Kyoto Encyclopedia of Genes and Genomes (KEGG)
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(see Section 3.1), install the Bioconductor package KEGGREST. It needs not be loaded into
your R session. For also drawing PM information into KEGG pathway maps (see Section 4),
install the Bioconductor package pathview and load it into your session. Note that it is impor-
tant to load pathview before opm, which is needed throughout this tutorial, since otherwise
some methods are not visible and the package does not work properly. In this vignette this
is enforced by optionally detaching opm and loading it (again) as follows:

R> suppressPackageStartupMessages(library("pathview"))

R> if ("package:opm" %in% search())

detach("package:opm", unload = TRUE)

R> library("opm")

R> data(vaas_et_al, package = "opmdata")

3. Accessing plate and substrate information

The opm package contains a number of functions suitable for accessing precomputed infor-
mation on entire plates and on the substrates within certain wells.

3.1. Available plate information

Currently substrate layouts of various plates are available within opm. An overview of the
plate types available in the respective version of opm is obtained by entering

R> plate_type(full = TRUE)

The resulting vector of names does not only include OmniLog➤ plates; see the manual and
the main tutorial for further details. Using other values for full, or additional arguments,
distinct spelling variants of the plate names can be obtained.

3.2. Available substrate information

In the manual and help pages these functions are explained within the family “naming-
functions” with according cross-references.

One usually would start a search by determining the exact spelling of an internally used name
with find_substrate:

R> substrates <- find_substrate(c("Glutamine", "Glutamic acid"))

R> substrates

The result is a list (of the S3 class “substrate match”) containing character vectors with the
results for each query name as values. Surprisingly, nothing was found for “Glutamic acid”
but several values for “Glutamine”. The default search argument is “exact”, which is exact
(case-sensitive) matching of parts of the names. One might want to use“glob”searching mode:

R> substrates <- find_substrate(c("L-Glutamine", "L-Glutamic acid"), "glob")

R> substrates

http://bioconductor.org/
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But with so-called wild-cards, i.e. “*” for zero to many and“?” for a single arbitrary character
the search is more flexible:

R> substrates <- find_substrate(c("*L-Glutamine", "*L-Glutamic acid"), "glob")

R> substrates

This fetches all terms that end in either query character string, and does so case-insensitively.
Advanced users can apply the much more powerful regex and approx search modes; see the
manual for details, entry ?find_substrate.

Note that opm appends a concentration (or just repetition) indicator as a number after a
hash sign (“#”) to the substrate names wherever necessary. Thus a wild-card “*” at the end
of a name might often by the most useful search pattern.

Once the internally used names (which are not guaranteed to be stable between distinct
opm releases) have been found, information on the substrates can be queried such as their
occurrences and positions on plates:

R> positions <- find_positions(substrates)

R> positions

This yields a nested list containing two-column matrices with plate names in the first and
well coordinates in the second column. Using the type argument, search can be restricted
to a plate type of interest, which would yield a named vector. References to external data
resources for each substrate name can be obtained using substrate_info:

R> subst.info <- substrate_info(substrates)

R> subst.info

By default this yields Chemical Abstracts Service (CAS) numbers (http://www.cas.org/
content/chemical-substances/faqs), but Medical Subject Headings (MeSH) names (use-
ful for conducting PubMed queries; see http://www.ncbi.nlm.nih.gov/mesh/) (Coletti and
Bleich 2001), Chemical Entities of Biological Interest (ChEBI) IDs (Hastings, de Matos,
Dekker, Ennis, Harsha, Kale, Muthukrishnan, Owen, Turner, Williams, and Steinbeck 2013),
KEGG compound IDs, KEGG drug IDs (Kanehisa, Goto, Furumichi, Tanabe, and Hirakawa
2010) and MetaCyc IDs (Caspi, Altman, Dreher, Fulcher, Subhraveti, Keseler, Kothari,
Krummenacker, Latendresse, Mueller, Ong, Paley, Pujar, Shearer, Travers, Weerasinghe,
Zhang, and Karp 2012) have also been collected for the majority of the substrates. Using
the “browse” argument, full URLs can be created and optionally also directly opened in the
default web browser. Using the “download” argument, if KEGG drug or compound IDs have
been selected, these can be downloaded from the KEGG server (if the KEGGREST package is
available) and converted into customised objects. It is possible to nicely display all available
information at once:

R> subst.info <- substrate_info(substrates, "all")

R> subst.info

Another use of substrate_info is to convert substrate names to lower case but protecting
name components such as abbreviations or chemical symbols. See the manual for further
details, help page ?substrate_info.

http://www.cas.org/content/chemical-substances/faqs
http://www.cas.org/content/chemical-substances/faqs
http://www.ncbi.nlm.nih.gov/mesh/
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4. Visualisation of PM information within pathway maps

In conjunction with other R packages, it is possible to visualise PM results directly in al-
ready existing pathway maps as, for example, those from KEGG. These maps are essentially
manually drawn biochemical pathway maps representing the currently available knowledge
on substrates, enzymes and genes and their connections within pathways. Depending on
the availability of genome and gene-annotation information within KEGG, organism-specific,
individual maps can be obtained (Kanehisa et al. 2010).

