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Abstract

The OmniLog➤ Phenotype Microarray (PM) system is able to monitor simultane-
ously, on a longitudinal time scale, the phenotypic reaction of single-celled organisms
such as bacteria, fungi, and animal cell cultures to up to 2,000 environmental challenges
spotted on sets of 96-well microtiter plates. The phenotypic reactions are recorded as res-
piration kinetics with a shape comparable to growth curves. Tools for storing the curve
kinetics, aggregating the curve parameters, recording associated metadata of organisms
and experimental settings as well as methods for analysing graphically and statistically
these highly complex data sets are increasingly in demand.

The opm R package facilitates management, visualisation and statistical analysis of
PM data. Raw measurements can be easily input into R, combined with relevant meta-
information and accordingly analysed. The kinetics can be aggregated by estimating
curve parameters using several methods. Some of them have been specifically adapted for
obtaining robust parameter estimates from PM data. Containers of opm data can easily
be queried for and subset by using the integrated metadata and other information. The
raw kinetic data can be displayed with customised plotting functions. In addition to 95%
confidence plots and enhanced heat-map graphics for visual comparisons of the estimated
curve parameters, the package includes customised methods for user-defined simultaneous
multiple comparisons of group means. It is also possible to discretise the curve parameters
and to export them for reconstructing character evolution or inferring phylogenies with
external programs. Tabular and textual summaries suitable for, e.g., taxonomic journals
can also be automatically created and customised. Export and import in the YAML (or
JSON) markup language (or as character-separated values) facilitates the data exchange
among labs. All methods are exemplified using real-world data sets that are part of the
opm R package or are included in the accompanying data package opmdata.

This is the tutorial of opm in the version of November 9, 2013.

Keywords: Bootstrap, Cell Lines, grofit, Growth Curves, lattice, Metadata, Microbiology,
Respiration Kinetics, Splines, YAML, JSON, CSV.

1. Introduction
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1.1. Preamble for “eager to start” readers

Readers who want to jump right into examples for applying opm to their data will find an
overview of what the package can do for them in Figure 2. Next, Figure 5 should be looked at,
as it lists the names of the functions that can be used in each step of the possible opm work
flows. Examples for each step would then be found in the according subsections of Section 3.
An overview of these sections is provided in Section 2.1.

The single most important problem users reported to us when applying opm was that the
input files could not be read. This was uniformly due to the use of multiple-plate Comma-
Separated Values (CSV) files. But the most recent versions of the OmniLog➤ software can
batch-export one plate per CSV file, and opm can split multiple-plate CSV into files that can
be input by the package. See Section 2.2 for details and Section 3.2 for a usage example.

Details on the scientific background could well be skipped during a first reading. The in-
terested user would nevertheless find them in Section 1.2, including references for important
methods.

All web resources regarding opm are linked on its main website http://opm.dsmz.de/.

Note that details on how substrate information can be processed by opm are found in a sep-
arate vignette, “Working with substrate information in opm”, which is also available together
with the package. Finally, do not overlook that there is an opm manual that describes all
functions and arguments in much greater detail than possible in any if the vignettes.

1.2. Scientific introduction

The phenotype is regarded as the set of all types of traits of an organism (Mahner and Kary
1997). The phenotype is of high biological relevance, as it is the phenotype which is the object
of selection and, hence, is the level at which evolutionary directions are governed by adaptation
processes (Mayr 1997). It is also the phenotype which is of direct relevance to humans, for
example in exploiting microorganisms for industrial purposes or in the combat of pathogenic
organisms (Broadbent, Larsen, Deibel, and Steele 2010; Mithani, Hein, and Preston 2011).
In the study of single-cell living beings, such as bacteria, fungi, plant or animal cells, it is an
important field of research to study the phenotype by measuring physiological activities as
a response to environmental challenges. These can be single carbon sources, which may be
utilised as nutrients and hence trigger cellular respiration, or substances such as antibiotics,
which may slow down or even inhibit cellular respiration, indicating a successful inhibitory
effect on potentially pathogenic organisms. The intensity of cellular respiration correlates
with the production of reduced Nicotinamide Adenine Dinucleotide (NADH) engendering a
redox potential and thus a flow of electrons in the electron transport chain. To measure
cellular respiration in an experimental assay, this flow of electrons can be utilised to reduce
a tetrazolium dye such as tetrazolium violet, thereby producing purple colour (Bochner and
Savageau 1977). In principle, the more intense the colour, the larger the physiological activity.

The PM system is capable of measuring a large number of phenotypes in a high-throughput
system that uses such as tetrazolium detection approach. About 2,000 distinct physiological
challenges, such as the metabolism of single carbon sources for energy gain, the metabolism
under varying osmolyte concentrations, and the response to varying growth-inhibitory sub-
stances are included in the PM microtiter plates (Bochner, Gadzinski, and Panomitros 2001;
Bochner 2009). The system is applicable, in principle, to each kind of cultivated cells and

http://opm.dsmz.de/
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Figure 1: Overview of the data assembly from a PM experiment and the possible additions
using opm. The raw colour-formation values result in sets of 96 raw kinetics per plate. Using
opm, they can be augmented by the information coded in the shape characteristics. This
yields 96 sets of parameters per plate, each containing four robustly estimated parameters
that describe distinct aspects of the respective curve shape. The opm package also offers
tools for further combining this bundle of raw, aggregated and also discretised data of each
single kinetic with meta-information on the organisms and/or experiments. Based on this
meta-information, a variety of visual and statistical comparison tools for either the raw or
the aggregated data are available in opm.
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also to environmental probes, even though some kinds of cells, such as those from plant cell
cultures, well cause a reduction of the dye but are too large to be handled in the 96-well lay-
out (Vaas, Marheine, Sikorski, Göker, and Schumacher 2013b). The OmniLog➤ PM system
records the colour formation in an automated setting (every 15 minutes) throughout the du-
ration of the experiment, which may last up to several days. Thus the experimenter ends up
with high-dimensional sets of longitudinal data, the PM respiration kinetics. For a detailed in-
troduction into the experimental setup for obtaining OmniLog➤ PM respiration kinetic data
we refer to the OmniLog➤ website (http://www.biolog.com/) and the associated hardware
and software manuals. Briefly, 96-well microtiter plates with substrates, dye, and bacterial
cells are loaded into the OmniLog➤ reader, a hardware device which provides the appropriate
incubation conditions and also automatically reads the intensity of colour formation during
tetrazolium reduction. The OmniLog➤ reader is driven by the Data Collection software.
The stored results files, which are in a proprietary format, are then imported into the Data
Management, File Management/Kinetic Analysis, and Parametric Analysis software packages
for data analysis.

In the case of positive reactions, the kinetics are expected to appear as (more or less regularly)
sigmoid curves in analogy to typical bacterial growth curves (Figure 4). The intrinsic higher
level of data complexity contains additional valuable biological information which can be
extracted by exploring the shape characteristics of the recorded curves (Brisbin, Collins,
White, and McCallum 1987). These curve features can, in principle, unravel fundamental
differences or similarities in the respiration behaviour of distinct organisms, which cannot
be identified by the traditional end-point measurements alone. But the meta-information of
interest on the organisms and experimental conditions must also be available for a biologically
meaningful data analysis and an according statistical assessment.

The motivation for the here presented opm package originated from (i) the need to overcome
the limited graphical and analysis functions of the proprietary OmniLog➤ PM software and
(ii) the desirability of an analysis system for this kind of data in a free statistical software
environment such as R (R Development Core Team 2011). At the moment, the visualisation
of the kinetics by the proprietary OmniLog➤ PM software is of limited quality, especially
when simultaneously comparing the curves from more than two experiments. Its calculation
of curve parameters is rather crude (Vaas, Sikorski, Michael, Göker, and Klenk 2012; Bi-
OLOG Inc. 2009). The statistical treatment of raw kinetic data and curve parameters would
involve cumbersome manual and hence error-prone manipulations of data in typical spread-
sheet applications before they may be imported into appropriate statistical software. Finally,
the amount of organismic or experimental metadata that can be added to the raw data is
extremely limited.

Based on a previous study (Vaas et al. 2012) the here presented opm package (Vaas, Sikorski,
Hofner, Fiebig, Buddruhs, Klenk, and Göker 2013a) is capable of a fast, robust and com-
prehensive evaluation of PM respiration kinetics suitable for a wide range of experimental
questions.

Using customised input functions, raw kinetic data can be transferred into R, stored as S4

objects (Chambers 1998) containing single or multiple OmniLog➤ PM plates and further
processed. The package features the statistically robust calculation and attachment of ag-
gregated curve parameters including their (bootstrapped) confidence intervals. Moreover,
infrastructure is provided to merge this with any kind of additional metadata. These com-
plex data bundles can then be exported in YAML format (http://www.yaml.org/), which

http://www.biolog.com/
http://www.yaml.org/
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is a human-readable data serialisation format that can be read by most common program-
ming languages and facilitates fast and easy data exchange between laboratories. Its subset,
JSON (http://www.json.org/), can also be used, for instance if a proper YAML parser is
unavailable. As opm is also able to generate R matrices and data frames, output in CSV
(character-separated values) is also easy.

Data evaluation includes the graphical display of the data such as the raw respiration curve
kinetics or the confidence intervals of aggregated curve parameters. With sophisticated se-
lection methods the user is able to sort, group and arrange the data according the specific
experimental questions in the plotting and analysis framework. Since most addressed experi-
mental questions require to statistically compare not only single curves, but distinct groups of
curves, the package provides adapted methods for performing simultaneous multiple compar-
isons of group means (Bretz, Hothorn, and Westfall 2010). Because the definition of groups
using stored metadata is highly flexible, the user is enabled to individually define contrast
tests (Hsu 1996).

For further specific graphical or statistical analysis according to the needs of the users, the
opm package organises and maintains the data such that any additional data exploration
using other packages in the R environment are easily applicable.

The work flows described below include the input of raw kinetic data and integration of cor-
responding metadata, conversion into suitable storage formats, the computation of a set of
four parameters sufficient for comprehensively describing the curves’ shape (aggregated data),
manipulating and querying the constructed objects, visualising both raw kinetics and aggre-
gated data, statistical comparison of group means, discretisation of the curve parameters and
corresponding export methods, obtaining additional information the substrates and setting
global options.

2. Methods

2.1. Overview

In the following the possible work flows (see Figure 2) for generating an R object that con-
tains the kinetic raw data from one to several OmniLog➤ plates along with the corresponding
metadata of interest, and optionally the aggregated and potentially also discretised curve pa-
rameters, are described. It is explained how to analyse either raw data, metadata, aggregated
data (curve parameters), or combinations of all of them, as stored in the respective R objects,
by graphical and/or statistical approaches.

The raw kinetic data can be exported by the proprietary OmniLog➤ software File Manage-
ment/Kinetic Analysis as CSV files and imported into the opm package using read_opm. This
is explained in detail in section Section 2.2, whereas corresponding code examples are found
in Section 3.2.

Batch processing many files is also possible, even without starting an interactive R session.
This includes storage of the opm data in the YAML (or JSON or CSV) format, as detailed in
Section 2.3. Example code is given in Section 3.3.

All kinds of PM data can be enriched with metadata (see Figure 1). The underlying principles
are described in Section 2.4, whereas example code for metadata management is included in

http://www.json.org/
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Figure 2: A depiction of the work flows possible within opm and its potential interplay with
base R, add-on packages for R and third-party software. See Figure 5 for the functions that
can be used in the respective steps. The package allows the user full flexibility with respect
to the type of information added to the created R objects and to the order of steps in which
this is achieved. For example, it is possible to add first the metadata and to perform some of
the later described analysis and second to aggregate the raw kinetics and go on with analysis
of the aggregated values. Discretisation might frequently not be of interest because it causes
loss of information. Since experimental frameworks can be imagined where only very limited
meta-information is available, it is also feasible to work without metadata at all.
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Section 3.4.

To statistically analyse the biological information coded in the shape characteristics of the
kinetics, four descriptive curve parameters are estimated, which is explained in detail in
Section 2.5, whereas example code for curve-parameter estimation is provided in Section 3.5.

The user may be interested to query or subset the objects generated by opm. The underlying
principles are described in Section 2.6, whereas example code for object management can be
obtained from Section 3.6.

The raw kinetic data can be plotted either as level plots or as X-Y plots, as explained in
Section 2.7. The estimated curve parameters can be plotted either as confidence-interval
plots, radial plots or heat maps, which is described in Section 2.8. See Section 3.7 and
Section 3.8, respectively, for plotting example code.

To statistically compare curve parameters, tools for the multiple comparison of groups means
have been adapted to PM data. This allows for testing statistical hypothesis involving groups
of plates or wells. The principles are described in Section 2.9, and example code is included
in Section 3.9.

The aggregated data can be discretised and exported for phylogenetic analysis or reconstruc-
tion of character evolution with external phylogeny software. The principle is outlined in
Section 2.10, whereas application examples are provided in Section 3.10.1.

The methods implemented in opm for classifying reactions as either “positive”, “negative”
or “weak” (ambiguous) are described in Section 2.11. Example code, including the export of
discretisation results as publication-ready tables, is included in Section 3.10.3. Textual reports
with or without formatting markup can also be produced, as exemplified in Section 3.10.2.
The discretisation settings can be modified in detail; see Section 3.10.4.

Furthermore, substrate information can be accessed, including accession numbers for relevant
databases. Detailed explanations and code examples are included in the vignette “Working
with substrate information in opm”.

Database interaction for storing and receiving PM data is described in the Section 2.12.

Finally, it is possible to modify settings that have an effect on multiple functions and/or on
frequently used arguments. See Section 2.13 for details and Section 3.10.3 for a code example.

After a successful installation of opm, the complete R code extracted from this vignette
(as well as all other vignette files) can be found via opm_files("doc"). For the man-
ual, see help(package = "opm"); for the code demonstrations that come with opm, enter
demo(package = "opm").

2.2. Data import

The proprietary OmniLog➤ PM data analysis software File Management/Kinetic Analysis
(BiOLOG Inc. 2009) can export the kinetic raw data from single or multiple plates as CSV
files. These contain a small amount of associated run information that has been entered at
the interface of the OmniLog➤ PM Data Collection software, which controls the OmniLog➤
reader. Currently this generation of CSV files involves the creation of intermediary files with
the extension "d5e" from the original ones with the extension "oka". For use with opm, the
raw kinetic data should be exported into a single CSV file for each measured plate. The opm

package currently does not support the input of several plates from PM-mode runs stored
in a single CSV file, but it offers the function split_files for splitting old-style CSV files
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containing multiple plates. (We refer to the CSV exports from the currently distributed
OmniLog➤ PM File Management/Kinetic Analysis software as “old style”. Forthcoming
versions are expected to export the data in a slightly different CSV format we call “new
style”. Please contact your local representative of the vendor for the latest software version.)

As of version 0.4-0, opm also supports the input of MicroStation➋ CSV files (frequently used
in conjunction with EcoPlate➋ assay for microbial community analysis) (Vaas et al. 2013a).
These files contain only end-point measurements but potentially several plates, which can
nevertheless be input together with their potentially also rich meta-information.

