
R package nplr

n-parameter logistic regressions

Frederic Commo & Briant M. Bot

May 3, 2014

1 Introduction

1.1 Overview

In in-vitro experiments, the aim of drug response analyses is usually to estimate the drug con-
centration required to reach a given cell line growth inhibition rate - typically the 50% inhibitory
concentration (IC50), which inhibits 50% of the proliferation, compared with an untreated control.
This estimation can be achieved by modeling the inhibition rate observed under a range of drug
concentrations. Once the model is fitted, the x values (drug concentrations) can be estimated
from the y values (inhibition rates) by simply inverting the function.

The most commonly used model for drug response analysis is the Richards’ equation [1], also
refered to as a 5-parameter logistic regression [2]:

y = B +
T −B[

1 + 10b(xmid−x)
]s

where B and T are the bottom and top asymptotes, and b, xmid and s are the Hill slope, the
x-coordinate at the inflexion point and an asymetric coefficient, respectively.

The nplr package we have developed is based on the full 5-parameter model, and provides several
options in order to compute flexible weighted n-parameter logistic regression: n can be explicitly
specified, from 2 to 5, or nplr can compare all of these models, and return the optimal one
(by default, npars="all"), with respect to a weighted Goodness-of-Fit estimator. See the nplr

documentation for more details.

During the fitting step, all of the parameters are optimized, simultaneously, using a Newton
method (nlm, R package stats). The objective function to minimize is a weighted sum of squared
errors:

sse(Y) = Σiwi.(ŷi − yi)
2, i = 1, ..., n

The weights, wi, used in the objective function can be computed using 3 possible methods, as
follows:

– residuals weights: wi =
(

1
resi

)p

, i = 1, ..., n values

– standard weights: wir = 1
V ar(yr)

, r = 1, ..., r replicated conditions

– general weights: wi =
(

1
ŷi

)p

, i = 1, ..., n values

where p is a tuning parameter. The standard weights and the general weights methods are
described in [3].

1.2 Functions in nplr

The main function is simply nplr, and requires 2 main arguments: a vector of x and a vector of
y.

The npars argument allows a user to run specific n-parameter models, n from 2 to 5, while the
default value, npars="all", asks the function to test which model fits the best the data, according
to a weighted Goodness-of-Fit estimator.
In some situations, the x values may need to be log-transformed, e.g. x is provided as original drug
concentrations. In such case, setting useLog=TRUE in nplr() will apply a Log10 transformation
on the x values.

The nplr() function has been optimized for fitting curves on y-values passed as proportions
of control, between 0 to 1. If data are supplied as original response values, e.g. optic density
measurements, the convertToProp() function may be helpful. In drug-response curve fitting, a
good practice consists in adjusting the signals on a T0 and a control (Ctrl) values. Providing this
values, the proportion values, yp, are computed as:

yp =
y − T0

Ctrl − T0

where y, T0 and Ctrl are the observed values, the ’time zero’ and the ’untreated control’, respec-
tively.

Note that if neither T0 nor Ctrl are provided, convertToProp() will compute the proportions
with respect to the min and max of y. In that case, the user should be aware that y = 0.5 may
not correspond to a IC50, but rather to a EC50 (the half-effect between the maximum and the
minimum of the observed effects).

In a drug-response (or progression) curve fitting context, typical needs are to invert the function
in order to estimate the x value, e.g. the IC50, given a y value, e.g. the 0.5 survival rate. To
do so, the implemented getEstimates() method takes 2 arguments: the model (an instance of
the class nplr), and one (or a vector of) target(s). getEstimates() returns the corresponding x
values and their estimated confidence intervals, as specified by conf.level.

2 Examples

The examples below use some samples of the NCI-60 Growth Inhibition Data. The full data can
be downloaded at [4]. For the purpose of the demonstration, the supplied drug concentrations
have been re-exponentiated.

2.1 Example 1

2.1.1 Fitting a model

> require(nplr)

The first example fits a simple drug-response curve: the PC-3 cell line treated with Thioguanine,
19 points without replicates.

2

> path <- system.file("extdata", "pc3.txt", package="nplr")

> pc3 <- read.delim(path)

> np1 <- nplr(x=pc3$CONC, y=pc3$GIPROP)

Testing pars

5-Parameters model seems to have better performance.