The mapping itself works by using information produced by opm for a colour coding of the
nodes (here, representing the substrates) within those maps, as can be done similarly with
several other types of “OMICS” data such as transcriptomics or proteomics data. For details,
see the description on the KEGG website (http://www.genome.jp/kegg/).

4.1. Providing suitable input data

The work flow starts with either an OPMX object containing the aggregated values or the result
from an opm_mcp analysis. The first step in both cases is to convert the data into a suitable
format, which is a named vector created by the function annotated.

R> x <- annotated(vaas_1)

R> head(x)

<NA> C00721 C00208 C01083 C00185 C08240

123.4558 248.1809 284.0994 269.7548 180.7536 287.7959

The resulting vector contains the numeric values (selected parameter estimates or opm_mcp re-
sults, as explained below) as well as an annotation of the according substrates. For substrates
such as “Positive Control” or “pH 5” no KEGG Identifier (ID) is available, which results in NA

values in the vector. Accordingly, those substrates cannot be marked within pathway maps
(see section 4.2.1). The what argument, passed as eponymous argument to substrate_info,
selects the kind of information to be used for the annotation. With annotated used with how

= "value" a numeric matrix including the substrate names as row names and first column
indicating the mean of chosen computed values is provided. Further columns indicate the oc-
currence of a certain substrate in a pathway map or the affiliation to a certain class, e.g. “Car-
bohydrates”. This information is in analogy to the download argument of substrate_info
but with conversion to a numeric matrix. For usage of argument how, please refer to section 5.

Although annotated works directly on OPMX objects containing aggregated data for single
plates or bundles of plates, please note, that the output allows for only one value per substrate.
Thus, when applying annotated to a set of plates, make sure that only one experimental group
is comprised, since the resulting values are averaged per well over all plates in the input object.
Using the output argument, one can select the parameter of interest, for example area under
the curve instead of maximum height:

R> x <- annotated(vaas_1, output = param_names()[4])

R> head(x)

<NA> C00721 C00208 C01083 C00185 C08240

8918.137 18391.590 21960.080 18531.180 11831.150 19254.160

http://www.genome.jp/kegg/
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Figure 1: Point estimates and 95% confidence intervals in a manually defined comparison
of group means for a specifically selected set of wells from the vaas_4 exemplar object. In
this procedure each selected well is compared against A05. The picture was obtained by
running opm_mcp and then the plotting function for the resulting opm glht object. See the
main tutorial for details.

Visualisation of the results of an opm_mcp analysis is also possible, which offers more (statisti-
cally interesting) opportunities for making sense of the PM data in the context of pathways.
However, this method only makes sense if each coefficient estimated by opm_mcp can be linked
to a single substrate. This is usually only possible for the “Dunnett” and “Pairs” type of con-
trasts if applied to the wells (see Section 4.2.3). See the main tutorial and the manual for
details on this restriction.

The results from an opm_mcp procedure are treated with annotated as shown before with an
OPMX object, but additional options are available. In the following example, first an opm glht

object is generated from the vaas_4 exemplar object by performing a Dunnett-type multiple
comparison of the selected 13 wells against well A05 as control group. The comparison applies
to the default parameter given by opm_opt("curve.param"); see the manual for details.

R> x <- opm_mcp(vaas_4[, , 1:15], output = "mcp", model = ~ Well,

linfct = c(Dunnett.A05 = 1), full = FALSE)

The resulting 95% confidence intervals for the difference of means are plotted in Figure 1.

Using the above generated opm glht object, the options modifying the output of annotated
will be illustrated. Apparently only three comparisons exhibit a statistically significant dif-
ference, namely the comparisons A10 - A05, A11 - A05 and A12 - A05, all showing that the
reactions in A05 are weaker than those in A10, A11 and A12, respectively.