The easiest way to load the raw kinetic data (as CSV files or as YAML or JSON) into R

in a single step is using the function read_opm (see Figure 2). If raw data from only one
single-plate OmniLog➤ PM are imported, the resulting object belongs to the S4 class OPM.
This class for holding single-plate OmniLog➤ PM data originally only includes the (limited)
meta-information read from the original input CSV files, but an arbitrary amount of metadata
can be added later on (see Figure 2). If multiple plates are imported, the resulting object
automatically belongs to the S4 class OPMS. In the OPMS class, data may have been obtained
from distinct organisms and/or replicates, but must correspond to the same plate type and
must contain the same wells (see Figure 2). The function read_opm has an argument“convert”
which controls how sets of plates with distinct types are treated; for instance, the function
can return a list of OPMS objects, one for each encountered plate type.

The entire S4 class hierarchy used by opm is shown in Figure 3. A number of S3 helper classes
are also used by several functions. Users come in direct contact only with the OPM, OPMA,
OPMD and OPMS classes (see Figure 5). Once such objects are created they could also be
stored in files using save and read again using load but not using dump and source instead,
respectively. We would nevertheless recommend storage in YAML format.

2.3. Batch conversion of many files

To process and store huge numbers of raw data files, the function batch_opm reads all Om-
niLog➤ CSV files (or YAML or JSON files previously generated with opm) within a given
list of files and/or directories and converts them to opm YAML (or JSON or CSV) format.
It is possible to let opm automatically include metadata (Section 2.4) and aggregated values
(curve parameters) (Section 2.5) as well as discretised values (Section 2.11) during this con-
version. Alternatively, graphics files containing the output of xy_plot or level_plot can be
batch-produced; see Section 2.7 for Details. File selection and exclusion using regular expres-
sions or globbing patterns is integrated in the function. The result from each file conversion is
reported in detail, and a demo mode is available for viewing the attempted file selections and
conversions before actually running the (potentially time consuming) conversion process. The
package is accompanied by a command-line script run_opm.R, enabling the users to run the
batch conversion without starting an interactive R session. This script is guaranteed to run
at least under UNIX-like operating systems. On such systems it can also be run in parallel,
making use of multiple-core machines.

2.4. Integration of metadata

The interface of the Data Collection software of the OmniLog➤ reader is restricted in size
and contains only comparatively few fields for entering accompanying information to each
plate such as on the organism under study or the culture conditions. Further, not all of these
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fields are exported together with the raw measurements. The few metadata that come along
with the imported CSV file can be accessed via csv_data. But for most experimental designs
it is clearly necessary to add much more meta-information to the kinetic data. It has to be
emphasised that metadata can include all kind of describing characteristics of the observed
organism(s) such as taxonomic affiliation, geographical and/or ecological origin, and of the
performed experimental setting such as culture conditions, genetic modifications, physiological
information of any kind and so on.

To this end, the opm user can integrate the metadata into OPM and OPMS objects using the
function include_metadata (among other functions for this task; see Figure 5). Usually, the
metadata are kept in a data frame which can conveniently be saved to, and generated directly
from, a CSV file. For an unambiguous match between the raw kinetic data in the OPMS

object and the collected metadata, a unique Identifier (ID) is needed. This is, by default,
provided by the combination of Setup Time and Position, which should unequivocally identify
certain plates. Setup Time indicates the date and time at the precision of seconds of starting
the batch read in the OmniLog➤ reader. Position indicates the position of the plate in the
OmniLog➤ reader. (For instance, 10-A indicates the plate sliding carriage number 10 in
slot A of the reader, but for opm the meaning is irrelevant, as these entries only serves as
ID.) Both Setup Time and Position are automatically recorded by the OmniLog➤ reader
Data Collection software and are exported by the OmniLog➤ PM File Management/Kinetic
Analysis software into CSV files together with the raw kinetic data.

To facilitate the user-friendly compilation of metadata, collect_template generates a data
frame (and additionally, if requested, a CSV file) in which each line represents a single PM
plate. The function collect_template by default automatically includes the Setup Time
and Position of each plate into the data frame or file providing a structured template for
the addition of metadata. The user can subsequently add further columns describing any
metadata of interest on any PM plate of interest. The resulting data frame can then be
queried for the information specific to each plate, and the corresponding row integrated into
OPM or OPMS objects using include_metadata. Whereas this function will usually result
in non-nested metadata entries, opm allows one, in principle, to deal with arbitrarily nested
meta-information. Other functions for generating and modifying plate meta-information are
listed in Figure 5. Thereby, the amount of meta-information added (and plates analysed) is
only limited by the available computer memory.

The user can provide additional information to the metadata data frame on the fly by calling
the function edit, which opens the R editor enabling the user to modify and add data. Beside
changing the metadata entries by using the R editor, the function map_metadata offers a secure
way to map metadata within OPMS objects. The replacement function metadata<- enables
the user to set the entire meta-information, or specific entries, directly. If a data frame is
used on the right side of the assignment whose number of rows is identical to the number of
plates within the OPMS object on the left side, each data-frame row is specifically added to
the corresponding plate.

There are no restrictions regarding the stored metadata values except for the fact that it
usually makes not much sense to store factors. It is safer to store character vectors instead
because otherwise conversions might easily result in integer vectors instead of factors. Where
appropriate, factors would be created on-the-fly from character vectors by those methods
that have to integrate metadata in data frames. A map_metadata method is available that
conducts an according cleaning of metadata entries. With respect to the stored metadata
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Figure 3: This picture shows the S4 class hierarchy used by opm. Class names are shown
in bold within the boxes. Boxes with dark background indicate virtual classes, those with
light background indicate real classes whose objects can be created and manipulated by some
code. Arrows indicate either inheritance relationships (pointing from the parent to its child
class) or object composition (pointing from the container class to its element class). Note
particularly that OPM, which only contains raw data, CSV data and metadata, is the parent
class of OPMA, which also contains aggregated data (and has methods for dealing with them).
OPMD inherits from OPMA and stores discretised curve parameters in addition to aggregated
values. OPMS is a container class that holds OPM, OPMA and/or OPMD objects. These can
usually co-occur in a single OPMS object but for some calculations the additional information
in OPMA or OPMD objects is strictly required. The query functions has_aggr and has_disc

are available for checking from which kinds of objects an OPMS is composed. See their help
pages (e.g., ?has_aggr) and Section 3 for further details. Another container class, MOPMX,
offers looser collections of objects. MOPMX objects are lists restricted to objects of the
previously listed classes as elements, which may or may not have the same plate type. The
non-virtual classes in the upper part of the figure are either well-known in R (e.g., matrices)
or not directly manipulated by the user (CMAT).



J. Sikorski, L.A.I. Vaas, B. Hofner, M. Göker 11

names, there are only very few restrictions, which are explained in Section 2.13. In contrast
to data frames it is not advisable to access metadata entries by position instead of by name.

2.5. Aggregating data by estimating curve parameters

Descriptive curve parameters from the kinetic raw data can be calculated and included in
OPM and OPMS objects using the function do_aggr. Curve parameters can be extracted
using a spline-based fitting procedure implemented in opm. (Extraction of curve parameters
through the fit of sigmoid functions proved for several PM curve shapes to yield biologically
unrealistic values (Vaas et al. 2012) and have therefore not been implemented.) Three different
modelling alternatives for the splines exist (Vaas et al. 2013a): (low-rank) cubic smoothing
splines (Reinsch 1967) as implemented in smooth.spline from the base package, thin plate
splines (Wood 2003, a generalisation of smoothing splines) and P-splines (Eilers and Marx
1996). The latter two are implemented in the package mgcv. Their settings have been
specifically adapted for the application to PM data. It is also possible to access methods from
the package grofit (Kahm, Hasenbrink, Lichtenberg-Frate, Ludwig, and Kschischo 2010) or
to use a native implementation which is faster but only estimates two of the four parameters.
For historical reasons, grofit is the default but it is recommended to use the optimised splines
methods.

The descriptive curve parameters lag phase (λ), respiration rate (µ), maximum curve height
(A) and Area Under the Curve (AUC) estimated by opm are shown in Figure 4. In addition
to the point estimates for the parameters from both model and spline, confidence limits can
be calculated (for the spline-based approach via bootstrapping), with 95% being the default
value (Efron 1979). But confidence intervals and according group means can also be calculated
from experimental repetitions, as explained in Section 2.8. Attaching the aggregated data to
an OPM object yields an object of the class OPMA, which can also be stored within an OPMS

container object.

2.6. Manipulation of OPM and OPMS data

As usual, data analysis starts with data exploration for which the user may wish to query and
subset OPM and OPMS objects (Figure 5). It is easy to select specific wells and time points
from OPM or OPMS objects. It also straightforward to select specific OPM objects from an
OPMS object that contains them. To this end, OPM and OPMS methods for the generic
function subset and R’s bracket operator have been implemented. Particularly powerful are
the options for metadata-based creation of subsets. The composition of OPM and OPMS

objects, and the implemented methods of the classes, permit queries for the presence of a
specific metadata key or a specific value of a specific metadata key, or a specific combination
of values and/or keys, and also enable the user to subset OPMS objects accordingly.

But a plethora of methods for querying other aspects of OPM and OPMS objects have also
been implemented. Standard operations such as sorting objects and making them unique
are also available for the OPM and OPMS classes. Of course, OPMS objects can not only
be subset but it is also possible to build up larger OPMS objects by combining OPMS and
OPM objects using specialised methods for the c generic function and the + operator as
well as the very flexible function opms. Moreover, an OPMS method for merge has been
implemented, that allows for concatenating PM measurements that represent subsequent
runs of the same plate. This has successfully been applied to slow-growing organisms in the
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Figure 4: A schematic depiction of a typical respiration curve and the parameters estimated
by opm. (Growth curves could be described in the same way.) The descriptive curve pa-
rameters are λ, µ, A and AUC. Note that many respiration curves, even if representing a
clearly positive reaction, do not correspond to this idealised scheme. The parameters can
nevertheless be robustly estimated from deviating curves, particularly via spline fits (Vaas
et al. 2012, 2013a).
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bacterial genus Geodermatophilus, which had to be measured three times consecutively in
the OmniLog➤ instrument (up to twelve days in total) (Montero-Calasanz, Göker, Pötter,
Rohde, Spröer, Schumann, Gorbushina, and Klenk 2012; Montero-Calasanz, Göker, Rohde,
Schumann, Pötter, Spröer, Gorbushina, and Klenk 2013).

It is also possible to convert the OPM or OPMS objects to other objects for an independent
exploration by the user. This can be done within R, based on a variety of distinct data-
frame or matrix objects that can be generated. But export in some useful file formats is also
possible.

2.7. Plotting functions for raw data

The function xy_plot displays the raw measurements on the y-axis in dependency on the
time on the x-axis. For each well one sub-panel is drawn, and the user is free to colourise the
plotted curves by either their affiliation to a specific plate or by a combination of metadata
entries of choice. By default the panels are arranged according to the factual microtiter
plate dimensions (eight rows labelled A to H × twelve columns labelled 01-12), but other
user-defined arrangements are easily feasible because the plates can be subset by selecting
specific wells. Every panel is annotated with the microtiter plate numbering (A01 to H12)
and additionally or alternatively with the substrate name (given the plate type, the opm

package can translate all well coordinates to substrate names, see also vignette “Working
with substrate information in opm”). Thus, the function enables the user to compare the
curve data in a customised and useful arrangement (Vaas et al. 2012, 2013a).

The function level_plot provides false-colour level plots from the raw respiration measure-
ments over time. Each respiration curve can be displayed as a thin horizontal line, in which
the measured respiration value (in OmniLog➤ units) is represented by colour, while the x-
axes indicates the measurement times. With increasing respiration measurement values, the
displayed colour changes (by default) from light yellow into dark orange and brownish. The
user can obtain an overview in a compacted design (Vaas et al. 2012, 2013a). This plot offers
a display format which is especially powerful in uncovering general differences between plates,
for example longer lag phases or smaller AUC values across the majority of wells. By default
one sub-panel in the level plot corresponds to one complete plate comprising 96 lines, but as
in the case of xy_plot plotting could also be preceded by creating subsets of the plates.

2.8. Plotting the aggregated data

For the graphical representation of the aggregated data, namely point estimators and corre-
sponding confidence limits for the curve parameters of selected curves, the function ci_plot

is available. The characteristics of different curves assembled into a single overview facilitates
the interpretation and comparison of user-defined data subsets arranged according to the
technical and/or biological repetition structure or other aspects of the experimental design
(Vaas et al. 2012).

When analysing empirically obtained measurements such as PM data it is important to con-
sider possible systematic variations and to control for those by normalisation. For a PM
experiment the purpose of such a normalisation is to minimise systematic variations in the
aggregated curve parameters so as to more easily recognise biological differences, as well as to
allow for the comparison of parameters across plates processed in different experimental runs.
The underlying ideas are mainly derived from DNA-microarray experiments for measuring
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Figure 5: This scheme provides a detailed overview of the possible strategies and appropriate
functions for data analysis using the opm package. Beginning with one to several CSV files
containing raw kinetic data exported by the proprietary OmniLog➤ software File Manage-
ment/Kinetic Analysis, or YAML or JSON files that have been generated in previous opm

runs, a variety of work flows are possible for setting up OPM or OPMS objects. Additionally,
methods for metadata management, plotting the data in a customised manner, querying and
sub-setting the generated objects, statistical comparison of multiple group means, and data-
conversion tools including discretisation, report generation and output in files are provided.
How to use annotated to produce graphics is explained in a separate vignette, “Working with
substrate information in opm”, which is also available together with the package.
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gene-expression levels (Quackenbush 2002).

Using extract the user can select certain aggregated or discretised values into common ma-
trices or data frames. If applied a second time to a previously generated data frame, extract
can compute point estimates and their respective confidence intervals for individually de-
fined experimental groups. Optionally, normalisation by subtracting, or dividing through,
the plate-wise means (across all 96 wells) or well-wise means (across all plates that contain
this well) can be conducted beforehand. Although this method is intended mainly as a helper
function for ci_plot, it can be quite useful for specific normalisation purposes, for example
when data were derived before and after servicing the OmniLog➤ facility, which might result
in shifting the measurements by a certain amount. In conjunction with extract, ci_plot
allows for visualising point estimates and confidence intervals of groups of parameter esti-
mates. For visualising differences between groups and their confidence intervals, see opm_mcp
as described in Section 2.9.

Additionally, the package offers the possibility of plotting the aggregated curve parameters as
a heat map via the function heat_map. Heat maps appear particularly powerful for visualising
the outcomes of PM experiment because dendrograms inferred from both the substrates and
the plates can be used to rearrange the plot. Since the user is free to define the metadata to
be used for the annotation of the plot and the clustering analysis, this tool provides a powerful
feature for data exploration in specialised contexts. For instance, the naming scheme of the
individual plates can be devised by selecting associated metadata. It is also possible to auto-
matically construct row groups by selecting the same or other meta-information. heat_map

is mainly a wrapper for the heatmap functions from either the stats or the gplots R package,
but contains some useful adaptations to PM data. It facilitates the selection of a clustering
algorithm and the construction of row and column groups, and provides more appropriate de-
fault solutions for row and column descriptions sizes. (We suppose that in most situations the
pictures produced by heat_map should not need to be manually adapted in these respects.)

Finally, opm enables the user to plot aggregated values as radial plots using an eponymous
function, which is mainly a wrapper for the radial.plot function from the plotrix package
adapted to the typical opm objects. radial_plot displays a plot of radial lines, polygons or
symbols, or a combination of these, centred at the midpoint of the plot frame, the lengths,
vertices or positions corresponding to the numeric magnitudes of the data values.

