Introduction to opendatatoronto

opendatatoronto is an R interface to the City of Toronto Open Data Portal. The goal of the package is to help read data directly into R without needing to manually download it via the portal.

In the portal, datasets are called packages. You can see a list of available packages by using list_packages(). This will show metadata about the package, including what topics (i.e. tags) the package covers, a description of it, any civic issues it addresses, how many resources there are (and their formats), how often it is is refreshed and when it was last refreshed.

library(opendatatoronto)

packages <- list_packages(limit = 10)

packages
#> # A tibble: 10 x 10
#>    title id    topics civic_issues excerpt dataset_category num_resources
#>    <chr> <chr> <chr>  <chr>        <chr>   <chr>                    <int>
#>  1 Dail… 8a6e… City … Affordable … "Daily… Table                        8
#>  2 Body… c405… City … <NA>         "This … Table                        2
#>  3 Stre… 1db3… City … Mobility     "Trans… Map                          1
#>  4 Stre… 74f6… City … <NA>         "Publi… Map                          1
#>  5 Stre… 821f… City … <NA>         "Publi… Map                          1
#>  6 Stre… ccfd… City … <NA>         "Poste… Map                          1
#>  7 Stre… cf70… City … <NA>         "Poste… Map                          1
#>  8 Stre… 3944… City … <NA>         "Litte… Map                          1
#>  9 Stre… 99b1… City … <NA>         "Infor… Map                          1
#> 10 Stre… 71e6… Trans… <NA>         "Bike … Map                          1
#> # … with 3 more variables: formats <chr>, refresh_rate <chr>,
#> #   last_refreshed <date>

Or, you can search packages by title using search_packages():

apartment_packages <- search_packages("Apartment")

apartment_packages
#> # A tibble: 2 x 10
#>   title id    topics civic_issues excerpt dataset_category num_resources formats
#>   <chr> <chr> <chr>  <chr>        <chr>   <chr>                    <int> <chr>  
#> 1 Apar… 2b98… Busin… Affordable … "This … Table                        1 XML,JS…
#> 2 Apar… 4ef8… Locat… Affordable … "This … Table                        1 CSV,JS…
#> # … with 2 more variables: refresh_rate <chr>, last_refreshed <date>

You can also see metadata for one specific package using show_package():

show_package("996cfe8d-fb35-40ce-b569-698d51fc683b")
#> # A tibble: 1 x 10
#>   title id    topics civic_issues excerpt dataset_category num_resources formats
#>   <chr> <chr> <chr>  <chr>        <chr>   <chr>                    <int> <chr>  
#> 1 TTC … 996c… Trans… Mobility     TTC Su… Document                    35 XLSX   
#> # … with 2 more variables: refresh_rate <chr>, last_refreshed <date>

Within a package, there are a number of resources - e.g. CSV, XSLX, JSON, SHP files, and more. Resources are the actual “data”.

For a given package, you can get a list of resources using list_package_resources(), either by using a package found via search_packages() or list_packages():

apartment_building_registration_package <- search_packages("Apartment Building Registration")

apartment_building_registration_resources <- apartment_building_registration_package %>%
  list_package_resources()

apartment_building_registration_resources
#> # A tibble: 1 x 4
#>   name                         id                           format last_modified
#>   <chr>                        <chr>                        <chr>  <date>       
#> 1 Apartment Building Registra… 3ad76a8c-0518-4df2-b94e-8c7… CSV    2020-03-06

or by passing the package’s portal URL directly:

list_package_resources("https://open.toronto.ca/dataset/apartment-building-registration/")
#> # A tibble: 1 x 4
#>   name                         id                           format last_modified
#>   <chr>                        <chr>                        <chr>  <date>       
#> 1 Apartment Building Registra… 3ad76a8c-0518-4df2-b94e-8c7… CSV    2020-03-06

Finally (and most usefully!), you can download the resource (i.e., the actual data) directly into R using get_resource():

apartment_building_registration_data <- apartment_building_registration_resources %>%
  get_resource()