Using the output argument, users are able to obtain various statistically relevant categorical
results instead of the simple numerical output of the respective point estimator. The options
upwards and downwards result in a classification into three categories (FALSE, NA, or TRUE).
These indicate whether or not the cut-off (zero per default) is included in the confidence
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interval (NA) and thus a decision possible. If not, the category indicates the direction of
the shift relative to the cut-off. The options different, smaller, larger and equal work
similarly, but use only the two categories TRUE and FALSE. Please note that the underlying
test seeks for differences and thus the results always have to be interpreted regarding the
significance (and magnitude) of these differences; “insignificantly different” does not mean
“significantly equal”!

Short-cuts are available for all output-options, enabling the user to set the cut-off together
with the kind of output. See the manual for details.

A comprehensive overview of the possible results for object x is shown in the following data
frame:

Comparison numeric upwards downwards different equal smaller larger

1 A01 - A05 1.577317 NA NA FALSE TRUE FALSE FALSE

2 A02 - A05 57.274661 NA NA FALSE TRUE FALSE FALSE

3 A03 - A05 26.661023 NA NA FALSE TRUE FALSE FALSE

4 A04 - A05 34.537328 NA NA FALSE TRUE FALSE FALSE

5 A06 - A05 25.078779 NA NA FALSE TRUE FALSE FALSE

6 A07 - A05 -1.606236 NA NA FALSE TRUE FALSE FALSE

7 A08 - A05 -8.458879 NA NA FALSE TRUE FALSE FALSE

8 A09 - A05 -4.975284 NA NA FALSE TRUE FALSE FALSE

9 A10 - A05 247.470724 TRUE FALSE TRUE FALSE FALSE TRUE

10 A11 - A05 245.163382 TRUE FALSE TRUE FALSE FALSE TRUE

11 A12 - A05 250.763650 TRUE FALSE TRUE FALSE FALSE TRUE

12 B01 - A05 5.417463 NA NA FALSE TRUE FALSE FALSE

13 B02 - A05 27.079437 NA NA FALSE TRUE FALSE FALSE

14 B03 - A05 15.870312 NA NA FALSE TRUE FALSE FALSE

All these results are obtained with the setting how = "ids"; for the usage of how = "value"

see Section 5.

4.2. Visualisation in pathway maps using pathview

4.2.1. Visualisation of group means in pathway maps

Here we will use the function pathview from the package of the same name (Luo and Brouwer
2013). This function can download a user-defined pathway graph from KEGG, optionally
integrate additional data from other sources, and render the result. For integrating experi-
mental data from other “OMICS” approaches (such as transcriptomics and proteomics), see
the corresponding chapter in the pathview vignette for details.

Here the pathview function serves for integrating and visualising information produced by
opm and provided by annotated. The user only has to specify the pathway and provide
the opm data. All other necessary steps (download of pathway graph data as XML file from
KEGG, parsing of this data file, integrating user-defined data into the pathway representation,
and rendering of final output graphics) are automatically conducted by pathview. See the
pathview vignette for technical details.

In the case of KEGG, a pathway map is described as “a molecular interaction/reaction
network diagram represented in terms of the KEGG Orthology (KO) groups” (see http:

http://www.genome.jp/kegg/kegg3a.html
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//www.genome.jp/kegg/kegg3a.html for further details). KEGG contains a collection of
distinct types of pathway maps identified by a code containing between two and four letters
as a prefix, followed by five digits.

The prefixes have the following meanings:

map - Reference pathway

ko - Reference pathway (KO)

ec - Reference pathway (Enzyme Commission (EC))

rn - Reference pathway (Reaction)

org - Organism-specific pathway map (org is a wild-card for the organism-specific ab-
breviation composed of two to four letters)

Only the first reference pathway map is drawn manually; all other maps are computation-
ally generated. The ko maps contain the manually defined ortholog groups (ko entries)
for all proteins and functional RNA molecules that correspond to KEGG pathway nodes,
BRITE hierarchy nodes, and KEGG module nodes. The ko entries are converted to gene
ID if organism-specific pathways maps are generated. A list of the existing maps and their
corresponding numbers are available on the KEGG homepage (see above).

pathview allows only for using KEGG orthology (the ko maps) or species-specific letter
codes. See http://www.genome.jp/kegg/catalog/org_list.html for an up-to-date list of
organisms with complete genome information in KEGG.

A vector as returned by annotated (see Section 4.1) serves as input for the visualisation
procedure based on pathview. For demonstration purposes, we use subsets of vaas_et_al
containing the Escherichia coli strains from the first biological repetition.