Calling the object returns the fitting summary for the model.

> np1

Instance of class nplr

5-P logistic model

Bottom asymptote: 0.0001829

Top asymptote: 0.9965

Inflexion point at (x, y): -5.85 0.6271

Goodness of fit: 0.9969

Standard error: 0.0185

2.1.2 Visualizing the model

A specific plot() function has been implemented in order to visualize the results.

> plot(np1, cex.main = 1.2,

+ main="PC-3 cell line. Response to Thioguanine")

●
●

●

●

●

●

●

●

●

●

●

● ●

●
●

●
●

●
●

−8 −7 −6 −5 −4

0.2

0.4

0.6

0.8

1.0

PC−3 cell line. Response to Thioguanine

x

y

●
●

●

●

●

●

●

●

●

●

●

● ●

●
●

●
●

●
●

Goodness of fit: 0.997

Weighted 5−P logistic regr. (nplr package, version: 0.1)

3

This function has several predefined graphical parameters, and some of them can be overwritten.
However, a convenient way to draw simplest or customized plots is shown in the example below:

> plot(np1, pcol="grey40", lcol="skyblue1", showTarget=.5, showInfl=TRUE,

+ main="Using plot()", cex.main=1.5)

> x1 <- getX(np1); y1 <- getY(np1)

> x2 <- getXcurve(np1); y2 <- getYcurve(np1)

> plot(x1, y1, pch=15, cex=2, col="tan1", xlab=expression(Log[10](conc)),

+ ylab="Prop", main="My plot", cex.main=1.5)

> lines(x2, y2, lwd=5, col="seagreen4")

●
●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●
●

●

−8 −7 −6 −5 −4

0.2

0.4

0.6

0.8

1.0

Using plot()

x

y

●
●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●
●

●

Goodness of fit: 0.997

IC50 : 2.5e−06NA
[2.2e−06, 2.9e−06]

●

Weighted 5−P logistic regr. (nplr package, version: 0.1)

−8 −7 −6 −5 −4

0.
2

0.
4

0.
6

0.
8

1.
0

My plot

Log10(conc)

P
ro

p

2.1.3 Accessing the performances

Once the model is built, several accessor functions allow to get access to the performances of the
model, and its parameters.

> getGoodness(np1)

[1] 0.9969

> getStdErr(np1)

[1] 0.0185

> getPar(np1)

$npar

[1] 5

$params

bottom top xmid scal s

1 0.0001829 0.9965 -6.183 -1.428 0.3352

Here, the 5-parameter model have been chosen as it showed better performances, according to the
goodness-of-fit (npar=5). The optimal values for the parameters are reported in params.

4

2.1.4 Estimating the drug concentrations

The purpose of such fitting is to estimate the response to the drug. To do so, nplr provides 2
estimates: the area under the curve (AUC), and the drug concentration for a given response to
reach.

The getAUC() function returns the area under the curve (AUC) estimated by the trapezoid rule
and the Simpson’s rule, while getEstimates() invert the function and returns the estimated
concentration for a given response. If no target is specified, the default output is a table of the x
values corresponding to responses from 0.9 to 0.1.

> getAUC(np1)

trapezoid Simpson

1 2.507 2.527

> getEstimates(np1)

y x.025 x x.975

1 0.9 2.3e-07 3.2e-07 4.0e-07

2 0.8 5.2e-07 6.2e-07 7.3e-07

3 0.7 8.8e-07 1.0e-06 1.2e-06

4 0.6 1.4e-06 1.6e-06 1.8e-06

5 0.5 2.2e-06 2.5e-06 2.9e-06

6 0.4 3.6e-06 4.2e-06 5.1e-06

7 0.3 6.4e-06 7.9e-06 9.9e-06

8 0.2 1.4e-05 1.9e-05 2.7e-05

9 0.1 4.6e-05 8.0e-05 1.7e-04

A single value (a target), or a vector of values, can be passed to getEstimates(), and a confidence
level can be specified (by default, conf.level is set to .95).