2.9. Statistical comparisons of group means

Besides comparing single curves, the user may also be interested in statistically comparing the
mean values of distinct groups of curves. For example, imagine the comparison of four different
bacteria using GEN-III micro-plates. Assume that for each bacterial strain, ten replicates
have been performed. (An according example data set is actually available in the opmdata

package.) Do these four bacteria differ in, e.g., the mean value of, e.g., curve parameter A of,
e.g, well A01? Here, a statistical comparison of four groups (four organisms), each containing
ten values (curve parameter A of 10 replicates of well A01), would need to be performed.
Statistically, this requires simultaneous inferences across multiple questions (Hothorn, Bretz,
andWestfall 2008). To address this issue the function opm_mcp performs simultaneous multiple
comparisons of group means by internally calling glht from the multcomp package (Hothorn
et al. 2008) but providing an easier interface for it, specifically adapted to the typical objects
used within opm. By referring to available metadata and/or the substrate names, the user is
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able to define groups of interest, set up a model of choice and perform multiple comparison
of group means on individually specified contrasts (Bretz et al. 2010; Hsu 1996). The choice
of appropriate models and contrasts will be explained in detail below. As comparisons of
the different curve parameters are performed separately, it is possible to ask very specific
questions on differences between curve shapes.

At this point, it is necessary to highlight the power and flexibility of simultaneous multiple
comparison procedures and encourage the user to apply contrast tests on individually de-
signed sets of mean comparisons rather than to employ the probably more popular classical
Analysis Of Variance (ANOVA) approaches, which perform F-tests. In general, such F-tests
only provide global information about main effects and interaction effects. That is, only
the significance of a result yields evidence for a difference in the means among any of the
considered treatments. For example, in the framework of PM data, a significant F-test on
the effect of the substrate would indicate that at least two of the substrates cause distinct
respiration. Considering that each PM experiment encounters up to 96 different substrates
per plate (overall up to 2,000), this information would obviously be nearly useless. Moreover,
F-tests neither provide information about effect sizes nor do they ease to address comparisons
of particular interest (Schaarschmidt and Vaas 2009).

We thus opine that the very most underlying questions in PM experiments are best expressed
as a set of particular mean comparisons, resulting in a multiple-comparison problem (Hochberg
and Tamhane 1987). However, if an increasing number of hypotheses is tested, with the
number of true hypotheses unknown, the probability of at least one wrong testing decision also
increases. That is, if an increasing number of groups is compared to each other, conclusions
on significant differences between a pair of groups are increasingly likely to be wrong. Thus
the so-called family-wise error-rate, which is essentially the probability of at least one false
rejection among all the null hypotheses, needs to be controlled (Tukey 1994). The here
internally employed functions from the package multcomp provides solutions for all listed
difficulties, since it allows for testing a user-defined set of contrasts based on a broad range
of model types while internally controlling the family-wise error-rate.

Users of multiple-comparison procedures, especially of simultaneous multiple contrast tests as
applied here, are encouraged to have a look at the books by (Hochberg and Tamhane 1987)
and (Hsu 1996).

Especially in situations where groups are defined by more than one metadata entry the eval-
uation of differences of treatment means may result in quite complex models. Then, the
application of cell-means models (also known as pseudo-one-way layouts) as discussed in
(Schaarschmidt and Vaas 2009)) is strongly encouraged. In this approach estimators for
treatment and variance are derived from a model with all treatments combined in a single
factor. Technically, this requires the merging of several defining metadata variables into a
single one. This can be done by creating new metadata entries from given ones and stor-
ing them back in an OPM or OPMS object. An according example is given in Section 3.4.
Alternatively, merging can be done when selecting metadata for creating data frames. The
computation of multiple comparisons using a cell-means model is shown in Section 3.9.

The function opm_mcp internally reshapes the data into a “flat” data frame containing one
column for the chosen parameter value, one column for the well (substrate) name and op-
tionally additional columns for the selected metadata. For performing the testing procedure,
a model has to be stated that specifies the factor levels that determine the grouping (Searle
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1971; Hothorn et al. 2008). The opm_mcp function allows for applying such testing directly to
OPMS objects, obtaining these factors from stored metadata.

2.10. Discretising the aggregated data and export for phylogenetic analysis

Whereas the main data-analysis strategies of the opm package are based on quantitative,
continuous data (as described in the previous chapters), users may nevertheless be interested
in discretising the estimated curve parameters. Discretisation transfers continuous data into
discrete ones. For example, continuous values ranging from 0 to 400 could be discretised into
the three states“low”(from 0 to 100),“intermediate”(from 101 to 200), and“high”(from 201 to
400). Discretising the data is necessary for analysing them with external programs that cannot
deal with continuous characters. Indeed, phylogeny software such as PAUP* (Swofford 2003)
and RAxML (Stamatakis, Ludwig, and Meier 2005) is limited to at most 32 distinct character
states. (To the best of our knowledge, a maximum-parsimony algorithm applicable directly
to continuous data has only been implemented in TNT (Goloboff, Farris, and Nixon 2008).)
Phylogenetic studies of PM data, or at least reconstructions of PM character evolution, are
of interest because such phenotypic information is frequently used for taxonomic purposes
in microorganisms, and here phylogenetic inference methods might be superior to clustering
algorithms (Felsenstein 2004). But tabular or textual descriptions of physiological reactions
classified into negative, weak (ambiguous) and positive reactions (see Section 2.11 for details)
are of even greater relevance in current microbial taxonomy (Tindall, Kämpfer, Euzéby, and
Oren 2006).

The opm package includes data transformations (implemented in the discrete methods)
for coding continuous characters by assigning them to a given number of equal-width cat-
egories within a given range. For example, for the parameter A the theoretically possible
range between 0 and 400 OmniLog➤ units could be used. The data should then be analysed
under ordered (Wagner) maximum parsimony in PAUP* (Farris 1970) or with the options
for ordered multiple-state phenotypic characters in RAxML (Berger and Stamatakis 2010),
or corresponding settings in other programs, to minimise the loss of information caused by
discretising the values. For this reason, this kind of unsupervised, equal-width-intervals dis-
cretisation (Dougherty, Kohavi, and Sahami 1995; Ventura and Martinez 1995), even though
simple, appears appropriate for this task. In this context, it also makes not much sense to
let a discretisation method determine the number of categories because they are not dictated
by some property of the data but by the limitations of the subsequently to apply analysis
software. The opm package offers appropriate functions for data export.

2.11. Determining positive and negative reactions and displaying them as

text or table

If users wanted to discretise the parameters into “positive” and “negative” results, this would
apparently make most sense for the parameter A because here it is not of interest when and
how fast a reaction starts (which would be coded in λ and µ, respectively) or how much
overall respiration was achieved (as coded in AUC) but whether or not a reaction takes place
at all. Unfortunately, PM data frequently result in a continuum of A values between clearly
negative and clearly positive reactions. For instance, the distribution of A in the example
data sets distributed with the opm and opmdata packages is obviously bimodal, but contains
a large number of intermediary values. For this reason, the discrete methods and their
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more user-friendly wrapper do_disc offer a gap-mode discretisation by interpreting a given
range of values (within the overall range of observations) as “ambiguous”. Values below would
then be coded as negative, values above the range as positive, and values within the range as
either missing information or an intermediary state, “weak”. This range could be determined
by some discretisation approach known from the literature (Dougherty et al. 1995; Ventura
and Martinez 1995).

The opm package offers its automated determination using k-means partitioning as im-
plemented in Ckmeans.1d.dp (Wang and Song 2011), using an exact algorithm for one-
dimensional data. Alternatively, an algorithm implemented in best_cutoff is available,
but it requires measurement replicates (which are highly recommended, if not mandatory,
anyway) accordingly annotated in the metadata. Both methods are accessible via do_disc.
Export as richly annotated, publication-ready Hypertext Markup Language (HTML) table or
text is possible using phylo_data and listing. If analysis with phylogenetic programs was
of interest, in the case of an intermediary state the data should then be analysed as described
above. If intermediary values were coded as missing information they could be analysed under
either Wagner or unordered (Fitch) maximum parsimony in PAUP* (Farris 1970; Fitch 1971)
or with the options for binary phenotypic characters in RAxML (Berger and Stamatakis 2010),
or corresponding settings in other programs.

2.12. Database input and output

This topic is for advanced users and bioinformaticians, as it requires setting up, or at least hav-
ing access to, a database server. For this reason, automatically executed (and thus checked)
code for database I/O of PM data directly within R can neither be included here nor in the
example sections of the opm manual. We have tested all of the following statements, and
all of the mentioned code examples, on our own workstations. But for a successful database
interaction users might need information that is not directly related to opm and thus cannot
be treated in the documentation of this package. We can nevertheless provide example code
that uses opm together with database-specific R packages for storing and receiving PM data.

Database interaction differs greatly depending on whether a relational database or one of
the more recent NoSQL alternatives is concerned. A popular document-oriented database
is MongoDB, which is accessible via the RMongo package (Chheng 2013). If you have set
up a local MongoDB server and installed RMongo, call demo("MongoDB-IO", package =

"opm") for a usage example. The data storage used within opm fits well to a document-
oriented database because OPMX objects do not enforce a particular structure for storing the
metadata (see Section 2.4). The same holds for the “options” entries of the aggregation and
discretisation settings.

For working with a Relational Database Management System (RDBMS), a scheme needs to
be defined beforehand for storing the PM data, and additional conversions and selections are
necessary. Future versions of this tutorial will provide hints regarding working with RDBMS
and PM data in this section. Example code for RDBMS usage exists, but is so far only
available from the opm R-Forge repository via SVN. Programmers interested in this code
should download it from there and consult the documentation or contact the authors. In the
meantime, however, the output YAML format (or its subset, JSON) is likely to facilitate the
quick establishment of third-party software for importing PM data into a database.
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2.13. Global settings

It is possible to modify settings that have an effect on multiple functions and/or on frequently
used arguments globally using opm_opt. This allows the user to adopt opm to personal
preferences and to thereby substantially decrease coding effort. It is checked that the novel
values inherit from the same class(es) than the old ones. Usage examples are provided in
several sections (e.g., Section 3.10.3). The function param_names yields the spelling of the
curve parameters used by opm. It also displays the set of names that are used by some methods
that have to compile metadata entries with other columns. It is thus not impossible, but
discouraged, to use these names as metadata keys. The same holds for (non-syntactical) names
starting with an underscore and followed by capital letters, as such names are temporarily
used by some methods in intermediary objects together with the metadata.

3. Program application

3.1. Overview

Before starting, the opm package should be loaded into an R session as follows:

R> library(opm)

The example data set distributed with the package (Vaas et al. 2012) comprises the re-
sults from running 114 GEN-III plates (BIOLOG Inc.) in the PM mode of the OmniLog➤
reader. The organisms used were two strains of Escherichia coli (Deutsche Sammlung von
Mikroorganismen (DSM) 18039 = K1 and the type strain DSM 30083T) and two strains of
Pseudomonas aeruginosa (DSM 1707 and 429SC (Selezska, Kazmierczak, Müsken, Garbe,
Schobert, Häussler, Wiehlmann, Rohde, and Sikorski 2012)). The strains with a DSM
number could be ordered from the Leibniz Institute Deutsche Sammlung von Mikroorgan-
ismen und Zellkulturen (DSMZ) – German Collection of Microorganisms and Cell Cultures
(http://www.dsmz.de/).

Each strain was measured in two biological replicates, each comprising ten technical replicates,
yielding a total of 80 plates. To additionally investigate the impact of the growth age of
cultures on the technical and biological reproducibility of the PM respiration kinetics, strain
E. coli DSM 18039 was grown on solid LB medium for nine different durations, from 16.75
h (t1) to 40.33 h (t9), respectively. For each growth duration four technical replicates were
performed except for t9 (which was repeated only twice), yielding 34 plates for this time-
series experiment. All biological and experimental details of this data set have been described
previously (Vaas et al. 2012).

Two subsets of the data, vaas_1 and vaas_4, are included in opm. Use ?vaas_1 and ?vaas_4

to view their help pages, and have a look at the objects as follows:

R> vaas_1

R> vaas_4

The entire data set, stored in the object vaas_et_al, comes with the supporting package
opmdata and can (if that package is installed, of course) be loaded using:

http://www.dsmz.de/
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R> data(vaas_et_al, package = "opmdata")

To view its help page, use ?opmdata::vaas_et_al.

The metadata included in these objects comprise seven entries. The entry Experiment denotes
the biological replicate or the affiliation to the time-series experiments. The keys Species and
Strain refer to the organism used for the respective experiment (see above), and Slot (either
A or B) indicates whether the plate was placed in the left or the right half of the OmniLog➤
reader. (Note that for an assessment of the reproducibility of the curves the slot is occasionally
of relevance.) Two additional entries contain the index of the time point and the corresponding
sample point in minutes for the time series experiment. The key Plate number indicates the
technical replicate (per biological replicate). The combination of the keys Strains, Species,
Experiment and Plate number results in a unique label which unequivocally annotates every
single plate.

3.2. Data import

The following code describes the import of the OmniLog➤ CSV file(s) into the opm package.
In the opm manual and all help pages, all functions relevant for data import are contained in
a family of functions called “IO-functions” with according cross-references.

The CSV files with the OmniLog➤ raw data should be stored in one to several user-defined
folders. Setting the working directory of R to the parent folder of these using setwd frequently
facilitates file selection, but in principle the user can provide any number of paths to input
files and/or directories containing such files to the function read_opm, which can load several
CSV files (and also YAML or JSON files generated by opm) at once. A restriction of the input
functions is that they can solely read CSV files that only contain the measurements from a
single plate per file (either a PM plate or a single GEN-III plate measured in either PM- or
identification mode). But the package contains a function split_files, which can be used
to split CSV files with multiple plates into one file per plate.

To illustrate the file import step by step, a set of input CSV example files is provided with
the package. Before starting, remember that the opm package must be loaded. Then use the
built-in function opm_files to find the example files in your R installation:

R> files <- opm_files("testdata")

R> files

Afterwards check whether this returned a vector of nine file names, including the full path to
their location in the file system. (It might fail in very unusual R installation situations; in that
case, the files must be found manually.) For demonstration purposes, the test data contain
data from EcoPlate➤ Gen-III, PM01 and PM20 plate types. One of these files contains
multiple plates and acts as an example for split_files; the other ones can be read directly.

As a demonstration of file splitting, consider the following code, which creates single-plate
CSV files from the multiple-plate file that comes with opm:

R> multi.plate.file <- grep("Multiple", files,

value = TRUE, ignore.case = TRUE)

R> multi.plate.file

R> list.files()
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R> split_files(multi.plate.file, ✬^("Data File",|Data File)✬, getwd())

R> list.files()

Three additional files should be visible in the working directory, consecutively numbered but
using the base name of the input file. These could now be read with read_opm, but we will
use other files in the next paragraph and tidy up now:

R> rm(multi.plate.file)

R> unlink(grep("Multiple-0000", list.files(),

value = TRUE, ignore.case = TRUE))

Using read_opm, from a given vector of file and/or directory names, files can be easily selected
and deselected using globbing or regular-expression patterns. For instance, for reading the
three example files in “new style” CSV format (see Section 2.2), use the following code.

R> example.opm <- read_opm(files, include = "*Example_?.CSV.xz")

R> summary(example.opm)

After performing this step, the OPMS object contains three plates, as indicated by the summary
function.