R> coli.sub <- subset(vaas_et_al, list(Species = "Escherichia coli",

Experiment = "First replicate"))

R> coli.k12 <- subset(coli.sub, list(Strain = "DSM18039"))

R> coli.type <- subset(coli.sub, list(Strain = "DSM30083T"))

Afterwards we create the annotated vectors containing the average maximum curve heights
for the two groups separately:

R> anno.k12 <- annotated(coli.k12)

R> anno.type <- annotated(coli.type)

For a more convenient drawing of opm data on KEGG pathway maps, we suggest a wrapper
for the pathview function, providing other default settings for some arguments. All graphics
below are produced using this wrapper, but the user is of course free to use the original
pathview function or write an alternative wrapper.

R> opm_path <- function(cpd.data, gene.data = NULL,

high = list(gene = "green4", cpd = "blue"),

mid = list(gene = "lightsteelblue1", cpd = "yellow"),

http://www.genome.jp/kegg/kegg3a.html
http://www.genome.jp/kegg/kegg3a.html
http://www.genome.jp/kegg/catalog/org_list.html
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low = list(gene = "white", cpd = "yellow"),

species = "ko", out.suffix = "non-native",

key.pos = "topright", afactor = 1000,

limit = list(gene = 2, cpd = 400),

bins = list(gene = 0.5, cpd = 40),

both.dirs = list(gene = FALSE, cpd = FALSE),

sign.pos = "topleft", cpd.lab.offset = 0,

same.layer = FALSE,

na.col = "white", ...) {

pathview(cpd.data = cpd.data, gene.data = gene.data,

high = high, mid = mid, low = low,

species = species, out.suffix = out.suffix, key.pos = key.pos,

afactor = afactor, limit = limit, bins = bins,

both.dirs = both.dirs, sign.pos = sign.pos,

cpd.lab.offset = cpd.lab.offset, same.layer = same.layer,

na.col = na.col, ...)

}

The data for the two strains are shown on the correspondingly separated maps in Figure 2.

R> coli.map.k12 <- opm_path(cpd.data = anno.k12, species = "ko",

out.suffix = "k12.ko", pathway.id = "00052")

R> coli.map.type <- opm_path(cpd.data = anno.type, species = "ko",

out.suffix = "type.ko", pathway.id = "00052")

Note particularly the substrates Raffinose, Stachyose and Sucrose (in the middle of the map),
which exhibit large respiratory differences, while Sorbitol (on the very left of the map) yields
only small respiratory differences between the two strains.

Using the default settings, pathview yields a raster image in Portable Network Graphics
(PNG) format, which is stored in the current working directory and shown in Figure 2.
For demonstration purposes the pathway number “00052”, which encodes for the Galactose
metabolism pathway map, is chosen. Genes (boxes) are annotated with KEGG ontology
numbers (set by choosing species = "ko"), where available or, alternatively, with EC num-
bers. Note that the species arguments offers the possibility to use species-specific genome
information available in the KEGG directory; see above for the letter codes and below for
an application example. The substrates (circles) in the maps get standard compound names,
which are automatically retrieved from the ChEMBL database using the compound IDs.

The data for the two strains can be shown analogously using the categorical output of
annotated, see Figure 3. This works because the underlying OPMX object contains dis-
cretised data. Whereas annotated would by default return a logical vector in that case, the
lmap argument can be used to create a numeric vector on the fly. See the manual for its
usage, entry ?annotated.

R> anno.k12.bin <- annotated(coli.k12, output = param_names("disc.name"),

lmap = 1:3)

R> anno.type.bin <- annotated(coli.type, output = param_names("disc.name"),

lmap = 1:3)

R> coli.map.k12.bin <- opm_path(cpd.data = anno.k12.bin, species = "ko",

out.suffix = "k12.ko.bin", pathway.id = "00052",
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(a) Respiratory data (mean maximum height) of Escherichia coli strain K12 mapped on the KEGG
Galactose pathway.

(b) Respiratory data (mean maximum height) of Escherichia coli type strain DSM 30083T mapped
on the KEGG Galactose pathway.

Figure 2: Galactose metabolism pathway maps for the two E. coli strains K12 and DSM
30083T showing the mean maximum height on 13 substrates. The aggregated measurement
data are represented by according colours and mapped on the corresponding substrates (cir-
cles) in the graph.
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limit = list(gene = 2, cpd = c(1, 3)), bins = list(gene = 0.5, cpd = 3))

R> coli.map.type.bin <- opm_path(cpd.data = anno.type.bin, species = "ko",

out.suffix = "type.ko.bin", pathway.id = "00052",

limit = list(gene = 2, cpd = c(1, 3)), bins = list(gene = 0.5, cpd = 3))

By using the species argument it is possible to include the genome annotations available
from KEGG (see above for details). Since in KEGG no genome for the E. coli type strain
is available, we will demonstrate the usage of this argument only for strain K12 (= DSM
18039). One could choose the annotation of strain E. coli “K-12 MG1655” from the year 1997,
which corresponds to species = "eco" (other K12 variants are available in KEGG). In the
corresponding figure, genes (boxes) without annotation information in the chosen genomes
remained white without any labelling. But when using na.col, entries without annotation
information are highlighted with the colour of choice.