> getEstimates(np1, .5)

y x.025 x x.975

1 0.5 2.2e-06 2.5e-06 2.9e-06

> getEstimates(np1, c(.25, .5, .75), conf.level=.90)

y x.05 x x.95

1 0.25 9.1e-06 1.2e-05 1.5e-05

2 0.50 2.2e-06 2.5e-06 2.9e-06

3 0.75 6.9e-07 8.0e-07 9.3e-07

2.2 Example 2

The next example analyses a drug-response experiment with replicated drug concentrations: the
MCF-7 cell line treated with Irinotecan.

> path <- system.file("extdata", "mcf7.txt", package="nplr")

> mcf7 <- read.delim(path)

> np2 <- nplr(x=mcf7$CONC, y=mcf7$GIPROP)

Testing pars

5-Parameters model seems to have better performance.

5

> plot(np2 , cex.main=1.25, main="Cell line MCF-7. Response to Irinotecan")

●

●

●
●

●
●

●

●
●

●
●●

●

●

●

●
●●

●
●

●

●●
●●

●

●

●

●

●

●

●
●

●●

●

●
●

●

●

●

●
●
●
●

−8 −7 −6 −5 −4
0.0

0.2

0.4

0.6

0.8

1.0

Cell line MCF−7. Response to Irinotecan

x

y

●

●

●
●

●
●

●

●
●

●
●●

●

●

●

●
●●

●
●

●

●●
●●

●

●

●

●

●

●

●
●

●●

●

●
●

●

●

●

●
●
●
●

Goodness of fit: 0.968

Weighted 5−P logistic regr. (nplr package, version: 0.1)

As there are replicates, we can compare the effect of the different weighted methods: the default
method is residuals weights, "res". A no-weight condition can be tested by setting the
LPweight argument to 0: The vector of weights is then just a vector of 1’s.

> x <- mcf7$CONC

> y <- mcf7$GIPROP

> noweight <- nplr(x, y, LPweight=0, silent=TRUE)

> sdw <- nplr(x, y, method="sdw", silent=TRUE)

> gw <- nplr(x, y, method="sdw", LPweight=1.5, silent=TRUE)

> plot(np2, showTarget=.5, main="residuals weights")

> plot(noweight, showTarget=.5, main="No weight")

> plot(sdw, showTarget=.5, main="Stdev weights")

> plot(noweight, showTarget=.5, main="general weights")

6

●

●

●

●

●
●

●

●
●

●

●●

●

●

●

●

●●

●
●

●

●
●
●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

−8 −7 −6 −5 −4

0.0

0.2

0.4

0.6

0.8

1.0

residuals weights

x

y

●

●

●

●

●
●

●

●
●

●

●●

●

●

●

●

●●

●
●

●

●
●
●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

Goodness of fit: 0.968

IC50 : 4.7e−06NA
[3e−06, 7.1e−06]

Weighted 5−P logistic regr. (nplr package, version: 0.1)

●

●

●

●

●
●

●

●
●

●

●●

●

●

●

●

●●

●
●

●

●
●
●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

−8 −7 −6 −5 −4

0.0

0.2

0.4

0.6

0.8

1.0

No weight

x

y

●

●

●

●

●
●

●

●
●

●

●●

●

●

●

●

●●

●
●

●

●
●
●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

Goodness of fit: 0.915

IC50 : 4.7e−06NA
[2.3e−06, 9.1e−06]

Non−weighted 5−P logistic regr. (nplr package, version: 0.1)

●

●

●

●

●
●

●

●
●

●

●●

●

●

●

●

●●

●
●

●

●
●
●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

−8 −7 −6 −5 −4

0.0

0.2

0.4

0.6

0.8

1.0

Stdev weights

x

y

●

●

●

●

●
●

●

●
●

●

●●

●

●

●

●

●●

●
●

●

●
●
●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

Goodness of fit: 0.897

IC50 : 4.8e−06NA
[2.8e−06, 7.9e−06]

Weighted 5−P logistic regr. (nplr package, version: 0.1)

●

●

●

●

●
●

●

●
●

●

●●

●

●

●

●

●●

●
●

●

●
●
●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

−8 −7 −6 −5 −4

0.0

0.2

0.4

0.6

0.8

1.0

general weights

x

y
●

●

●

●

●
●

●

●
●

●

●●

●

●

●

●

●●

●
●

●

●
●
●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

Goodness of fit: 0.915

IC50 : 4.7e−06NA
[2.3e−06, 9.1e−06]

Non−weighted 5−P logistic regr. (nplr package, version: 0.1)

Note that the curves do not seem to change dramatically. However, the different weights can give
different performances.

2.3 Example 3

2.3.1 Fitting a Progression/Time model

This last example illustrates a Progression/Time experiment: these are simulated data.

> path <- system.file("extdata", "prog.txt", package="nplr")

> prog <- read.delim(path)

Here, the progression values are given in some unknown unit, and the x values are Time in hours.
So we don’t need to use a Log10 transformation. Let us assume that we have access to the T0 and
the control values. We can use convertToProp() in order to convert the y values to proportions.

> x <- prog$time

> yp <- convertToProp(prog$prog, T0 = 5, Ctrl = 102)

7

> np3 <- nplr(x, yp, useLog=FALSE)

Testing pars

5-Parameters model seems to have better performance.

When progression is at stake, it may be interesting to get the coordinates of the inflexion point,
as it corresponds to the point where the slope (the progression) is maximal.

> getInflexion(np3)

x y

1 24.95 0.817

> plot(np3, showInfl=TRUE, xlab="Time (hrs)", cex.main=1.5, cex.lab=1.2,

+ ylab="Prop. of control", main="Progression")

●

●●
●
●

●

●
●

●

●

●

●

●
●
●

●

●

● ●●●
●
●

●

0 10 20 30 40

0.2

0.4

0.6

0.8

1.0

Progression

Time (hrs)

P
ro

p.
 o

f c
on

tr
ol

●

●●
●
●

●

●
●

●

●

●

●

●
●
●

●

●

● ●●●
●
●

●

Goodness of fit: 0.988

●

Weighted 5−P logistic regr. (nplr package, version: 0.1)

2.3.2 Evaluating the number of parameters

When a 5-p logistic regression is used, and because of the asymetric parameter, the curve is no
longer symetrical around its inflexion point. Here is an illustration of the impact of the number
of parameters on the fitting.

> plot(x, yp , cex.main=1.5, cex.lab=1.2,

+ main="The n-parameter effect", xlab="Time", ylab="Progression")

> le <- c()

8

> for(i in 2:5){

+ test <- nplr(x, yp, npars=i, useLog=FALSE)

+ lines(getXcurve(test), getYcurve(test), lwd=2, col=i)

+ points(getInflexion(test), pch=19, cex=1.25, col=i)

+ gof <- getGoodness(test)

+ le <- c(le, sprintf("%s-P: GOF=%s", i, round(gof, 4)))

+ }

> legend("bottomright", legend=le, lwd=2, pch=19, col=2:5, bty="n")

●

●

●

●

●
●

●
●

●

●

●

●

●
●

● ●

●
●

●

●

●
● ●

●

0 10 20 30 40

0.
2

0.
4

0.
6

0.
8

1.
0

The n−parameter effect

Time

P
ro

gr
es

si
on

●
●

●

●

●

●

●

●

2−P: GOF=0.9738
3−P: GOF=0.9766
4−P: GOF=0.9879
5−P: GOF=0.9881

Note that even if it is the case here, the 5-P model may not be always the best choice.

3 Accessing R code

The R code for nplr is available on github: https://github.com/fredcommo/nplr

References

[1] Richards FJ. “A flexible growth function for empirical use.” In: J Exp Bot. 10 (1959), pp. 290–
300.

[2] Giraldo J et al. “Assessing the (a)symmetry of concentration-effect curves: empirical versus
mechanistic models.” In: Pharmacol Ther. 95.1 (2002), pp. 21–45.

[3] Motulsky HJ and Brown RE. “Assessing the (a)symmetry of concentration-effect curves:
empirical versus mechanistic models.” In: BMC Bioinformatics 9 (2006), pp. 7–123.

9

[4] url: https://wiki.nci.nih.gov/display/NCIDTPdata/NCI-60+Growth+Inhibition+
Data.

10

