Introduction to package nngeo

Michael Dorman

2018-05-15

Contents

Introduction
Package purpose e e e
Installation L e e
Sample data L e e

== e

Usage examples
The st_nn function L e e e e
The st_connect function e e
Dense matrix representationo e e
k-Nearest neighbors where k>0 e
Distance matrix oL oL e e
Search radius e e e
Spatial join oL e e e e
Another example e

SO OO U W W

J

Polygons

Introduction

Package purpose

This document introduces the nngeo package. The nngeo package includes functions for spatial join of laters
based on k-nearest neighbor relation between features. The functions work with spatial layer object defined
in package sf, namely classes sfc and sf.

Installation

GitHub version -

install.packages("devtools")
devtools: :install_github("michaeldorman/nngeo")

Sample data

The nngeo package comes with three sample datasets -

e cities
e towns
e water

The cities layer is a point layer representing the location of the three largest cities in Israel.

cities
Simple feature collection with 3 features and 1 field

#>
#>
#>
#>
#>
#>
#>
#>
#>
#>

geometry type:

dimension:

bbozx:

epsg (SRID):

proj4string:
name

POINT
XY
Tmin: 34.78177 ymin: 31.76832 zmax: 35.21371 ymax: 32.79405
4326
+proj=longlat +datum=WGS84 +no_defs
geometry

1 Jerusalem POINT (35.21371 31.76832)
2 Tel-Aviv POINT (34.78177 32.0853)
& Haifa POINT (34.98957 32.79405)

The towns layer is another point layer, with the location of all towns in Israel whose name begins with the
letter A.
towns

Simple feature collection with 93 features and 1 field

#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>

geometry type:
dimension:
bbozx:

epsg (SRID):
proj4string:

POINT

XY

zmin: 34.3309 ymin: 30.96493 xzmax: 35.83863 ymax: 33.17806
4326

+proj=longlat +datum=WGS84 +no_defs

First 10 features:

LD O™ WO

~ © ®
S

name geometry
ALUMMOT POINT (35.54639 32.70683)

ALLON SHEVUT POINT (35.12573 31.65512)

AVDON POINT (35.18041 33.04801)
ARBEL POINT (35.48441 32.81265)

ASHDOT YA'AQOV(ME'UHAD) POINT (35.5824 32.66228)

ARRABE POINT (35.33804 32.85159)

ATSMON SEGEV ~ POINT (35.25207 32.866)

ARAMSHA POINT (35.22568 33.08865)
AVENAT POINT (35.4369 31.67897)
AZARYA POINT (34.90936 31.89039)

The water layer is an example of a polygonal layer. This layer contains four polygons of water bodies in
Israel.

water
Simple feature collection with 4 features and 1 field

#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>

geometry type: POLYGON
dimension: XY
bbox: zmin: 34.1388 ymin: 29.45338 xzmax: 35.64979 ymaxz: 33.1164
epsg (SRID): 4326
proj4string: +proj=longlat +datum=WGS84 +no_defs
name geometry
1 Red Sea POLYGON ((34.96428 29.54775. .
2 Mediterranean Sea POLYGON ((35.10533 33.07661...
3 Dead Sea POLYGON ((35.54743 31.37881...
4 Sea of Galilee POLYGON ((35.6014 32.89248, ...

Figure 1 shows the spatial configuration of the cities, towns and water layers.

plot(st_geometry(towns), col = NA)

plot(st_geometry(water), col

"lightblue", add = TRUE)

plot(st_geometry(towns), col = "grey", pch = 1, add = TRUE)

Figure 1: Visualization of the water, towns and cities layers

plot(st_geometry(cities), col = "red", pch = 1, add = TRUE)

Usage examples

The st_nn function

The main function in the nngeo package is st_nn.

The st_nn function accepts two layers, x and y, and returns a list with the same number of elements as x
features. Each list element i is an integer vector with all indices j for which x[i] and y[j] are nearest
neighbors.

For example, the following expression finds which feature in towns[1:5,] is the nearest neighbor to each
feature in cities.

nn = st_nn(cities, towns[1:5,], progress = FALSE)
nn

#> [[1]]

#> [1] 2

#>

#> [[2]]

#> [1] 2

#>

#> [[3]]

#> [1] 3

This output tells us that towns[2,] is the nearest among the five features of towns[1:5,] to cities[1,
1, etc.

2

Figure 2: Nearest neighbor match between cities (in red) and towns[1:5, 1 (in grey)

The st_connect function

The resulting nearest neighbor matches can be visualized using the st_connect function. This function
builds a line layer connecting features from two layers x and y based on the relations defined in a list such
the one returned by st_nn -

1

1

#>
#>
#>
#>
#>
#>
#>
#>
#>

st_connect(cities, towns[1:5,], ids = nn, progress = FALSE)

Geometry set for 3 features
geometry type: GEOMETRY

dimension: XY
bbox: xzmin: 34.78177 ymin: 31.65512 zmaxz: 35.21371 ymazxz: 33.04801
epsg (SRID): NA
proj4string: NA

LINESTRING (35.21371 31.76832, 35.12573 31.65512)
LINESTRING (34.78177 32.0853, 35.12573 31.65512)
LINESTRING (34.98957 32.79405, 35.18041 33.04801)