Instead of a single file name the user could also provide several file names to read_opm, or a
mixture of file and directory names. If these were contained as subdirectories of the current
working directory, read_opm(".") or read_opm(getwd) would be sufficient to input these
files. To filter the files with patterns, the arguments exclude and include are available.
There is also a demo mode allowing the user to check the effect of each argument before
actually reading files. One can use the gen.iii argument to trigger the automated conversion
of the plate type to, e.g., GEN-III or“ECO”plates run in“PM”mode, or convert later on using
the gen_iii function itself. Plate-type conversions to one of the “PM”modes are disallowed
(and are, to the best of our knowledge, not relevant in practice anyway). The plate type is
crucial, as it is disallowed to integrate distinct plate types into a single OPMS objects. The
reason is that comparing the same well positions from distinct plate types would be almost
always equivalent to comparing apples and oranges.

If more than one plate of the same plate type is read, however, data from all files are auto-
matically integrated into a single OPMS object. To read plates from several types at once,
the convert argument is useful. If one uses read_opm(..., convert = "grp"), a named
list is created with, as each list element, one OPM or OPMS object per plate type, depending
on whether only a single plate of that plate type, or several such plates, have been found. For
instance, for inputting all example files (except for the one with multiple plates), consider the
following code:

R> many.plates <- read_opm(files, exclude = "*Multiple*", convert = "grp")

R> summary(many.plates)

R> summary(many.plates$PM01)

R> rm(many.plates) # tidy up

This yields the data from plates with distinct plate types in a single object. Note that the
objects for each encountered plate type can easily be accessed via the names of the list. More
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example code is available via opm_files("demo"). Call demo("multiple-plate-types",
package = "opm") after moving to the directory with input CSV files (or a parent directory
of it). Unreadable CSV would yield an error.

A single plate could also be imported using read_single_opm. But this might only occasion-
ally be useful, as read_opm can cope with single files, too.

3.3. Batch conversion of many files

In addition to read_opm and read_single_opm (Section 3.2), which need to be called before
an interactive exploration of PM data, batch-processing large numbers of files by converting
them from CSV (or previously generated YAML or JSON) to YAML, JSON or CSV format, is
also possible. This optionally includes aggregating the raw data by estimating curve param-
eters (Section 3.5), discretising these parameters (Section 3.10.2) and integrating metadata
(Section 3.4). Again there is a demo mode to first investigate the attempted conversions:

R> batch_opm(files, include = "*Example_?.CSV.xz",

aggr.args = list(boot = 100, method = "opm-fast"),

outdir = ".", demo = TRUE)

The arguments aggr.args, disc.args and md.args control aggregation, discretisation and
metadata incorporation, respectively. Details on all three processes are given in the according
sections, and for the exact use of these arguments see the opm manual, entering ?batch_opm.

The following command would read three of the seven example input files, estimate two of the
four curve parameters using the fast native method including 100 rounds of bootstrapping,
and store the resulting YAML files (one per plate) in the current working directory (given by
“.”):

R> batch.result <- batch_opm(files, include = "*Example_?.CSV.xz",

aggr.args = list(boot = 100, method = "opm-fast"),

outdir = ".")

By default, progress messages are printed to the screen. The return value, here assigned to
the batch.result variable, also contains all information about the success of the individual
file conversions.

The run_opm.R script distributed with the package is an Rscript-dependent command-line
tool for non-interactively running such file conversions. Its location in the file system can be
obtained using

R> opm_files("scripts")

Regarding its use, see the documentation of Rscript for details (enter ?Rscript at the R

prompt) and watch the help output of this script (try system(opm_files("scripts"))).

3.4. Integration and manipulation of metadata

Several ways for linking metadata to OPM or OPMS objects are possible. The easiest one
is probably the batch-inclusion after creating a template with plate ID associating it with
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metadata. In the first step, either a data frame to be manipulated within R or a CSV file to be
modified with a suitable editor are created. The opm package supports metadata integration
by creating a template for such a table from an OPM or OPMS objects that contains plate
ID in the first columns; by default the keys Setup Time, Position and File. These data must
not be changed, ensuring that the package can later on link the metadata to the dedicated
plates according to these ID.

In the opm manual and help pages, most functions relevant for metadata manipulation are
contained in a family called “metadata-functions” with according cross-references. For the
collection of a metadata template in a data frame to be manipulated in R, use this command:

R> metadata.example <- collect_template(files, include = "*Example_?.CSV.xz")

For the generation of a metadata template file, the following command can be used:

R> collect_template(files, include = "*Example_?.CSV.xz",

outfile = "example_metadata.CSV")

This will result in a file "example_metadata.CSV" in the current working directory (whose
name is accessible using getwd). If other metadata have previously been collected, by default
an already existing file with the same name will be reused. The already defined columns will
be respected, novel rows be added, old metadata will be kept and ID for novel files will be
included and their so far empty metadata columns are set to missing data (NA). You can also
provide the location of another previously created metadata file with the collect_template
argument previous. An ID for the OmniLog➤ instrument in use can also be added. This
makes sense if plates from several such machines are analysed. A further option is to normalise
the plate-position and setup-time entries; see the manual for details.

The generated CSV file could then be edited using external software; for the purpose of this
tutorial, we load it directly and manipulate it in R. To avoid the usual changes in data format
and header of the table during the import a customised import function was implemented as
a wrapper for read.delim:

R> metadata.example <- to_metadata("example_metadata.CSV")

Per default, this expects CSV columns separated by tabulators, with the fields protected by
quotes. To input other formats, consider the sep argument for defining an alternative column
separator, as well as the strip.white argument for turning the removal of whitespace at the
beginning and end of the fields on or off (which is relevant if a spreadsheet program exports
CSV without quotes).

Now the user could add information to the data frame by calling edit, which would open the
R editor, or by any other way of manipulating data frames in R. New columns could be defined,
or the existing metadata modified. But the first columns must remain unchanged because
they are needed to identify individual PM plates for linking them to their meta-information.
As an example, we here add an (arbitrary) Colour column with the values “blue”, “red” and
“yellow” and another (arbitrary) Integer column with the integer values 10, 20 and 30:

R> metadata.example$Colour <- c("blue", "red", "yellow")

R> metadata.example$Integer <- c(10L, 20L, 30L)
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Now the metadata are ready to be included into the previously generated OPMS object:

R> example.opm <- include_metadata(example.opm, md = metadata.example)

The metadata could then be received as follows:

R> metadata(example.opm)

This returns the entire metadata entries as a list. By default only the added metadata are
included in the object, but not the ID used for assigning data-frame rows to plates.

One might want to remove the file as it is not needed any more:

R> unlink("example_metadata.CSV")

A couple of other functions have been implemented for manipulating metadata included in
OPM and OPMS objects. For instance, the entire meta-information, or specific entries, can
be set using the replacement function metadata<-. Setting a specific entry named key to a
specific value value in all plates would be accomplished by metadata(example.opm, key)

<- value. If the right side of the assignment is a data frame with the same length as the
OPMS object, each row would be specifically assigned to the OPM object with the same index.
This comes handy for adding the CSV_data selected or all information from the OmniLog➤
CSV files to the metadata:

R> metadata(example.opm)

R> metadata(example.opm) <- to_metadata(csv_data(example.opm))[,

c("Strain Name", "Sample Number")]

R> metadata(example.opm)

You might note that “Sample Number” is a misnomer in these data sets. (One of the fields in
the interface of the Data Collection software of the OmniLog➤ reader had been defined as
“Sample Number”, but the operator entered species and strain designations into this field.) In
this and similar cases, modifying metadata in-place is of interest, which can be accomplished
using map_metadata. This function would return a novel OPMS (or OPM) object. Its formula
method is particularly powerful.

R> metadata(example.opm)

R> metadata(map_metadata(example.opm, Organism ~ ❵Sample Number❵))

This works by converting the left side of the formula into a metadata key and evaluating
the right side of the formula in the context of the metadata entries that have already been
added. As result, a new metadata entry is created, with “Organism” as key and the entry
from “Sample Number” as value. “Sample Number” must be quoted because it contains a
special character (the blank).

But we have not yet removed the aptly named “Sample Number” entries. Here, it is useful
that all operators (except for $ and other high-precedence operators, which can be used for
defining nested keys) on the left side, if present, would be changed by map_metadata into a
call to list. The resulting list would be flattened and treated as a list of metadata keys.
Hence it is possible to define several keys at once. The right side, once evaluated, would be
recycled accordingly. Thus we can clean up our metadata in a single line of code:
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R> metadata(map_metadata(example.opm,

Organism + ❵Sample Number❵ ~ list(❵Sample Number❵, NULL)))

The deletion of “Sample Number” is accomplished by the assignment of NULL, as usual in lists.
Instead of + almost all other operators could be used, and one could also write c(Organism,
‘Sample Number‘) on the left side, which might be more intuitive. If map_metadata is called
without a mapping, it “cleans” the metadata by removing empty entries (by default including
those that only contain NA values) and converting factors to character vectors.

But we have not yet stored an OPMS object with the cleaned metadata. This could be done
using example.opm <- map_metadata(example.opm, ...). In that case, however, direct
assignment would also be possible:

R> metadata(example.opm) <- Organism + ❵Sample Number❵ ~

list(❵Sample Number❵, NULL)

R> metadata(example.opm)

Assigning NULL to a metadata entry would remove that entry. We can achieve the same using
an expression object:

R> metadata(example.opm) <- to_metadata(csv_data(example.opm))[,

c("Strain Name", "Sample Number")] # reset

R> metadata(example.opm)

R> metadata(example.opm) <- expression(Organism <- ❵Sample Number❵,

rm(❵Sample Number❵))

R> metadata(example.opm)

Here, the assignment targets (names within the metadata) are specified directly using just the
<- operator. Apparently, arbitrarily complex code could be put in such a metadata-modifying
expression.

All metadata would be cleared by assigning an empty list, without specifying a key:

R> metadata(example.opm, "Organism") <- NULL

R> metadata(example.opm)

R> metadata(example.opm) <- list()

R> metadata(example.opm)

So keep in mind that formulae and expressions are very flexible for modifying metadata
entries. They would allow for any other operation (such as numerical calculations) provided
it can be applied to the selected predefined metadata content. The replacement function can
also be used to copy metadata between OPM and/or OPMS objects.

Metadata can also be assigned specifically for subsets of OPMS objects, using the indexed
assignment available for those objects:

R> metadata(example.opm[2]) <- list(Organism = "Elephas maximus",

Size = "3 meters")

R> metadata(example.opm)

R> metadata(example.opm[2]) <- list()

R> metadata(example.opm)
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Readers may have noted that metadata always returns a list, not a data frame. This is because
metadata need not contain the same entries, even within a single OPMS object, and can be
nested. It is possible, however, to get the metadata as data frame by using to_metadata.
Missing entries would then be filled with NA values, and nested metadata entries would yield
data-frame columns of the mode “list”. This might or might not be suitable for further
processing. For statistical analysis, the appropriate way is to extract only those metadata
entries that are present in all OPMS elements, and usually also only those that are not
themselves lists. Methods such as extract are based on this principle.

For manual editing, an edit method can be directly applied to OPMX objects, provided
that to_metadata yields a suitable data frame. This is not normally the case unless the
metadata are rectangular (in a relaxed sense, as missing values would not matter), which is
not enforced by the way OPMX objects are implemented. So whereas edit might be handy
in many situations, one should not expect it to work with all kinds of OPMX objects. With
unsuitable metadata, it will stop with an error message before any editing by hand can be
conducted; otherwise it will (of course) modify the metadata in the intended way.

The following code, making use of the metadata.example data frame generated above, adds a
new metadata entry with the key“Character”containing the integer values from the metadata
entry called“Integer”converted to character mode It then includes a new metadata entry with
the key “Times 10” containing the entry “Integer” multiplied by 10.

R> example.opm <- include_metadata(example.opm, md = metadata.example)

R> metadata(example.opm)

R> example.opm <- map_metadata(example.opm, Character ~ as.character(Integer))

R> metadata(example.opm)

R> example.opm <- map_metadata(example.opm, ❵Times 10❵ ~ (Integer * 10))

R> metadata(example.opm)

Note that map_metadata can also be used with character vectors as mapping objects. Making
use again of the exemplar generated above, the key Colour could be changed to Colony colour
as follows:

R> example.opm <- include_metadata(example.opm, md = metadata.example)

R> md.map <- metadata_chars(example.opm, values = FALSE)

R> md.map

This yields a character vector including itself as names attribute, thus implying an identity
mapping. Next the new labels will be defined and will then be exchanged with the old ones
using map_metadata.

R> md.map["Colour"] <- "Colony colour"

R> example.opm <- map_metadata(example.opm, md.map, values = FALSE)

R> metadata(example.opm)

The keys should have been changed to Colony colour now but the values should have remained
unaffected. In addition to mapping based on character vectors, a mapping function could also
have been used. By setting their argument values to TRUE, the functions metadata_chars
and map_metadata could be used as well to modify values instead of key. For instance, assume
any entries “red” in the field denoted Colony colour should be changed to “green”:
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R> md.map <- metadata_chars(example.opm, values = TRUE)

R> md.map

R> md.map["red"] <- "green"

R> example.opm <- map_metadata(example.opm, md.map, values = TRUE)

R> metadata(example.opm)

This command will transform all entries in the table with the value ”red” to ”green”. Other
values, as well as the keys, should be unaffected.

Frequently metadata entries will be used as factors in statistical models. This always requires
that the chosen metadata entry is present in all considered OPM object and sometimes re-
quires that entries have to be combined. For instance, for setting up a cell-means model (see
Section 2.9 and Section 3.9 for further details), factors used for defining the groups of inter-
est have to be merged. This might already be done during the initial step when setting up
the metadata data frame before including the metadata into an OPM or OPMS object using
include_metadata. Here, the function interaction could be used to concatenate columns
(but it should be taken into account that metadata entries should better not be represented
as factors). As a result, two metadata entries would be merged into a single one:

R> metadata.example$Colour.Position <- as.character(interaction(

metadata.example$Colour,

metadata.example$Position, sep = ".", drop = TRUE))

This is not recommended, however, unless all statistical comparisons of interest, or at least the
group definitions of interest, were already known at this stage. Even more tedious would be
to go back to the initial metadata compilation add a later stage. Using the metadata mapping
functions, metadata entries can instead by merged at any time after including them into an
OPM or OPMS with include_metadata. For instance, the following code operates directly in
the OPMS object, merging the . “Colony colour” (which had previously been renamed from
“Colour”, see above) and “Integer” entries into a new one:

R> metadata(example.opm) <- Col.Int ~ paste(❵Colony colour❵, Integer, sep = ".")

R> metadata(example.opm)

As result, a new metadata entry named “Col.Int” is created with the general string concate-
nation tool paste.

3.5. Aggregating data by estimating curve parameters

As mentioned above, the package brings along an OPM object, named vaas_1, containing a
full 96-well plate, aggregated data (curve parameters), and metadata:

R> data(vaas_1)

R> vaas_1

In the opm manual and help pages, the functions relevant for data aggregation are contained
in a family called “aggregation-functions”with according cross-references. Primarily do_aggr

should be used for aggregation because it generates the kinds of objects that allow for the
predefined work flows. vaas_1 already contains aggregated data but we will re-calculate some
for demonstration purposes. For invoking the fast estimation method, use:
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R> vaas_1.reaggr <- do_aggr(vaas_1, boot = 100, method = "opm-fast")

This will only estimate two of the four parameters, namely A and AUC. (Screen messages
output by boot.ci might be annoying but can usually be ignored.) Information about the
data aggregation settings is available via aggr_settings:

R> aggr_settings(vaas_1)

R> aggr_settings(vaas_1.reaggr)

and the aggregated data can be extracted as a matrix via aggregated, e.g.:

R> summary(aggregated(vaas_1))

R> summary(aggregated(vaas_1.reaggr))

The default settings of do_aggr includes 100-fold bootstrapping of the data to obtain confi-
dence intervals. As this is a time-consuming intensive process (particularly if grofit is used),
it may be split over several cores on a multiple-core machine if mclapply from the parallel

R package can be run with more than one core, which is possible on all operating systems
except for Windows.