apartment_building_registration_data
#> # A tibble: 3,454 x 70
#>    `_id` AIR_CONDITIONIN… AMENITIES_AVAIL… ANNUAL_FIRE_ALA… ANNUAL_FIRE_PUM…
#>    <int> <chr>            <chr>            <lgl>            <lgl>           
#>  1  6905 NONE             <NA>             NA               NA              
#>  2  6906 NONE             <NA>             NA               NA              
#>  3  6907 NONE             <NA>             NA               NA              
#>  4  6908 INDIVIDUAL UNITS <NA>             NA               NA              
#>  5  6909 CENTRAL AIR      <NA>             NA               NA              
#>  6  6910 CENTRAL AIR      Indoor recreati… NA               NA              
#>  7  6911 NONE             <NA>             NA               NA              
#>  8  6912 NONE             <NA>             NA               NA              
#>  9  6913 NONE             Child play area  NA               NA              
#> 10  6914 NONE             <NA>             NA               NA              
#> # … with 3,444 more rows, and 65 more variables:
#> #   APPROVED_FIRE_SAFETY_PLAN <lgl>, BALCONIES <chr>,
#> #   BARRIER_FREE_ACCESSIBILTY_ENTR <chr>, BIKE_PARKING <chr>,
#> #   CONFIRMED_STOREYS <lgl>, CONFIRMED_UNITS <lgl>,
#> #   DATE_OF_LAST_INSPECTION_BY_TSSA <lgl>,
#> #   DESCRIPTION_OF_CHILD_PLAY_AREA <lgl>,
#> #   DESCRIPTION_OF_INDOOR_EXERCISE_ROOM <lgl>,
#> #   DESCRIPTION_OF_OUTDOOR_REC_FACILITIES <lgl>, ELEVATOR_PARTS_REPLACED <lgl>,
#> #   ELEVATOR_STATUS <lgl>, EMERG_POWER_SUPPLY_TEST_RECORDS <lgl>,
#> #   EXTERIOR_FIRE_ESCAPE <chr>, FACILITIES_AVAILABLE <lgl>, FIRE_ALARM <chr>,
#> #   GARBAGE_CHUTES <chr>, GREEN_BIN_LOCATION <lgl>,
#> #   HEATING_EQUIPMENT_STATUS <lgl>, HEATING_EQUIPMENT_YEAR_INSTALLED <lgl>,
#> #   HEATING_TYPE <chr>, INDOOR_GARBAGE_STORAGE_AREA <lgl>, INTERCOM <chr>,
#> #   IS_THERE_A_COOLING_ROOM <lgl>, IS_THERE_EMERGENCY_POWER <lgl>,
#> #   LAUNDRY_ROOM <chr>, LAUNDRY_ROOM_HOURS_OF_OPERATION <lgl>,
#> #   LAUNDRY_ROOM_LOCATION <lgl>, LOCKER_OR_STORAGE_ROOM <chr>,
#> #   NO_BARRIER_FREE_ACCESSBLE_UNITS <lgl>,
#> #   NO_OF_ACCESSIBLE_PARKING_SPACES <lgl>, NO_OF_ELEVATORS <chr>,
#> #   NO_OF_LAUNDRY_ROOM_MACHINES <lgl>, NON_SMOKING_BUILDING <lgl>,
#> #   OUTDOOR_GARBAGE_STORAGE_AREA <lgl>, PARKING_TYPE <chr>, PCODE <lgl>,
#> #   PET_RESTRICTIONS <lgl>, PETS_ALLOWED <chr>,
#> #   PROP_MANAGEMENT_COMPANY_NAME <chr>, PROPERTY_TYPE <chr>,
#> #   RECYCLING_BINS_LOCATION <lgl>, RSN <int>,
#> #   SEPARATE_GAS_METERS_EACH_UNIT <chr>, SEPARATE_HYDRO_METER_EACH_UNIT <chr>,
#> #   SEPARATE_WATER_METERS_EA_UNIT <chr>, SITE_ADDRESS <chr>,
#> #   SPRINKLER_SYSTEM <chr>, SPRINKLER_SYSTEM_TEST_RECORD <lgl>,
#> #   SPRINKLER_SYSTEM_YEAR_INSTALLED <lgl>, TSSA_TEST_RECORDS <lgl>,
#> #   VISITOR_PARKING <chr>, WARD <chr>, WINDOW_TYPE <chr>, YEAR_BUILT <chr>,
#> #   YEAR_OF_REPLACEMENT <lgl>, YEAR_REGISTERED <chr>, NO_OF_STOREYS <int>,
#> #   `IS_THERE_EMERGENCY_POWER?` <chr>, `NON-SMOKING_BUILDING` <chr>,
#> #   NO_OF_UNITS <int>, NO_OF_ACCESSIBLEPARKING_SPACES <int>,
#> #   `FACILITIES_AVAILABLE?` <chr>, `IS_THERE_A_COOLING_ROOM?` <chr>,
#> #   NO_BARRIERFREE_ACCESSBLE_UNITS <int>

The opendatatoronto package can currently handle the download of CSV, XLS/XLSX, XML, JSON, SHP, and GeoJSON resources, as well as ZIP resources that contain multiple files. For more information, see the following vignettes: