There are at least 4 R packages with a function for performing NIPALS on a matrix that contains missing values (and several other packages have functions which do not allow missing values). These functions have slightly different scalings for the returned values, and were written with different coding styles.
With careful attention to some of the scaling details of the returned values, all 4 packages produce the same results. However, there are dramatic differences in performance.
NOTE! These comparisons were made before nipals::nipals
gained the Gram-Schmidt orthogonalization by default.
A small dataset with 2 missing values in the first column will be used to compare the numerical results from the 4 packages.
B <- matrix(c(50, 67, 90, 98, 120,
55, 71, 93, 102, 129,
65, 76, 95, 105, 134,
50, 80, 102, 130, 138,
60, 82, 97, 135, 151,
65, 89, 106, 137, 153,
75, 95, 117, 133, 155), ncol=5, byrow=TRUE)
rownames(B) <- c("G1","G2","G3","G4","G5","G6","G7")
colnames(B) <- c("E1","E2","E3","E4","E5")
B2 = B
B2[1,1] = B2[2,1] = NA
B2 <- as.matrix(B2)
same <- function(a,b, tol=1e-3){
all.equal( abs(a), abs(b), tol=tol, check.attributes=FALSE)
}
Since principal components are only unique up to a change of sign, a small function same()
has been defined to take absolute values before calling all.equal
. The same()
function will be used to compare results from the differnt functions. In the next 3 sections, the results from the nipals
package are compared to the ade4
, plsdepot
, and mixOmics
packages respectively.
The ade4
package uses a scaling of the data which divides by n
instead of n-1
, so we need to scale the data by hand before using the nipals
package. NOTE! the scaling used in ade4
changed sometime after 30 Oct 2017. These results use the old scaling.
library(ade4)
made <- ade4::nipals(B2, nf=5, rec=TRUE, niter=500, tol=1e-9)
B2a <- apply(B2, 2, function(x) {
n <- sum(!is.na(x))
x <- x - mean(x, na.rm=TRUE)
x <- x / ( sd(x, na.rm=TRUE) * (n-1) / n )
})
mnip <- nipals::nipals(B2a, ncomp=5, center=FALSE, scale=FALSE, fitted=TRUE, maxiter=500, tol=1e-9, gramschmidt=FALSE)
The eigenvalues reported by ade4
are the squared singular values divided by \(n-1\).
# data
same(B2a, as.matrix(made$tab))
# TRUE
# eigenvalues, ade4 uses squared singular values / n-1
mnip$eig
# [1] 5.7452644 2.4886658 1.2653580 0.2839543 0.1704078
made$eig
# [1] 5.50135937 1.03224198 0.26685613 0.01343861 0.00483985
same(mnip$eig ^ 2 / (nrow(B2a)-1), made$eig)
# TRUE
# P loadings
same(mnip$loadings, made$c1)
# TRUE
# T scores. For nipals, sweep IN the eigenvalues
same( sweep(mnip$scores, 2, mnip$eig, "*"), made$li)
# TRUE
library(plsdepot)
mpls <- plsdepot::nipals(B2, comps=5)
library(nipals)
mnip <- nipals::nipals(B2a, ncomp=5, maxiter=100, tol=1e-6, gramschmidt=FALSE)
# eigenvalues
mnip$eig
# [1] 4.8762167 2.0442757 1.0728055 0.2369607 0.1432779
mpls$values[,1]
# [1] 3.963172007 0.696484184 0.191839875 0.009366425 0.003421661
same(m.nip$eval, sqrt(mpls$values[,1] * 6) )
# TRUE
# P loadings
mnip$loadings
mpls$loadings
same(mnip$loadings, mpls$loadings, tol=1e-2 )
# TRUE
# T scores
mnip$scores
mpls$scores
same( sweep(mnip$scores, 2, mnip$eig, "*"), mpls$scores)
# TRUE
library(mixOmics)
library(nipals)
mnip <- nipals::nipals(B2, gramschmidt=FALSE)
mmix <- mixOmics::nipals(scale(B2), ncomp=5)
# eigenvalues
mnip$eig
mmix$eig
same(mnip$eig, mmix$eig)
# TRUE
# P loadings
mnip$loadings
mmix$p
same(mnip$loadings, mmix$p, tol=1e-2)
# TRUE
# T scores
mnip$scores
mmix$t
same(mnip$scores, mmix$t, tol=1e-2)
TRUE
For the purpose of comparing performance of the functions, we simulate a 100 x 100 matrix and insert one missing value.
set.seed(43)
Bbig <- matrix(rnorm(100*100), nrow=100)
Bbig2 <- Bbig
Bbig2[1,1] <- NA
The ade4::nipals
function uses for
loops to loop of the columns of X
, which results in very slow execution even when calculating only 1 principal component.
system.time(ade4::nipals(Bbig2, nf=1)) # Only 1 factor!
## user system elapsed
## 42.09 0.00 42.14
The plsdepot::nipals
function is fast enough that all 100 PCs can be calculated.
system.time(plsdepot::nipals(Bbig2, comps=1)) # Only 1 factor !
# user system elapsed
# 0.5 0.0 0.5
system.time(plsdepot::nipals(Bbig2, comps=100)) # 100 factors
# user system elapsed
# 30.19 0.00 30.18
The mixOmics::nipals
function uses crossprod
and a few other tricks to improve performance.
system.time(mixOmics::nipals(scale(Bbig2), ncomp=100)) # 100 factors
# user system elapsed
# 20.70 0.00 20.81
The nipals::nipals
function was optimized through extensive testing and is faster by a factor of 7 times!
system.time(nipals::nipals(Bbig2, ncomp=100, gramschmidt=FALSE)) # 100 factors
# user system elapsed
# 2.74 0.00 2.75