R> coli.map.k12.eco <- opm_path(cpd.data = anno.k12, species = "eco",

out.suffix = "k12.eco", pathway.id = "00052", na.col = "pink")

We do not run this code (and show the resulting figure) here because it involved installing
a Bioconductor package that includes the KEGG annotation for species = "eco". This
package would be selected and downloaded automatically, so this is rather convenient for the
user, but we refrain from modifying user libraries within a vignette.

With this type of visualisation users can detect metabolic steps for which no genes are anno-
tated, but PM data indicate metabolic activity. This can help improving genome annotation.
In the chosen example, the failure of the strain to metabolise Galactose is in accordance with
the lack of some genes in the genome annotation, causing gaps in the pathway for Galactose
catabolism.

4.2.2. Finding substrates within pathways

Note that from the annotation objects anno.k12 or anno.type, respectively, comprising 96
substrates, only 13 are represented in the shown pathway map in Figure 2. This is no wonder
because the PM plates are not arranged according to their affiliation to KEGG pathways. It
often makes sense to restrict the considered substrates beforehand if the pathway of interest
is already known. This particularly saves running time in the calls to opm_mcp and the
annotated method for opm glht objects.

When using the option how = "value", annotated yields a numeric matrix with substrate
names as row names and pathway ID as column names. Whereas the main use of such a
matrix is described in Section 5, it can also be used simply to show the distribution of
substrates over pathways. Ones and zeros indicate whether or not a certain substrate (row)
is contained in a certain pathway (column). NAs indicate that a substrate has no KEGG ID,
as for example well A01 which harbours the (pseudo-)substrate “Negative Control”.

By summing up the columns and sorting the resulting vector, the user gets a ranking of the
columns (pathways) indicating how many substrates are covered.

R> anno.k12.mat <- annotated(coli.k12, how = "value")

R> col.sums <- sort(colSums(anno.k12.mat, na.rm = TRUE), decreasing = TRUE)

R> col.sums[1:10]
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(a) Respiratory data (mean maximum height, discretised) of Escherichia coli strain K12 mapped on
the KEGG Galactose pathway.

(b) Respiratory data (mean maximum height, discretised) of Escherichia coli type strain DSM 30083T

mapped on the KEGG Galactose pathway.

Figure 3: Galactose metabolism pathway maps for the two E. coli strains K12 and DSM
30083T showing the mean maximum height on 13 substrates. The aggregated and discretised
measurement data are represented by according colours and mapped on the corresponding
substrates (circles) in the graph.
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exact_mass Value map01100 map01110 map02010

17697.97 14820.75 43.00 24.00 22.00

Carbohydrates map01120 map02060 Monosaccharides map00052

22.00 16.00 14.00 14.00 13.00

In the next example we search for the substrates represented in pathway number “00052”,
which is Galactose metabolism. Then we extract the positions of these substrates (for the
plate type of interest) with find_positions:

R> e.subs <- rownames(anno.k12.mat)[!is.na(anno.k12.mat[, "map00052"]) &

anno.k12.mat[, "map00052"] > 0]

R> e.subs.pos <- find_positions(e.subs, type = "Gen III")

R> e.subs.pos

Sucrose Stachyose D-Raffinose

"A07" "A09" "B01"

a-D-Lactose D-Melibiose N-Acetyl-D-Galactosamine

"B02" "B03" "B08"

D-Glucose D-Mannose D-Fructose

"C01" "C02" "C03"

D-Galactose D-Sorbitol myo-Inositol

"C04" "D01" "D04"

Glycerol

"D05"

4.2.3. Visualisation of differences of group means in pathway maps

Next, we show the maximum-height values from the 13 substrates represented in the Galactose
pathway map (number “00052”) in Figure 4 to demonstrate the sizes of their differences.
Remember that the vector e.subs.pos contains the positions of the substrates of interest as
a character string. It can thus directly be used to subset OPMX objects.

R> ci_plot(coli.sub[, , e.subs.pos],

as.labels = list("Species", "Strain"), subset = "A", x = "bottomright",

draw.legend = T, crr = 1.33)

Straightforwardly, we compute a multiple comparison between only the 13 substrates included
in the Galactose metabolism pathway map. Our example compares the type strain with K12;
each corresponding 95% Confidence Interval (CI) for differences of means for the chosen
substrates is shown in Figure 5.