Plotting the line layer 1 gives a visual demonstration of the nearest neighbors match, as shown in Figure 2.

plot(st_geometry(towns[1:5,]), col = "darkgrey")
plot(st_geometry(l), add = TRUE)
plot(st_geometry(cities), col = "red", add = TRUE)
text (

)

st_coordinates(cities) [, 1],
st_coordinates(cities) [, 2],
1:3, col = "red", pos = 4

text (

)

st_coordinates(towns([1:5, 1) [, 1],
st_coordinates(towns([1:5, 1) [, 2],
1:5, pos = 4

Dense matrix representation

The st_nn can also return the complete logical matrix indicating whether each feature in x is a neighbor of
y. To get the dense matrix, instead of a list, use sparse=FALSE.

nn = st_nn(cities, towns[1:5,], sparse = FALSE, progress = FALSE)
nn

#> [,17 [,2] [,3] [,4]1 [,5]

#> [1,] FALSE TRUE FALSE FALSE FALSE

#> [2,] FALSE TRUE FALSE FALSE FALSE

#> [3,] FALSE FALSE TRUE FALSE FALSE

k-Nearest neighbors where k>0

It is also possible to return any k-nearest neighbors, rather than just one. For example, setting k=2 returns
the two nearest neighbors -

nn = st_nn(cities, towns[1:5,], k = 2, progress = FALSE)
nn

#> [[1]]

#> [1] 2 5

#>

#> [[2]]

#> [1] 2 5

#>

#> [[3]]

[1] 3 4

nn = st_nn(cities, towns[1:5,], sparse = FALSE, k = 2, progress = FALSE)
nn

#> [,17 [,2] [,3] [,4]1 [,5]

#> [1,] FALSE TRUE FALSE FALSE TRUE

#> [2,] FALSE TRUE FALSE FALSE TRUE

#> [3,] FALSE FALSE TRUE TRUE FALSE

\

Distance matrix

Using returnDist=TRUE the distances matrix is also returned, in addition the the neighbor matches, with

both componenets now comprising a list -

nn = st_nn(
cities, towns[1:5,], sparse = FALSE, k = 2, returnDist = TRUE,
progress = FALSE

)

nn

#> $nn

#> [,17 [,2] [,3] [,4] [,5]

#> [1,] FALSE TRUE FALSE FALSE TRUE

#> [2,] FALSE TRUE FALSE FALSE TRUE

#> [3,] FALSE FALSE TRUE TRUE FALSE

#>

#> $dist

#> [,1] [,2]

#> [1,] 15069.49 105048.39
#> [2,] 57746.32 98846.89
#> [3,] 33345.18 46392.06

Search radius

Finally, the search for nearest neighbors can be limited to a search radius using maxdist. In the following
example, the search radius is set to 50,000 meters (50 kilometers). Note that no neighbors are found within
the search radius for cities[2,].

nn = st_nn(
cities, towns[1:5,], sparse = FALSE, k = 2, returnDist = TRUE, maxdist = 50000,
progress = FALSE

)

nn

#> $nn

#> [,17 [,2] [,3] [,4]1 [,5]

#> [1,] FALSE TRUE FALSE FALSE FALSE

#> [2,] FALSE FALSE FALSE FALSE FALSE

#> [3,] FALSE FALSE TRUE TRUE FALSE

#>
#> $dist

#> [,1] [,2]
#> [1,] 15069.49 NA
#> [2,] NA NA

#> [3,] 33345.18 46392.06

Spatial join

The st_nn function can also be used as a geometry predicate function when performing spatial join with
sf::st_join.

For example, the following expression spatially joins the two nearest towns[1:5,] features to each cities
features, using a search radius of 50 km.

st_join(cities, towns[1:5,], join = st_nn, k = 2, maxdist = 50000)

Another example

Here is another example, finding the 10-nearest neighbor towns features for each cities feature.

st_nn(cities, towns, k = 10)
st_connect(cities, towns, ids = x)

X
1

The result is visualized in Figure 3.

plot(st_geometry(towns), col = "darkgrey")
plot(st_geometry(l), add = TRUE)
plot(st_geometry(cities), col = "red", add = TRUE)

Figure 3: Nearest 10 towns features from each cities feature

Polygons

Nearest neighbor search also works for non-point layers. The following code section finds the 20-nearest
towns features for each water body in water[-1,].

nn = st_nn(water[-1,], towns, k = 20, progress = FALSE)

Again, we can calculate the respective lines for the above result using st_connect.

1 = st_connect(water[-1,], towns, ids = nn, progress = FALSE)

The result is visualized on Figure 4.

plot(st_geometry(water[-1, 1), col = "lightblue", border = "grey")
plot(st_geometry(towns), col = "darkgrey", add = TRUE)
plot(st_geometry(l), col = "red", add = TRUE)

Figure 4: Nearest 20 towns features from each water polygon

	Introduction
	Package purpose
	Installation
	Sample data

	Usage examples
	The st_nn function
	The st_connect function
	Dense matrix representation
	k-Nearest neighbors where k>0
	Distance matrix
	Search radius
	Spatial join
	Another example

	Polygons