One can also specify different spline fitting methods using method = "spline", which is
the recommended setting (for historical reasons, it is not the default) (Vaas et al. 2013a).
Options such as the spline type, the number of knots used for the spline and other options
for the splines can be easily set using the function set_spline_options (which can only
be used in conjunction with method = "spline"). To essentially reproduce the results from
method = "grofit" we could use smoothing splines (and for the sake of computing time
in this vignette we only use 10 bootstrap replicates to compute confidence intervals for the
parameter estimates):

R> op <- set_spline_options(type = "smooth.spline")

R> vaas_1.aggr2 <- do_aggr(vaas_1, boot = 10, method = "spline", options = op)

Other spline types can be specified via the type argument in the function set_spline_options.
But the defaults have been optimised for PM data.

3.6. Manipulation of OPM and OPMS data

In the opm manual and help pages, the functions relevant for retrieving information contained
in OPM or OPMS objects are included in a family called “getter-functions” with according
cross-references.

For instance, the user may wish to select specific wells from the input plates, which are present
in a 96-well layout, numbered from A01 to H12. The function dim provides the dimensions
of an OPMS object as a three-element vector comprising (i) number of contained OPM or
OPMA objects, (ii) the number of time points (of the first contained plate; these values need
not be uniform within an OPMS object), and (iii) the number of wells (which must be uniform
within an OPMS object).

To extract, for example, only the data from wells G11 and H11 together with the negative-
control well A01 from the data set vaas_et_al the bracket operator defined for the OPMS

class has to be invoked as follows:
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R> data("vaas_et_al", package = "opmdata")

R> vaas.small <- vaas_et_al[, , c("A01", "G11", "H11")]

R> dim(vaas.small)

R users should be familiar with this subset-creation style, which was modelled after the style
for multidimensional arrays, even though the internal representation is quite different. Fol-
lowing the dim function, in the first indexing position the plates, in the second the time points,
and in the third position the wells are selected. Moreover, in the second indexing position
lists could be used, and in the third indexing position a formula could be applied. This allows
for creating sequences of well coordinates as, e.g., in vaas_et_al[, , ~c(A08:B02, B05)],
which would select eight wells.

After metadata have been added and adapted (see Section 3.4), OPM and OPMS objects can
be queried for their content. Specialised infix operators %k% and %q% (for %K% and %Q% see
¿%K%‘ and ¿%Q%‘, respectively) have been modelled in analogy to R’s %in% operator. The
user may be interested whether an OPM or OPMS object contains a specific value associated
with a specific metadata key, or the key associated with any value, or combinations of keys
and/or values. %k% allows the user to search in the metadata keys. The user can test whether
all given keys are present as names of the metadata. %q% tests whether all given query keys
are present as names of the metadata and refer to the same query elements.

Some examples using vaas_et_al are given in the following. This OPMS object contains
a metadata key Experiment with the three possible values Time series, First replicate, and
Second replicate, and a metadata key Species with either Escherichia coli or Pseudomonas
aeruginosa as values.

Examples for questions that could be asked on these metadata are given in the following.
Which plates within vaas_et_al have Experiment as metadata key?

R> "Experiment" %k% vaas_et_al

R> vaas_et_al %k% "Experiment" # equivalent

R> vaas_et_al %k% ~ Experiment # equivalent

R> (~ Experiment) %k% vaas_et_al # equivalent, parentheses needed

Note that the arguments can be swapped and that a formula can be used. Next, which plates
within vaas_et_al have Experiment and Species as metadata key?

R> c("Experiment", "Species") %k% vaas_et_al

R> vaas_et_al %k% ~ c(Experiment, Species) # equivalent

The formula method works by evaluating the right side of the formula in the context of
the metadata entries and reporting whether or not this yielded an error. For this reason,
vaas_et_al %k% ~ Experiment + Species would fail because there is no + operator for
character strings.

Which plates within vaas_et_al have Experiment and Species as metadata key with the
respective values First replicate and Escherichia coli?

R> c(Experiment = "First replicate",

Species = "Escherichia coli") %q% vaas_et_al

R> vaas_et_al %q% ~ Experiment == "First replicate" &

Species == "Escherichia coli"
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Again the two solutions are equivalent, but note the differences in the syntax that has to be
used. The formula method allows, in principle, for arbitrarily complex expressions.

Which plates within vaas_et_al have Species as metadata key associated with the value
Escherichia coli or the value Bacillus subtilis?

R> list(Species = c("Escherichia coli", "Bacillus subtilis")) %q% vaas_et_al

R> vaas_et_al %q% ~ Species %in% c("Escherichia coli", "Bacillus subtilis")

In addition to conducting queries with alternatives, using lists as queries would also allow for
nested queries (as the metadata entries could also be nested). Within formulae, nested keys
should be separated by the $ operator.

The results of these infix operators are reported as logical vector with one value per plate; the
usual R functions such as all, any or which could be applied to work on these vectors. They
could also be used directly as the first argument of the bracket operator for OPMS objects to
create subsets:

R> vaas.e.coli.1 <- vaas_et_al[c(Experiment = "First replicate",

Species = "Escherichia coli") %q% vaas_et_al]

R> summary(vaas.e.coli.1)

R> rm(vaas.e.coli.1) # tidy up

Alternatively, the user may wish to subset a certain part of the data set using the function
subset, which is based on these kinds of querying for metadata keys and their values. Prior
to this, the user could check the keys of the metadata:

R> metadata_chars(vaas_et_al, values = FALSE)

The values in the metadata could be obtained by using values = TRUE. Additionally, the
user can check the values of special keys in the metadata:

R> metadata(vaas_et_al, "Species")

The resulting vectors could then also be used for mapping old metadata keys or values to
novel ones (for details see Section 3.4).

The presented plotting results of xy_plot and level_plot (see Section 3.7) show selected
subsets of vaas_et_al. In our example below, the function subset extracts the plates which
contain the value First replicate in the metadata key Experiment and the value 6 in the
key Plate number, resulting in one representative technical repetition and thus four plates
(because four strains were involved) from the data set vaas_et_al:

R> vaas.1.6 <- subset(vaas_et_al,

query = list(Experiment = "First replicate", ✬Plate number✬ = 6))

R> summary(vaas.1.6)

Providing the desired combination of metadata keys and values as a list offers much flexibility,
and using a formula would offer a maximum of flexibility, but other approaches are also
implemented. The selection of plates could be based on the presence of keys only (like %k%
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described above; it makes not much sense for vaas_et_al whose plates are uniform regarding
the keys), and/or use nested queries (like %q% with a list described above; makes of course
more sense if the metadata contain nested entries).

The subset function also has a “time” argument that allows one to create a subset containing
only the time points that were common to all plates. This is useful because deviations
regarding the overall measurement hours might exist. See the manual for details, using
help(‘[‘, package = "opm").

In addition to plate-wise querying and subset creation of OPMS objects, a number of con-
version functions for selected content of all plates have been implemented. The opm manual
and help pages list them in a family of functions called “conversion-functions” with according
cross-references.

For instance, the user may wish to explore the aggregated curve parameters (λ, µ, A and
AUC). These may be exported either as matrix or data frame using extract:

R> vaas.mu <- extract(vaas_et_al, dataframe = TRUE,

as.labels = NULL, subset = "mu")

To extract also the full or partial set of metadata, it is sufficient to add a list of desired
metadata:

R> vaas.mu <- extract(vaas_et_al, dataframe = TRUE,

as.labels = list("Experiment", "Number of sample time point",

"Plate number", "Slot", "Species", "Strain", "Time point in min"),

subset = "mu")

This only works if this meta-information is present for the plates under study. Once a data
frame is exported, these metadata will be contained in additional columns; once a matrix
is exported, they will be used to construct the row names. The metadata could also be
selected using a formula; see the help pages for details, particularly ?metadata. A peculiarity
of extract is that formulae can be used to trigger the joining of selected metadata entries
(converted to data-frame columns) into new ones, using the pseudo-function J within the
formula. For instance, the following code would create a new entry called “Species.Strain”:

R> vaas.mu <- extract(vaas_et_al, dataframe = TRUE,

as.labels = ~ J(Species, Strain), subset = "mu")

This is applied by opm_mcp, see Section 3.9. The behaviour during joining of factors is
modified using opm_opt(comb.key.join = ...) and opm_opt(comb.value.join = ...).
The default curve parameter returned by extract can be set with opm_opt(curve.param =

...).

Finally, note that methods for a variety of generic R functions such as unique, sort, duplicated,
anyDuplicated and merge are available for OPMS objects. As specified using sort(by =

...), sorting can be done based on selected metadata or on csv_data entries such as the
setup time. The latter is of use in conjunction with the merge method, which is able to con-
catenate OPM objects from subsequent runs of the same plate. Enter help(sort, package

= "opm") and help(merge, package = "opm") at the R prompt for details.
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E. coli vs. P. aeruginosa
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Figure 6: PM curves from the sixth technical repetition of the first biological repetition and
the first 24 wells plotted using xy_plot (see (Vaas et al. 2012) for the difference between
technical and biological repetitions). The respective curves from all four strains are superim-
posed; the affiliation to each strain is indicated by colour (see the legend). The x-axes show
the measurement time in hours, the y-axes the measured colour intensities in OmniLog➤
units. Compare Figure 8, which depicts exactly the same wells.

3.7. Plotting functions for raw data

In the opmmanual and help pages, the functions relevant for plotting are contained in a family
called“plotting-functions”with according cross-references. The function xy_plot displays the
respiration curves as such (see Figure 6). In our example the selected OPMS object vaas.1.6
is the subset of the data set vaas_et_al constructed in Section 3.6, additionally reduced to
the firs 24 wells:

R> xy_plot(vaas.1.6[, , 1:24], main = "E. coli vs. P. aeruginosa",

include = list("Species", "Strain"))

Using the argument main, the user can include a main title in the plot; if it is omitted,
by default the title is automatically constructed from the plate type. Likewise, the well
coordinates are automatically converted to substrate names (details can be set using additional
arguments). The content of the legend (mainly a description of the assignment of the colours
to the curves) is also determined automatically.

The argument include refers to the metadata and allows the user to choose which entries
should be used for assigning curve colours and accordingly be included in the legend. Char-



J. Sikorski, L.A.I. Vaas, B. Hofner, M. Göker 33
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Figure 7: Selected PM curves from the sixth technical repetition from the first biological
repetition plotted using xy_plot. The respective curves from all four strains are superim-
posed, the affiliation to each strain indicated by colour (see the legend). The x-axes show the
measurement time in hours, the y-axes the measured colour-value units.

acter vectors, lists and formulae are allowed as include argument. See Section 3.4 and
?metadata in the help pages for details. In the example the combination of species and strain
is used, yielding four distinct colours. If include is not used, the colours are assigned per
plate. Several predefined colour palettes are available in opm (accessible via select_colors)
with a maximum of 24 distinct colours. If more colours were needed, the user should set
up a larger own colour vector and pass it as the argument col to xy_plot or preferably use
opm_opt(colours = ...).

The plotting of fewer sub-panels (see Figure 7) works as described above; the only difference
is in the manipulation of the data set (note that the order of wells is changed in the plotted
object, but not in the plot):

R> xy_plot(vaas.1.6[, , c("H11", "A01", "G11")],

main = "E. coli vs. P. aeruginosa", include = list("Species", "Strain"))

The function level_plot (see Figure 8) provides false-colour level plots from the raw respi-
ration measurements over time:

R> level_plot(vaas.1.6[, , 1:24], main = "E. coli vs. P. aeruginosa",

include = list("Species", "Strain"))
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Figure 8: Visualisation of PM curves using the function level_plot. Each respiration curve
is displayed as a thin horizontal line, in which the curve height as measured in colour-value
units is represented by colour intensity (darker parts indicate higher curves). The x-axes
correspond to the measurement time in hours. Compare Figure 6, which depicts exactly the
same wells.
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Again, a main title can be set explicitly. Furthermore, the argument include again refers
to the metadata and allows the user to choose the information to be included in the header
for annotating the plates. In the example the combination of species and strain is used. The
default colour palette used can by modified with opm_opt(colour.borders = ...).

3.8. Plotting the aggregated data

The function heat_map (see Figure 9) provides false-colour level plots in which both axes are
rearranged according to clustering results. In the context of PM data, it makes most sense
to apply it to the estimated curve parameters. This opm function is a wrapper for heatmap
from the stats and heatmap.2 from the gplots package with some adaptations to PM data.
For instance, row groups can be automatically constructed from the metadata.

The function heat_map could be applied to matrices or data frames constructed using the
helper function extract, but it is more convenient to apply it directly to OPMS objects:

R> vaas.1.6.A <- heat_map(vaas.1.6, as.labels = "Strain",

as.groups = "Species")

Additional example code on clustering curve parameters, including an assessment of the uncer-
tainty of the branching, is available via opm_files("demo"). Call demo("cluster-with-pvalues",
package = "opm") for running examples based on the using the pvclust package (Suzuki and
Shimodaira 2011).

The function radial_plot is able to plot numeric values as distances from the centre of a
circular field in directions defined by angles in radians. Some selection of wells should usually
be applied beforehand for these plots to be useful. Figure 10 provides an example of such
a visualisation. The parameter A is plotted for the wells A01 to A05 and A10 from data
set vaas_4. Note also that the values for positioning the upper-left corner of the legend are
oriented according to the axes of the plot. Hence, if the legend should be placed in the lower
left part of the figure, negative values for x and y would be necessary. The code is as follows:

R> radial_plot(vaas_4[, , c(1:5, 10)], as.labels = list("Species", "Strain"),

x = 150, y = 200)

The function ci_plot is able to visualise point estimates and corresponding 95% confidence
intervals for the parameters, derived via bootstrapping during aggregation of raw kinetic
data into curve parameters, or, in conjunction with extract, from plate groups defined by
the metadata. Thereby the bracket operator as described above (see Section 3.6) facilitates
the selection of subsets of interest.

Figure 11 provides an example of such a visualisation. The parameter A is plotted for the
three wells A01 (Negative Control), A02 (Dextrin) and A03 (D-Maltose) from one plate (the
sixth plate of the first biological repetition from data set vaas_et_al). The code is as follows:

R> ci_plot.legend <- ci_plot(vaas.1.6[, , c("A01", "A02", "A03")],

as.labels = list("Species", "Strain"), subset = "A",

legend.field = NULL, x = 170, y = 3)

Furthermore, the helper function extract (more specifically, its data-frame method) can
group curve parameters from OPMS objects according to selected metadata and calculate
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Figure 9: Visualisation of the clustered results from the curve parameter A for each substrate
using the function heat_map. The x-axis corresponds to the substrates clustered according to
the similarity of their values over all plates; the y-axis corresponds to the plates clustered to
the similarity of their values over all substrates. As row labels, the strain names were selected
(argument as.labels), whereas the species affiliations was used to assign row group colours
(bars at the left side, argument as.groups). The central rectangle is a substrate × plate
matrix in which the colours represent the classes of values. The default colour setting uses
topological colours, with deep violet and blue indicating the lowest values and light brown
indicating the highest values, but another colour palette could also be chosen by the user.
The default can by set with opm_opt(hm.colours = ...).
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Figure 10: Comparison of point estimates for the parameter A observed from four strains,
using radial_plot. Shown are the results for estimating the maximum height of the single
curves from wells A01 to A05 and A10.
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Figure 11: Comparison of point estimates and their 95% confidence intervals for the param-
eter A observed from four strains, using ci_plot. Shown are the results for estimating the
maximum height of the single curves on the three wells A01 (Negative Control), A02 (Dex-
trin) and A03 (D-Maltose) as indicated by the sub-plot titles. Point estimates that have no
overlapping confidence intervals are regarded to be significantly different. But note that here
the confidence intervals only indicate the uncertainty in parameter estimation from single
curves.
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according point estimates (means) and confidence intervals. It can also apply normalisation
beforehand, which might frequently be necessary to more easily recognise biological differ-
ences; see Section 2.8.