R> coli.comp <- opm_mcp(coli.sub[, , e.subs.pos],

output = "mcp", model = ~ J(Well + Strain), linfct = c(Pairs = 1))

The annotation vector for the differences of means can be obtained by simply applying
annotated to the opm glht object. The direct mapping of these differences between the
two strains on the Galactose pathway is shown in Figure 6.

R> coli.comp.map <- opm_path(cpd.data = annotated(coli.comp), species = "ko",

out.suffix = "coli.comp.ko", pathway.id = "00052")
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Figure 4: Point estimates and 95% confidence intervals for the single maximum-height values
of the two E. coli strains for the subset of substrates represented in the Galactose pathway
map.
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the two E. coli strains for the subset of substrates represented in the Galactose pathway map.
The blue dashed line indicates a minimal effect size of 150 as used in Figure 7b. The default
is 0, as used in Figure 7a.
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Figure 6: Respiration differences between E. coli K12 and DSM 30083T regarding the
maximum-height values mapped on the Galactose pathway. Compare also Figure 5, which
directly depicts the magnitude of the differences.
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In analogy to the last example, the function annotated can be used to produce categorical
annotation vectors for the differences of means. Such vectors are very useful because they
can specifically highlight the statistically significant differences, and particularly those that
are significantly larger than a certain biologically relevant minimum effect size. Thus the full
power of the functions from the multcomp package underlying opm_mcp (see the main tutorial
and the manual for details) is available when visualising PM data in pathway graphs.

The mapping of indicators of the significance of the differences between the two strains re-
garding the Galactose pathway is shown in Figure 7. Because we chose the “upwards” running
mode, up to three colours are used in the map, indicating whether the performance difference
is significantly larger than the minimum effect size, insignificantly different from the minimum
effect size, or significantly smaller than the minimum effect size. In Figure 7a, the default
minimum effect size of zero is chosen. Figure 7b shows the results for a user-defined minimum
effect size. This can be set using a short-cut notation indicating both the minimum effect
size and the kind of comparison to be conducted. The manual lists all possible short-cuts.
Remember the use of the lmap argument.

R> # ✬upwards✬ comparison, default minimum effect size

R> cat.coli.comp.0 <- opm_path(

cpd.data = annotated(coli.comp, output = "upwards", lmap = 1:3),

species = "ko", out.suffix = "cat-coli-comp-0", pathway.id = "00052",

limit = list(gene = 2, cpd = c(1, 3)), bins = list(gene = 0.5, cpd = 3))

R> # ✬upwards✬ comparison, 150 units as minimum effect size

R> cat.coli.comp.150 <- opm_path(

cpd.data = annotated(coli.comp, output = "✬150", lmap = 1:3),

species = "ko", out.suffix = "cat-coli-comp-150", pathway.id = "00052",

limit = list(gene = 2, cpd = c(1, 3)), bins = list(gene = 0.5, cpd = 3))

4.2.4. Visualisation of pathway maps in Graphviz layout

In addition to the native KEGG visualisation, pathview can use the Graphviz library for
an alternative visualisation approach. As return value, the function always generates a list
containing two data frames. The data frame “plot.data.gene” contains the data for mapping
the genes and, analogously, “plot.data.cpd” stores the compound-related data.

In the examples detailed above, a variety of such objects have already been generated, e.g.,
coli.map.k12 or the coli.map.types (both described in Section 4.2.1 and visualised in
Figure 2 therein).

Next, we show how to produce graphics from these objects instead of directly from KEGG.

R> coli.graphvizmap.k12 <- opm_path(cpd.data = anno.k12, species = "ko",

afactor = 1500, kegg.native = FALSE, out.suffix = "graphvizk12.ko",

pathway.id = "00052", sign.pos = "bottomleft", key.pos = "bottomright")

Although pathview offers quite a number of arguments specifically for kegg.native=FALSE,
there are, unfortunately, only limited options for tuning the size of the nodes or the font
sizes in this visualisation. The scaling of text and symbols can be tuned with the usual cex
argument (for kegg.native = FALSE the default is cex = 0.5). The text.width argument
can be used to specify the length for text wrapping. In principle, the node size can be fine-
tuned with afactor, however even the help page of the pathview function emphasises that
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(a) Using the default minimum effect size of 0.

(b) Using a minimum effect size of 150.