After the extraction of the values together with necessary metadata (argument as.labels) in
a first call to extract, the resulting data frame can be treated by extract again for generating
another data frame with numeric values grouped according to the as.groups argument and
optionally normalisation applied, as triggered via the argument norm.per. The first data
frame would be created as follows:

R> x <- extract(vaas_et_al, as.labels = list("Species", "Strain"),

dataframe = TRUE)

For a better understanding of the following secondary applications of extract it is highly
recommended to take a look at the results from plotting the data with ci_plot and also at
structure of the created data frames.

Using norm.per = "none" causes normalisation to be omitted. If as.groups = TRUE is used,
all metadata that have been included in the first data frame are used to determine the groups.
The result is shown in Fig 12, after a further selection of columns from the second data frame
to be passed to ci_plot.

R> # without normalisation

R> ci_plot(extract(x, as.groups = TRUE, norm.per = "none")[, c(1:7, 13)],

legend.field = NULL, x = 350, y = 0)

Normalisation can be applied by subtracting plate means (norm.per = "row"). Per default,
this would subtract the mean of each plate from each of its values (over all wells of that plate).
Alternatively, well means can be subtracted (norm.per = "column"). Per default, this would
subtract the mean of each well from each of its values (over all plates in which this well is
present). Division instead of subtraction is also possible (subtract = FALSE). The following
code would first normalise with the plate means, then with the well means:

R> ci_plot(extract(x, as.groups = TRUE, norm.per = "row")[, c(1:7, 13)],

legend.field = NULL, x = 150, y = 0)

R> ci_plot(extract(x, as.groups = TRUE, norm.per = "column")[, c(1:7, 13)],

legend.field = NULL, x = 150, y = 0)

Moreover, via norm.by it is possible to use one to several selected wells or plates for the
calculation of the means used for normalisation. With direct = TRUE even directly entered
numeric values can be used for normalisation purposes. See Figure 13 for an example of
plotted confidence intervals obtained from data normalised by subtracting the value of well
A10 (“Positive Control”). Note that due to the structure of the data frame norm.per =

"row" in combination with the norm.by argument has to be used. One could normalise by
subtracting the means of well A10 only as follows:

R> ci_plot(extract(x, as.groups = TRUE, norm.per = "row",

norm.by = 10, subtract = TRUE)[, c(1:7, 13)],

legend.field = NULL, x = 0, y = 0)



40 Phenotype Microarray Data (November 9, 2013)

−100 0 100 200 300

A01 (Negative Control)

1
2

3
4

( )●

( )●

( )●

( )●

0 100 200 300

A02 (Dextrin)

1
2

3
4

( )●

( )●

( )●

( )●

0 100 200 300

A03 (D−Maltose)

1
2

3
4

( )●

( )●

( )●

( )●

0 100 200 300 400

A04 (D−Trehalose)

1
2

3
4

( )●

( )●

( )●

( )●

200 300 400 500

A10 (Positive Control)
1

2
3

4

( )●

( )●

( )●

( )●

1: Escherichia coli DSM18039
2: Escherichia coli DSM30083T
3: Pseudomonas aeruginosa 429SC1
4: Pseudomonas aeruginosa DSM1707

Figure 12: Comparison of mean point estimates and their 95% confidence intervals, computed
with extract over groups defined by the “Species” and “Strain” metadata entries, for the
parameter A observed from four strains, using ci_plot. Shown are the results on the three
wells A01 (Negative Control), A02 (Dextrin), A03 (D-Maltose), A04 (D-Trehalose) and A10
(Positive Control) as indicated by the sub-plot titles. Normalisation was not used for this plot.
Point estimates that have no overlapping confidence intervals are regarded to be significantly
different. Compare this with Figure 13.
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Figure 13: Comparison of mean point estimates and their 95% confidence intervals, com-
puted with extract over groups defined by the “Species” and “Strain” metadata entries, for
the parameter A observed from four strains, using ci_plot. Shown are the results on the
three wells A01 (Negative Control), A02 (Dextrin), A03 (D-Maltose), A04 (D-Trehalose) and
A10 (Positive Control) as indicated by the sub-plot titles. Normalisation was done by sub-
tracting the overall well means of well A10 (“Positive Control”). Point estimates that have no
overlapping confidence intervals are regarded to be significantly different. Compare this with
Figure 12.
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Additional example code on visualising curve parameters is available via opm_files("demo").
It is indeed easy to conduct principal-component analysis with matrices created with extract.
Call demo("custom-PCA", package = "opm") for running examples based on the Biodiver-

sityR package (Kindt and Coe 2005).
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3.9. Statistical comparisons of group means

The opm_mcp function allows the user to test for differences in the means of multiple groups
directly on OPMS objects, obtaining the factors that determine the grouping structure from
the stored metadata or the wells. In the following, the general concept and the application of
the function is explained using several examples for groups defined within wells, across wells,
or across metadata-based groups. Detailed explanations on how the graphical and numerical
output of the results has to be interpreted are provided.

3.9.1. Tukey type of comparison: all-against-all

This paragraph addresses the comparison of a single well type across different plates organised
into multiple groups. We compare four distinct strains, each of which being represented by ten
replicates of GEN-III micro-plate measurements. The experimental question to be addressed
relates to a single well: “Do these four bacteria differ in the mean value of curve parameter
A on well G06?” (see Figure 14). This type of comparison is termed “Tukey”-type contrasts
(all-against-all) because each strain is compared to each other.

The example data is taken from the first biological replicate included in vaas_et_al:

R> vaas.G06 <- subset(vaas_et_al[, , "G06"],

list(Experiment = "First replicate"))

The resulting data set of four strains, each represented by the ten replicates, is shown in
Figure 14.

To solve the statistical question, we now perform a multiple comparison of group means using
opm_mcp.

As explained in section 2.9, the initial step is the, in the opm_mcp methods internally executed,
reshape of the data into a data frame containing one column for the chosen parameter, one
column for the well (substrate) name, another column for the values itself and optionally
additional columns for the selected metadata. By using the argument output = "data" the
data frame created by opm_mcp can be shown. Accordingly, the code below gives the head
of the respective data frame for the example data containing the A values of the well G06
(α-Keto-Glutaric Acid) from four strains and 10 plates, respectively:

R> head(x <- opm_mcp(vaas.G06, model = ~ Strain, m.type = "aov",

linfct = c(Tukey = 1), output = "data", full = FALSE))

Strain Parameter Well Value

1 DSM18039 A G06 265.4947

2 DSM18039 A G06 262.8439

3 DSM18039 A G06 252.1659

4 DSM18039 A G06 267.9070

5 DSM18039 A G06 258.1758

6 DSM18039 A G06 261.9873

For performing the testing procedure, a model composition has to be stated that specifies
the factor levels that determine the grouping. The groups to be compared (and here to be
selected from the metadata beforehand) are defined by the argument model.
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Figure 14: PM curves from the ten technical replicates of the first biological repetition plotted
using xy_plot. The respective curves from all four strains are superimposed; the affiliation
to each strain is indicated by colour (see the legend). The x axis shows the measurement time
in hours, the y axis the measured colour intensities in OmniLog➤ units.

The argument m.type specifies the type of model to be used for fitting, either a linear model
(lm), a generalised linear model (glm), or an analysis-of-variance model (aov).

Via stating the name of the desired contrast type in the argument linfct, the user can
define the set of comparisons to be computed in the multiple comparison. The contrast
matrix determines from which model-defined groups the means should be compared and how.

In our example, a Tukey-type contrast matrix is used (a more detailed explanation of prede-
fined contrast matrices is given in the help page of multcomp::contrMat).opm_opt("contrast.type")
would be inserted if names were missing. The test results in a set of six two-sided pairwise
comparisons between all four strain means (all possible pairs). The results of the comparison
can be written into an object, in our example it is termed vaas.G06.mcp:

R> vaas.G06.mcp <- opm_mcp(vaas.G06, model = ~ Strain, m.type = "aov",

linfct = c(Tukey = 1))

Since the model statement can be arbitrarily complex, the argument linfct offers flexibility to
address specific variables for the performance of the testing procedure. The linfct argument
given as a numeric vector simply refers to the positions of the variable within model to be
used for the testing procedure. Accordingly, by using 1 the first (and in this example, only
term) “Strain” is selected.

Note that the structure of the arguments set by model and by linfct may become more
complex if several metadata entries are involved in the testing. The user might therefore
wish to recheck the way how model and by linfct will actually be transformed during the
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Figure 15: Comparisons of group means from well G06 between the four exemplar strains
calculated with opm_mcp and the plotting method for the resulting object. On the y axis
the performed comparisons are indicated as differences of the groups, determining which
differences of means are computed. All pairwise comparisons are shown. The filled black
circle indicates the point estimator of difference between the mean of groups. 95% confidence
intervals for are indicated by horizontal bars and parentheses. Note the differences between
interpretation of this figure and the Figures obtained with ci_plot in Section 3.8, as explained
in the main text.

execution of the statistical test. Usage of the argument model can be checked by outputting
just the converted argument:

R> opm_mcp(vaas.G06, model = ~ Strain, m.type = "aov",

linfct = c(Tukey = 1), output = "model")

Similarly, the usage of the argument linfct can be checked as follows:

R> opm_mcp(vaas.G06, model = ~ Strain, m.type = "aov",

linfct = c(Tukey = 1), output = "linfct")

For the computation of the tests itself, opm_mcp uses glht from the package multcomp and
returns an object of class opm_glht (which inherits from glht). As shown in Figure 15, the
results of the performed statistical test can be plotted using the methods available for objects
of that class (see ?multcomp::glht for details).

R> library(multcomp) # now needed

R> old.mar <- par(mar = c(3, 15, 3, 2)) # adapt margins in the plot

R> plot(vaas.G06.mcp)

R> par(old.mar) # reset to default plotting settings

A summary of the numerical results can be obtained as follows:

R> mcp.summary <- summary(vaas.G06.mcp)

R> mcp.summary$model$call <- NULL # avoid some unnecessary output

R> mcp.summary
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Simultaneous Tests for General Linear Hypotheses

Multiple Comparisons of Means: Tukey Contrasts

Linear Hypotheses:

Estimate Std. Error t value Pr(>|t|)

DSM1707 - 429SC1 == 0 -19.527 1.938 -10.076 <1e-04 ***

DSM18039 - 429SC1 == 0 -43.047 1.938 -22.213 <1e-04 ***

DSM30083T - 429SC1 == 0 -16.432 1.938 -8.479 <1e-04 ***

DSM18039 - DSM1707 == 0 -23.520 1.938 -12.136 <1e-04 ***

DSM30083T - DSM1707 == 0 3.095 1.938 1.597 0.393

DSM30083T - DSM18039 == 0 26.615 1.938 13.734 <1e-04 ***

---

Signif. codes: 0 ✬***✬ 0.001 ✬**✬ 0.01 ✬*✬ 0.05 ✬.✬ 0.1 ✬ ✬ 1

(Adjusted p values reported -- single-step method)

The interpretation of confidence intervals for differences of means is somewhat distinct from
the interpretation of the confidence intervals for the point estimators for curve parameters
as discussed in Section 3.8. The point estimator for differences of means represents the
computed difference of the considered group means and, analogously, the size of the Confidence
Interval (CI) indicates the reliability of this difference. If the 95% CI for differences of means
includes zero (dashed vertical lines in Figure 15) there is no significant difference between
the group means. Conversely, if zero is not included, a statistically significant difference is
indicated. Furthermore, the more distant the 95% CI is from zero, the larger the biological
effect size, i.e. the real difference between the group means.

In the here shown example all group means of the curve parameter A are statistically signifi-
cant different from each other (p < 0.001), except for the comparison of strains DSM 30083T

and DSM 1707 (Figure 15).

For an explanation of the graphical representation of the CIs, consider the last comparison
in Figure 15. The comparison of the mean A value from strain DSM 30083T minus the
mean A value of strain DSM 18039 results in 26.615 units as the point estimator of this
difference which is plotted accordingly on the x-axis. That is, on average the A values from
well G06 and strain DSM 30083T are 26.615 units larger than the A values of strain DSM
18039. The detailed numeric outcome would be obtained using summary for the test results or
confint(vaas.G06.mcp) for both the point estimator and confidence intervals. Additionally,
each point estimator for the difference of means comes with a 95% CI providing information
about the statistical significance of the test, the effect size and the variability of the mean
differences. They are plotted as usual.

In our example, the results from the statistical calculations indicate that all significant dif-
ferences are even highly significant (p < 0.001). However, the size of p-values does not say
anything about the size of the differences of means and thus not anything about the biological
relevance of the statistical significance. By computation of the CI around the point estimator
for a difference of means, the user gets the information about how large the difference between
two considered groups in mean is. Thus an assessment about the biological relevance of a
statistical significance is facilitated by considering an information about the difference on the
original scale of measurement. For a meaningful biological interpretation of the results it is
therefore highly recommended to also consider the effect size rather than taking only the p
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values into account.

For illustration purposes consider the position of the 95% CI from the difference between
strains DSM 18039 and 429SC1 (i.e, the effect size in the second comparison in Figure 15),
which is much larger than between strains DSM 30083T and 429SC1 (smaller effect size in
the third comparison).

3.9.2. Dunnett-type comparison: one-against-all

This paragraph describes another type of comparison of the means of multiple groups, which
is the comparison of a single, selected well against all other wells available in the data set.
This type of comparison is termed “Dunnett”-type contrasts (one-against-all). In the example
below, we compare the wells among themselves. Accordingly, the groups are defined by
the wells rather than the measured organisms or others. The reference well can be either the
negative or positive control but also one of the substrates, for example, serving as a standard in
a specific chemical group. The following data example is again taken from the first biological
replicate included in vaas_et_al, but this time only the type strain of Escherichia coli,
measured in ten technical replicates, is selected.

R> vaas.e.coli <- subset(vaas_et_al,

list(Experiment = "First replicate", Strain = "DSM30083T"))

For convenience, we perform the tests only for the first ten wells. The comparison of all wells
against the negative control in A01 can now be performed by calling:

R> opm_mcp(vaas.e.coli[, , 1:10], output = "mcp", model = ~ Well,

linfct = c(❵Dunnett_A01 (Negative Control)❵ = 1))

Please note a special feature substantially simplifying the choice of the reference group: The
value for the linfct argument can be constructed by typing Dunnett, plus, separated by any
sign, e.g. underscore (“ ”), the level name which should serve as the reference group in the
contrast set. The next example shows the Dunnett-type comparison with well A03 chosen as
the reference group.

R> mcp.A03 <- opm_mcp(vaas.e.coli[, , 1:10], output = "mcp", model = ~ Well,

linfct = c(Dunnett_A03 = 1), full = FALSE)

R> mcp.summary <- summary(mcp.A03)

R> mcp.summary$model$call <- NULL # avoid some unnecessary output

R> mcp.summary

Simultaneous Tests for General Linear Hypotheses

Multiple Comparisons of Means: User-defined Contrasts

Linear Hypotheses:

Estimate Std. Error z value Pr(>|z|)

A01 - A03 == 0 -165.358 3.213 -51.468 <0.001 ***

A02 - A03 == 0 -39.304 3.213 -12.233 <0.001 ***

A04 - A03 == 0 -10.187 3.213 -3.171 0.0117 *
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A05 - A03 == 0 -110.982 3.213 -34.543 <0.001 ***

A06 - A03 == 0 -1.376 3.213 -0.428 0.9997

A07 - A03 == 0 -121.911 3.213 -37.945 <0.001 ***

A08 - A03 == 0 -146.956 3.213 -45.740 <0.001 ***

A09 - A03 == 0 -137.566 3.213 -42.817 <0.001 ***

A10 - A03 == 0 40.219 3.213 12.518 <0.001 ***

---

Signif. codes: 0 ✬***✬ 0.001 ✬**✬ 0.01 ✬*✬ 0.05 ✬.✬ 0.1 ✬ ✬ 1

(Adjusted p values reported -- single-step method)

3.9.3. Pairs-type comparison of groups: pairwise comparisons as defined by specific
combinations of metadata entries

This paragraph describes a more specific and hence complex design of the group structure by
making a more distinct use of the stored metadata and its potential combinations. Assume
data from two species, P. aeruginosa and E. coli (data set vaas_4), each with two plates
restricted to the wells A01, A02, A03, and H02.

A combination of two species × four well types would yield eight different groups, which are
each represented by two plates. A Tukey-type comparison (all-against-all) would then result
in 28 pairwise comparisons, whereas a Dunnett-type comparison (one-against-all) would result
in seven pairwise comparisons.

However, assume the user is only interested in a specific subset of pairwise comparisons
defined by questions such as “For each well, is there a difference between the two species?”
This experimental question resulted in testing four statistical hypotheses, as there are only
four pairwise combinations that fit this question, since for each of the four wells, the two
species should be compared.

This user-defined set of comparisons can easily be performed by applying the specially de-
signed linfct argument “Pairs”. The user needs to take care that “Well” is part of the model
and is joined with at least one other factor extracted from the metadata, in this case with
“Species”. This can, be achieved on-the-fly with the J pseudo-function as shown below. Note
that the resulting model factor “Well.Species” contains eight levels, i.e. four groups per plate.

Species Parameter Well Value Well.Species

1 Escherichia coli A A01 57.66618 A01/Escherichia coli

2 Escherichia coli A A01 123.45581 A01/Escherichia coli

3 Pseudomonas aeruginosa A A01 61.35526 A01/Pseudomonas aeruginosa

4 Pseudomonas aeruginosa A A01 55.74738 A01/Pseudomonas aeruginosa

5 Escherichia coli A A02 131.67996 A02/Escherichia coli

6 Escherichia coli A A02 248.18087 A02/Escherichia coli

7 Pseudomonas aeruginosa A A02 75.10225 A02/Pseudomonas aeruginosa

8 Pseudomonas aeruginosa A A02 66.05093 A02/Pseudomonas aeruginosa

9 Escherichia coli A A03 42.45742 A03/Escherichia coli

10 Escherichia coli A A03 284.09938 A03/Escherichia coli

11 Pseudomonas aeruginosa A A03 22.37216 A03/Pseudomonas aeruginosa

12 Pseudomonas aeruginosa A A03 49.63049 A03/Pseudomonas aeruginosa

13 Escherichia coli A H02 48.75757 H02/Escherichia coli

14 Escherichia coli A H02 63.62915 H02/Escherichia coli

15 Pseudomonas aeruginosa A H02 294.68878 H02/Pseudomonas aeruginosa

16 Pseudomonas aeruginosa A H02 312.19430 H02/Pseudomonas aeruginosa
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As explained above, the name of the linfct value indicates the type of contrast used for the
testing procedure. Unless explicitly specified, “Pairs” selects the first subcomponent of the
selected (joined) model component for the comparisons. The use of explicitly setting linfct

= c(Pairs.Well = 1) ensures that for all levels present in the first (joined) component of
the model, i.e, Well-wise, all pairwise comparisons are performed among the different groups
present (here: the two species P. aeruginosa and E. coli).

The result of this analysis is shown below.

R> y <- opm_mcp(vaas_4[, , c(1:3, 86)], model = ~ J(Well, Species),

m.type = "aov", linfct = c(Pairs.Well = 1), full = FALSE)

Simultaneous Tests for General Linear Hypotheses

Multiple Comparisons of Means: User-defined Contrasts

Linear Hypotheses:

Estimate Std. Error t value

❵A01/Pseudomonas aeruginosa❵ - ❵A01/Escherichia coli❵ == 0 -32.01 69.68 -0.459

❵A02/Pseudomonas aeruginosa❵ - ❵A02/Escherichia coli❵ == 0 -119.35 69.68 -1.713

❵A03/Pseudomonas aeruginosa❵ - ❵A03/Escherichia coli❵ == 0 -127.28 69.68 -1.827

❵H02/Pseudomonas aeruginosa❵ - ❵H02/Escherichia coli❵ == 0 247.25 69.68 3.549

Pr(>|t|)

❵A01/Pseudomonas aeruginosa❵ - ❵A01/Escherichia coli❵ == 0 0.9816

❵A02/Pseudomonas aeruginosa❵ - ❵A02/Escherichia coli❵ == 0 0.3754

❵A03/Pseudomonas aeruginosa❵ - ❵A03/Escherichia coli❵ == 0 0.3240

❵H02/Pseudomonas aeruginosa❵ - ❵H02/Escherichia coli❵ == 0 0.0271 *

---

Signif. codes: 0 ✬***✬ 0.001 ✬**✬ 0.01 ✬*✬ 0.05 ✬.✬ 0.1 ✬ ✬ 1

(Adjusted p values reported -- single-step method)

Especially, if models are more complex, e.g., if more than two metadata entries would be
joined by the J function, it is highly recommended to state the names of the metadata entries
for which the pairwise comparisons should be performed by appending it directly to the
Pairs argument. For instance in the example the metadata name Species can directly be
addressed by using linfct = c(Pairs.Species = 1) and results in the pairwise all-against-
all comparisons of the selected four wells within each of the two species Escherichia coli and
Pseudomonas aeruginosa.

R> y <- opm_mcp(vaas_4[, , c(1:3, 86)], model = ~ J(Well, Species), m.type = "aov",

linfct = c(Pairs.Species = 1), full = FALSE)

R> mcp.summary <- summary(y)

R> mcp.summary$model$call <- NULL # avoid some unnecessary output

R> mcp.summary

Simultaneous Tests for General Linear Hypotheses

Multiple Comparisons of Means: User-defined Contrasts
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Linear Hypotheses:

Estimate Std. Error

❵A02/Escherichia coli❵ - ❵A01/Escherichia coli❵ == 0 99.37 69.68

❵A03/Escherichia coli❵ - ❵A01/Escherichia coli❵ == 0 72.72 69.68

❵H02/Escherichia coli❵ - ❵A01/Escherichia coli❵ == 0 -34.37 69.68

❵A03/Escherichia coli❵ - ❵A02/Escherichia coli❵ == 0 -26.65 69.68

❵H02/Escherichia coli❵ - ❵A02/Escherichia coli❵ == 0 -133.74 69.68

❵H02/Escherichia coli❵ - ❵A03/Escherichia coli❵ == 0 -107.09 69.68

❵A02/Pseudomonas aeruginosa❵ - ❵A01/Pseudomonas aeruginosa❵ == 0 12.03 69.68

❵A03/Pseudomonas aeruginosa❵ - ❵A01/Pseudomonas aeruginosa❵ == 0 -22.55 69.68

❵H02/Pseudomonas aeruginosa❵ - ❵A01/Pseudomonas aeruginosa❵ == 0 244.89 69.68

❵A03/Pseudomonas aeruginosa❵ - ❵A02/Pseudomonas aeruginosa❵ == 0 -34.58 69.68

❵H02/Pseudomonas aeruginosa❵ - ❵A02/Pseudomonas aeruginosa❵ == 0 232.86 69.68

❵H02/Pseudomonas aeruginosa❵ - ❵A03/Pseudomonas aeruginosa❵ == 0 267.44 69.68

t value Pr(>|t|)

❵A02/Escherichia coli❵ - ❵A01/Escherichia coli❵ == 0 1.426 0.7298

❵A03/Escherichia coli❵ - ❵A01/Escherichia coli❵ == 0 1.044 0.9070

❵H02/Escherichia coli❵ - ❵A01/Escherichia coli❵ == 0 -0.493 0.9974

❵A03/Escherichia coli❵ - ❵A02/Escherichia coli❵ == 0 -0.383 0.9994

❵H02/Escherichia coli❵ - ❵A02/Escherichia coli❵ == 0 -1.919 0.4604

❵H02/Escherichia coli❵ - ❵A03/Escherichia coli❵ == 0 -1.537 0.6684

❵A02/Pseudomonas aeruginosa❵ - ❵A01/Pseudomonas aeruginosa❵ == 0 0.173 1.0000

❵A03/Pseudomonas aeruginosa❵ - ❵A01/Pseudomonas aeruginosa❵ == 0 -0.324 0.9998

❵H02/Pseudomonas aeruginosa❵ - ❵A01/Pseudomonas aeruginosa❵ == 0 3.515 0.0581 .

❵A03/Pseudomonas aeruginosa❵ - ❵A02/Pseudomonas aeruginosa❵ == 0 -0.496 0.9974

❵H02/Pseudomonas aeruginosa❵ - ❵A02/Pseudomonas aeruginosa❵ == 0 3.342 0.0733 .

❵H02/Pseudomonas aeruginosa❵ - ❵A03/Pseudomonas aeruginosa❵ == 0 3.838 0.0376 *

---

Signif. codes: 0 ✬***✬ 0.001 ✬**✬ 0.01 ✬*✬ 0.05 ✬.✬ 0.1 ✬ ✬ 1

(Adjusted p values reported -- single-step method)

This yields two (for each species) x six (all-against-all among four wells = six) = 12 pairwise
comparisons for which the adjustment of multiplicity has been undertaken.

When dealing with more complex models also keep in mind that the numeric vector in linfct

can refer to the position of any variable, or set of variables obtained by joining, within model.

3.9.4. User-defined comparisons of interest

For performing even more specific comparisons of interest, the user can provide a contrast
matrix directly. A contrast for multiple comparison procedures is defined as a linear combina-
tion of two or more factor level means (averages) whose coefficients add up to zero (Hochberg
and Tamhane 1987). To demonstrate the principle of a contrast matrix, an all-against-all
comparison (a “Tukey”-type contrast) of four groups is performed using a toy-example.

R> n <- c(10, 20, 30, 40)

R> names(n) <- paste0("group", 1:4)

R> contrMat(n, type = "Tukey")

Multiple Comparisons of Means: Tukey Contrasts

group1 group2 group3 group4
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group2 - group1 -1 1 0 0

group3 - group1 -1 0 1 0

group4 - group1 -1 0 0 1

group3 - group2 0 -1 1 0

group4 - group2 0 -1 0 1

group4 - group3 0 0 -1 1

In each line, a pair of group-wise comparisons is defined by the locations of the non-zero
values. For instance, in the first line, the 1 and -1 values indicate that the means of group1
are subtracted from the means of group2. The function contrMat from multcomp (see
?multcomp::contrMat) provides an overview of the predefined contrast types that can be
used in the opm_mcp argument linfct.

In the example from above (see Figure 15), a “Tukey”-type contrast was used to trigger the
comparison of all groups against all others in the data set. The underlying contrast matrix
used to set up the contrasts can be viewed by entering

R> summary(vaas.G06.mcp)$linfct

(Intercept) StrainDSM1707 StrainDSM18039 StrainDSM30083T

DSM1707 - 429SC1 0 1 0 0

DSM18039 - 429SC1 0 0 1 0

DSM30083T - 429SC1 0 0 0 1

DSM18039 - DSM1707 0 -1 1 0

DSM30083T - DSM1707 0 -1 0 1

DSM30083T - DSM18039 0 0 -1 1

attr(,"type")

[1] "Tukey"

Accordingly, the user is free to set up contrast matrices for opm_mcp that define the compar-
isons of interest. However, a model argument is necessary for definition of the factors that
determine the groups and thus the possibilities for comparisons. As the next example, we
compare the overall performance of the tested organisms in the four wells A01 to A04.

Although the user typically expects these wells to be in order in an OPMS object, this actually
may have been changed by a previous well selection. Moreover, details of the implementation
of the conversion of OPMS objects to data frames, and of reshaping these data frames, can
be subject to change, which might also affect the order of factor levels within the final data
passed to glht. Hence, it should be avoided to set up a contrast matrix fully by hand.
Instead, opm_mcp(output = "contrast") yields one to several template contrast matrices,
which are guaranteed to match the used OPMS object. We highly recommend to generate
those template matrices and modify them according to specific user needs.

For instance, the following output contains a contrast matrix with all possible comparisons
(because “Tukey” is used) for Well as factor variable in the correct order for the first four
wells of vaas_4:

R> contr <- opm_mcp(vaas_4[, , 1:4], model = ~ Well, linfct = c(Tukey = 1),

output = "contrast", full = FALSE)

R> contr
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Figure 16: Point estimates and 95% confidence intervals in a manually defined comparison
of group means for a specifically selected set of wells (A01 to A04) from the vaas_4 exemplar
object. The picture was obtained by running opm_mcp and then the plotting function for the
resulting object. Compare with Figure 15, where details on the axis annotation are given.

The contr object is a named list of contrast matrices, with one matrix per factor selected. An
according call of the opm_mcp function including the selecting of some comparisons of interest
is:

R> vaas4.mcp <- opm_mcp(vaas_4[, , 1:4], model = ~ Well, m.type = "lm",

linfct = contr$Well[c(1:3, 6), ], full = FALSE)

Since output = "contrast" does not work in this situation, the correct set-up of the contrast
matrix can be controlled by:

R> summary(vaas4.mcp)$linfct

A01 A02 A03 A04

A02 - A01 -1 1 0 0

A03 - A01 -1 0 1 0

A04 - A01 -1 0 0 1

A04 - A03 0 0 -1 1

As mentioned above, the outcome can be visualised using the plot method for glht objects
(see Figure 16).

Note that the model argument defines the group means available for comparisons. In the
following example “Species” contains only two levels (“Pseudomonas aeruginosa” and “Es-
cherichia coli”). Thus, irrespective of the stated contrast type, only one comparison is possi-
ble.

R> vaas4.mcp <- opm_mcp(vaas_4, model = ~ Species, m.type = "lm",

linfct = mcp(Species = "Dunnett"))

Finally, besides the multiple comparison of single group means as described above, it is also
possible to compare averages from several subgroups with a single other subgroup or averages
from several other subgroups. For example, the user may be interested in comparing the data
shown in Figure 17 at the level of groups that may contain different data sets as subgroups.
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Figure 17: Point estimates and 95% confidence intervals in a Dunnett-type comparison
of group means for a cell-means model for the vaas.G06 exemplar object. In analogy to
Figure 16, the picture was obtained by running opm_mcp and then the plotting function for
the resulting object. Compare also with Figure 15, where details on the axis annotation are
given.