Figure 7: Indicators of the significance of the respiration differences between E. coli K12
and E. coli DSM 30083T regarding the maximum-height values mapped on the Galactose
pathway. Blue, significantly larger than the chosen minimum effect size; grey, insignificantly
different from the chosen minimum effect size; yellow, significantly smaller than the chosen
minimum effect size. For the direct mapping of the numeric differences see Figure 6. Compare
also Figure 5, which directly depicts the significance of the differences.
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K12047
K01182

K01229
K01190

K00845
K00844

K00094K02773

K01189

K00917

K00850

K01635

K01631

K01220

K01189

K01193

K06611

K01189

K01193

K02786

K00011

K01189

K01189

K01189

K01189

K01835

K00704
K01784

K00963

K00965

K00849

K00883K01684

K00035

K06617

Glycolysis /
Gluconeogenesis

Fructose and
mannose

metabolism

Pentose and
glucuronate

interconversions

Glycolysis /
Gluconeogenesis

K01190 K04618

K01084

K01819

K02744 K02079

K02080

K02744

K01189

Amino sugar
and nucleotide

sugar
metabolism

Galactitol 1−ph\
osphate

2−Dehydro−3−deo\
xy−D−galactonate

myo−Inositol

D−Fructose

D−Galactono−1,4\
−lactone

D−Galactose

UDP−D−galactose

D−Glucose 1−pho\
sphate

UDPglucose

D−Galactonic acid

2−Dehydro−3−deo\
xy−D−galactonate

6−phosphate

alpha−D−Galacto\
se 1−phosphate

1−alpha−D−Galac\
tosyl−myo−inosi\

tol

Sucrose

Raffinose

1−alpha−D−Galac\
tosyl−myo−inosi\

tol

Melibiitol

Epimelibiose

Galactosylglyce\
rol

Glycerol

D−Mannose

D−Sorbitol

C05396

D−Galactose 6−p\
hosphate

D−Glucose

D−Galactose
C05404

Stachyose

(2R)−2−Hydroxy−\
3−(phosphonooxy\

)−propanal

Glycerone phosp\
hate

D−Tagatose 1,6−\
bisphosphate

D−Tagatose 6−ph\
osphate

Galactitol

Galactan

Lactose

N−Acetyl−D−gala\
ctosamine

N−Acetyl−D−gala\
ctosamine 6−pho\

sphate

D−Galactosamine
6−phosphate

D−Galactosamine

Melibiose

alpha−D−Glucose
6−phosphate

alpha−D−Glucose

  0 200 400−Data with KEGG pathway−
−Rendered  by  Pathview−

Figure 8: Respiratory data (mean maximum height) of Escherichia coli strain K12 mapped
on the KEGG Galactose pathway and rendered by pathview using the Graphviz layout engine.
Compare Figure 2a, which shows the native KEGG rendering of these data. See the main
text for a description of some of the limitations when creating graphics in this way.
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“its effect is subtler than expected”. Together with the automated rendering by the graphviz
layout engine it might be difficult to obtain a visually satisfying map of the pathway of
interest.

5. Finding the pathways of interest

In many experimental approaches, the identification of the pathway(s) of interest is one of
the main subjects of research.

The information accessible via annotated can serve as input for suitable statistical proce-
dures in order to assess and rank the observed metabolic capabilities (i.e. respiration on the
substrates) with respect to their ability to predict a given response. Beside the identification
of pathways of interest to be used when drawing the opm results in a graph, as detailed in
the previous section, such results can further be used as a starting point when searching for
a causal explanation of the given opm results.

In the next coding example, we prepare a data matrix with the differences between the
two E. coli strains (as computed in section 4.2.3) and add potential explanatory variables
from KEGG. Please refer to the manual and Section 4.1 for an explanation of the usage of
annotated with the argument how = "values". Again, the comparison applies to the default
parameter given by opm_opt("curve.param"); see the manual for details.

R> coli.comp <- opm_mcp(coli.sub, output = "mcp",

model = ~ J(Well + Strain), linfct = c(Pairs = 1))

R> coli.anno <- annotated(coli.comp, how = "value")

The matrix has to be reduced to the non-NA rows, i.e. substrates that are not included in
KEGG have to be removed. The matrix also needs to be converted to a data frame before
the randomForest package (Liaw and Wiener 2002) can be applied.

R> coli.anno <- as.data.frame(coli.anno[complete.cases(coli.anno), ])

R> suppressPackageStartupMessages(library("randomForest"))

R> coli.comp.rf <- randomForest(x = coli.anno[, -1], y = coli.anno[, 1],

importance = TRUE, proximity = TRUE)

See Touw, Bayjanov, Overmars, Backus, Boekhorst, Wels, and van Hijum (2012) for a review
of Random Forest (RF) properties that allow for maximising the biological insights that can
be extracted from complex OMICS data. Boulesteix, Janitza, Kruppa, and König (2012)
emphasise the applications of RF to computational biology with special attention to practical
aspects such as parameter selection and major pitfalls and biases of RF and its Variable
Importance Measure (VIM).