R> vaas.G06 <- vaas_et_al[, , "G06"]

R> vaas.G06.mcp <- opm_mcp(vaas.G06, model = ~ J(Strain, Experiment),

linfct = c(Dunnett = 1))

The result is shown in Figure 17, visualised using plot as described above.

When building a contrast matrix, keep in mind that the levels of the model-defining factor
needs to match the columns of the contrast matrix, in order. For this reason, it is advantageous
to work with a template contrast matrix generated with opm_mcp from the object under study
and check the positioning of its column names prior to any modification:

R> contr <- opm_mcp(vaas.G06, model = ~ J(Strain, Experiment),

linfct = c(Dunnett = 1), output = "contrast")$Strain.Experiment

R> colnames(contr)

The user is then free to choose other values than just 0 and 1 for the coefficients, provided
that each contrast sums up to zero. In the example below, the contrast matrix is reduced to
three contrasts of interest, in which the values 0, -1/4 , 1/4, and 1 are used. The reader might
have noted that the “First replicate” entries are in columns 1, 3, 5 and 8, whereas the “Second
replicate” entries are in columns 2, 4, 6 and 9 and the “Time series” entries are in column 7
of the object contr. This information is sufficient to set up a correct contrast matrix for the
following three contrasts of interest:

R> contr <- contr[1:3, ] # keeps the column names

R> rownames(contr) <- c(

"First repl. - Second repl.",

"First repl. - Time series",

"DSM 1707 #1 - Second repl."

)

R> contr[1, ] <- c(1/4, -1/4, 1/4, -1/4, 1/4, -1/4, 0, 1/4, -1/4)
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Figure 18: Point estimates and 95% confidence intervals in a user defined comparison of
group means for a cell-means model for the vaas.G06 exemplar object. Like Figure 16, the
picture was obtained by running opm_mcp and then the plotting function for the resulting
object. Compare also with Figure 15, where details on the axis annotation are given.

R> contr[2, ] <- c(1/4, 0, 1/4, 0, 1/4, 0, -1, 1/4, 0)

R> contr[3, ] <- c(0, -1/4, 1, -1/4, 0, -1/4, 0, 0, -1/4)

R> contr

R> vaas6.mcp <- opm_mcp(vaas.G06, model = ~ J(Strain, Experiment), m.type = "lm",

linfct = mcp(Strain.Experiment = contr))

The resulting visualisation of this entirely user-defined contrast matrix is shown in Figure 18.

3.10. Discretisation

After calculating curve parameters and optionally generating a suitable subset, data can
be discretised and optionally also exported for analysis with external phylogeny software
or for inclusion into a scientific manuscript as text or table. In the opm manual and help
pages, the functions relevant for either task are contained in the families “discretisation-
functions”, “phylogeny-functions” and partially also in “naming-functions”, with according
cross-references. Much like do_aggr for aggregation, do_disc should be preferred for dis-
cretisation. By default it works on the A parameter (see Figure 4) but this can be modified.

3.10.1. Discretisation and phylogenetic data export

Restricting the vaas_et_al example data set to the two biological replicates yields an or-
thogonal data set with 2×10 replicates for each of the four strains for which we can calculate
discretised parameters:

R> vaas.repl <- subset(vaas_et_al,

query = list(Experiment = c("First replicate", "Second replicate")))

R> vaas.repl <- do_disc(vaas.repl)

Note that the resulting objects is an OPMS object with OPMD objects as elements. Such
objects contain discretised values, available via discretised, and the discretisation settings
used, which can be obtained using disc_settings. This works much like aggregated and
aggr_settings explained above. disc_settings also yields the computed discretisation
cutoffs. The subset function has a positive argument that allows one to create a sub-
set containing only the wells that were positive in at least one plate or in all plates, as
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well as a corresponding negative argument. The effect of either could be modified with
subset(invert = TRUE). For example, the command xy_plot(subset(vaas_4, positive

= "all"), neg.ctrl = NULL) would plot only those wells in which all curves have been clas-
sified by k-means partitioning to yield a positive reaction. See the manual for further details,
using help(subset, package = "opm").

3.10.2. Discretisation and export of text

The listing methods of the OPMD and OPMD classes create textual descriptions of the
discretisation results suitable for the direct inclusion in scientific manuscripts.

R> listing(vaas.repl, as.groups = NULL)

R> listing(vaas.repl, as.groups = list("Species"))

As usual, the results can be grouped according to specified metadata entries using the
“as.groups” argument. If this yields ambiguities (such as a negative reaction of the same
well on one plate and a positive reaction on another plate), the result is accordingly renamed.
The “cutoff” argument can be used to define filters, keeping only those values that occur in
a specified minimum proportion of wells. See the manual for details, using help(listing,

package = "opm").

The listing function returns a character vector or matrix with the S3 class OPMD listing or
OPMS listing, allowing for a special phylo_data function that further formats these objects.
Accordingly, the following code snippets

R> phylo_data(listing(vaas.repl, as.groups = NULL))

R> phylo_data(listing(vaas.repl, as.groups = list("Species")))

would yield character scalars better suitable for exporting into text files using write. It is
also possible to generate HTML output, yielding formatted text. Try

R> phylo_data(listing(vaas.repl, as.groups = NULL, html = TRUE))

R> phylo_data(listing(vaas.repl, as.groups = list("Species"), html = TRUE))

and note that the phylo_data function has a html.args argument. Textual HTML output
supports most of the formatting instructions for the output of HTML tables described below
(see 3.10.3). Note particularly how formatting via a Cascading Style Sheets (CSS) file works,
as described in Section 3.10.3.

The default settings of do_disc imply exact k-means partitioning into three groups (“neg-
ative”, “ambiguous” and “positive”), treating all contained plates together, and using the
maximum-height parameter for discretisation. Let A1 and A2 be the A parameters from two
curves C1 and C2, respectively, and let us assume that A1 ≥ A2 holds. The algorithm then
guarantees that if C2 is judged as positive reaction then C1 is also judged as positive; if C2 is
weak then C1 is not negative; if C1 is negative then C2 is negative; and if C1 is weak then C2 is
not positive. In this sense, the results will be consistent, but there are not many other things
the algorithm guarantees. Note particularly that always three clusters result by default (one
can omit the middle cluster, i.e. the “weak” reactions), irrespective of the input data. This is
usually unproblematic if the data contain both really negative and really positive reactions,
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but data that in reality are negative throughout, or uniformly positive, would nevertheless
be split into three (or two) clusters. That is, additionally checking the curve heights and
particularly the “cutoffs” entry obtained via disc_settings should initially be mandatory.

It is also possible to make the reactions uniform within metadata-defined groups. This would
be specified with the unify argument and would deliberately deviate from the kind of consis-
tency described above. The unification approach replaces the primary discretisation results
with the most frequent value within the respective combination of group and well if this value
is present in a given proportion of the original values and with NA otherwise. The accord-
ing cutoff is set using opm_opt(min.mode = ...) or directly. Thus there are two distinct
meanings of “ambiguous” reactions, as ambiguity either results from the clustering of the pa-
rameters, or by clustering results that deviate between distinct experimental replications. It
is unnecessary and perhaps not preferable to use both approaches together, i.e. to cluster
into three groups only and then also unify. Note that listing and phylo_data would use
the same unification approach, if requested.

The manual describes the other discretisation approaches available in opm, such as using
best_cutoff instead of k-means partitioning, and using subsets of the plates, specified using
stored metainformation. See ?do_disc.

3.10.3. Discretisation and export of tables

The HTML created by opm deliberately contains no formatting instructions. Rather, it is
possible (and recommended) to link it to a CSS file. CSS is a style-sheet language used for
defining the formatting of a document written in a markup language such as HTML.

As the generated HTML is richly annotated with “class” attributes, which not only provide
information on the structure of the file but also on the depicted data, very specific formatting
can be obtained just by modifying one to several associated CSS files. For the following
example, we set the default CSS file to be linked from the generated HTML to the first CSS
file that comes with opm.

R> opm_opt(css.file = opm_files("css")[[1]])

One could now easily create an HTML table from the discretised data and write it to a file:

R> vaas.html <- phylo_data(vaas.repl, format = "html",

as.labels = list("Species", "Strain"), outfile = "vaas.html")

A practical problem is that the resulting HTML file is linked to its CSS file with a fixed path.
The formatting would thus get lost once the HTML file was copied to another system, without
a warning. So users might want to copy the predefined CSS file to the working directory and
set it as default:

R> file.copy(opm_files("css")[[1]], "opm_styles.css", overwrite = TRUE)

R> opm_opt(css.file = "opm_styles.css")

The generated HTML would subsequently be linked to this file, and the two files could be
distributed together. The same mechanism works for text generation using listing (see
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3.10.2). In addition to the default CSS file, a complete list of the settings that can be
modified with this function is available via ?opm_opt.

Users who want to define their own CSS files can start with modifying the file shipped with
opm. Microsoft Windows users should consider that the path to the file must be provided in
UNIX style, as obtained, e.g., using normalizePath(x, winslash = "/") if x is the path to
the file. This is according to World Wide Web standards and not determined by opm.

By default columns with measurement repetitions as specified using as.labels are joined
together. The delete argument specifies how to reduce the table: either not at all or keep-
ing only the variable, parsimony-informative or non-ambiguous characters. The legend of
the table is as used in taxonomic journals such as the International Journal of Systematic
and Evolutionary Microbiology (http://ijs.sgmjournals.org/) but could also be adapted.
Users can modify the headline, add sections before the table legend, or before or after the
table. The title and the “meta” entries of the resulting HTML can also be modified. The
phylo_data methods have an auxiliary function, html_args, which assists in putting together
the arguments that determine the shape and content of the HTML output. See the manual
for further details, using ?html_args.

3.10.4. Fine-tuning the discretisation

One can also conduct discretisation step-by-step by using the functions best_cutoff or
discrete after extracting matrices from the OPMS object. This offers more flexibility (such
as additional discretisation approaches, e.g. the creation of multiple-state characters) but is
also more tedious than using do_disc.

R> vaas.repl <- subset(vaas_et_al,

query = list(Experiment = c("First replicate", "Second replicate")))

R> vaas.repl <- extract(vaas.repl,

as.labels = list("Species", "Strain", "Experiment", "Plate number"))

The A parameter (see Figure 4) can be discretised into (per default) 32 states using the
theoretical range of 0 to 400 OmniLog➤ units (see Section 2.10):

R> vaas.repl.disc <- discrete(vaas.repl, range = c(0, 400))

This yields (at most) 32 distinct character states corresponding to the 32 equal-width inter-
vals within 0 and 400. Exporting the data in extended PHYLIP format readable by RAxML

(Stamatakis et al. 2005) would work as follows:

R> phylo_data(vaas.repl.disc, outfile = "example_replicates.epf")

The other supported formats are PHYLIP, NEXUS and TNT (Goloboff et al. 2008). For
discretising the data not in equally spaced intervals but into binary characters including
missing data, or ternary characters with a third, intermediary state between ”negative” and
”positive” the gap mode of discrete can be used:

R> vaas.repl.disc <- discrete(vaas.repl, range = c(120.2, 236.6), gap = TRUE)

http://ijs.sgmjournals.org/
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Here the range argument provides not the overall boundaries of the data as before (at least
as large as the real range), but the boundaries of a zone within the real range of the data
corresponding to an area of ambiguous affiliation. That is, values below 120.2 are coded
as “0”, those above 236.6 as “1”, and those in between as “?”. The values used above were
determined by k-means partitioning of the A values from the vaas_et_al data set (Vaas et al.
2012); there is currently no conclusive evidence that they can generally be applied. The last
command would result in the treatment of values within the given range as “missing data” (NA
in R, “?” if exported). To treat them as a third, intermediary character state, set middle.na
to FALSE:

R> vaas.repl.disc <- discrete(vaas.repl, range = c(120.2, 236.6),

gap = TRUE, middle.na = FALSE)

The three resulting states, coded as “0”, “1” and “2” (in contrast to “0”, “?” and “1” above)
would have to be interpreted as “negative”, “weak” and “positive”. Exporting the data in one
of the supported phylogeny formats would work as described above. If the do_disc function
described above calls discrete, then only in gap mode and with middle.na set to TRUE,
yielding a vector or logical matrix.

4. Discussion and conclusion

The high-dimensional sets of longitudinal data collected by the OmniLog➤ PM system call
for fast and easily applicable (and extensible) data organisation and analysis facilities. The
here presented opm package for the free statistical software R (R Development Core Team
2011) features not only the calculation of aggregated values (curve parameters) including
their (bootstrapped) confidence intervals, but also provides a rather complete infrastructure
for the management of raw kinetic values and curve parameters together with any kind of
meta-information of relevance for the user (Vaas et al. 2012, 2013a).

The spline estimation and parameter calculation in the data-aggregation step of has been
optimised for the analysis of PM data. One main issue in the spline-fitting procedure is the
selection of suitable smoothing parameters. The methods included in opm provide not only the
basic framework (Vaas et al. 2012) based on methods from the grofit package (Kahm et al.
2010), but also specifically adapted applications of smooth.spline and the mgcv package
(Wood 2003; Eilers and Marx 1996)

The analysis toolbox of the package includes the implementation of a fully automated esti-
mation of whether respiration kinetics should be classified as either a “positive” or “negative”
(absent) physiological reaction. This dichotomisation is apparently of high interest to many
users of the OmniLog➤ PM system but would apparently be extremely biased as long as
thresholds are chosen ad hoc and by eye. Users should nevertheless be aware that loss of
information is inherent to discretising continuous data.

The opm package enables the user to produce highly informative and specialised graphical
outputs from both the raw kinetic data as well as the curve-parameter estimates. Moreover,
the package provides simultaneous multiple comparisons of group means (Hothorn et al. 2008;
Bretz et al. 2010; Hsu 1996) with an interface specifically adapted to the typical PM data
objects. In combination with the functionality for annotating the data with meta-information
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and then selecting subsets of the data, straightforward analyses regarding specific analytical
questions can be performed without the need to invoke other R packages.

But since the design of the opm objects is not intended to be limited to specific analysis
frameworks, the opm package works as a data containment providing well organised and
comprehensive PM data for further, more specialised analyses using methods from different
R packages or other third-party software tools. Particularly the generation of S4 objects
featuring a rich set of methods as containers for either single or multiple OmniLog➤ PM
plates enables not only the transfer of raw kinetic data into R but also eases their further
processing. The complex data bundles can also be exported in YAML format, which is a
human-readable data serialisation format that can be read by most common programming
languages and facilitates fast and easy data exchange between laboratories. If a proper YAML

parser was unavailable, its subset JSON could also be used. The interaction between opm

and databases is also based on these formats; see Section 2.12. The package can also generate
CSV output files, but due to the limitation of this format these files cannot be read back into
opm in a meaningful way (but into R).

Power and limitations regarding usage of substrate information and their implementation for
data arrangement and hypothesis testing are discussed in detail in the vignette “Working with
substrate information in opm”.

These features render the opm package the first comprehensive toolbox for the management
and a broad range of analyses of OmniLog➤ PM data. Its usage requires some familiarity
with R, but is otherwise intuitive and straightforward also for biologists who are not used to
command-line based software. To summarise, we are convinced that the opm package already
enables the users to analyse OmniLog➤ PM data in rather unlimited exploratory directions
(Vaas et al. 2012, 2013a).
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