We can now determine the substrate features that best predict the differences between the
two E. coli strains and depict these features within a “Variable Importance Plot” (Figure 9).

R> varImpPlot(coli.comp.rf, main = "Difference Type Strain vs. K12")

The output can be interpreted a follows:
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Figure 9: Variable importance plot for substrate features that potentially explain the perfor-
mance differences between the two E. coli strains. Apparently the category “Carbohydrates”
has the highest importance for the model. That is, one of the strains performs stronger than
the other one particularly regarding carbohydrate utilisation. For a subset of the carbohy-
drates, those from the Galactose pathway (“map00052”), this can be confirmed in Figure 5.

Whether or not a substrate is a carbohydrate works best for predicting whether one of the
strains performs differently than the other. The category “Carbohydrates” works even better
than its subcategories such as “Oligosaccharides”. The pathway map IDs that are shown to
have a strong influence are also related to carbohydrate metabolism, of course. For instance,
the Galactose metabolism (“map00052”) is among the top-scoring substrate features. For a
confirmation using opm_mcp, see Figure 5.

Note that the approach used here is suboptimal in a certain respect because mean differences
between metadata-defined groups have entered the model as dependent variable. This fits well
to the visualisation approaches exemplified above but ignores the variance of the differences
and lets the metainformation not directly enter the model because here metadata are only
used to define the groups. The forthcoming version of this vignette will demonstrate feature
selection from the curve parameters themselves. We will show how to easily generate matrices
containing estimated both traditional opm metadata and novel opm substrate metainforma-
tion as (potential) explanatory variables. Moreover, we will make use of the mboost package
for feature selection.

For now, we will augment the RF approach with an opm_mcp analysis for confirming whether
the reactions on carbohydrate wells are indeed more strongly different between the two strains
than those on other wells. First, the positions of the substrates either belonging to the category
“Carbohydrates” or not to it are determined and afterwards stored in two vectors.

R> carb.pos <- rownames(coli.anno)[coli.anno$Carbohydrates == 1]

R> noncarb.pos <- rownames(coli.anno)[coli.anno$Carbohydrates == 0]

R> carb.pos <- find_positions(carb.pos, plate_type(coli.sub))

R> noncarb.pos <- find_positions(noncarb.pos, plate_type(coli.sub))
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Figure 10: Point estimates and 95% confidence intervals for the comparison of the two E. coli

strains pooled over substrates classified as “Carbohydrates” and “non-Carbohydrates”. The
difference between the two strains is much larger regarding the carbohydrate substrates than
regarding the remaining ones.

We can now generate the contrast matrix needed for the computation of the multiple compar-
isons between the two strains for precisely these two subsets of substrates. As recommended
in the main tutorial, this should be done by first using opm_mcp to generate auxiliary contrast
matrices, which here provide the dimensions and column names for the final contrast matrix.

R> contr.carb <- opm_mcp(coli.sub[, , carb.pos], linfct = c(Dunnett = 1),

model = ~ J(Well + Strain), output = "contrast")[[1]]

R> contr.noncarb <- opm_mcp(coli.sub[, , noncarb.pos], linfct = c(Dunnett = 1),

model = ~ J(Well + Strain), output = "contrast")[[1]]

The final contrast matrix is set up by concatenating the necessary numeric vectors, setting
labels for the comparisons and adding the column names.

R> contr <- rbind(

"Carbohydrates/DSM18039 - Carbohydrates/DSM30083T" = c(

rep(c(2 / ncol(contr.carb), -2 / ncol(contr.carb)),

times = ncol(contr.carb) / 2),

rep(0, times = ncol(contr.noncarb))

),

"non-Carb./DSM18039 - non-Carb./DSM30083T" = c(

rep(0, times = ncol(contr.carb)),

rep(c(2 / ncol(contr.noncarb), -2 / ncol(contr.noncarb)),

times = ncol(contr.noncarb) / 2)

)

)

R> colnames(contr) <- c(colnames(contr.carb), colnames(contr.noncarb))

This contrast matrix contr can now directly be fed into opm_mcp.

R> carb.test <- opm_mcp(coli.sub[, , c(carb.pos, noncarb.pos)], linfct = contr,

m.type = "lm", model = ~ J(Well + Strain))

The results of the two comparisons can be plotted as usual, see Figure 10. According to
the interpretation provided in the figure caption the analysis shows that one of the strains
performs stronger than the other one particularly regarding carbohydrate utilisation.
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