
The mvp package: fast multivariate polynomials R
Robin K. S. Hankin

2019-09-05

Introduction

The mvp package provides some functionality for fast manipulation of multivariate polynomials, using the
Standard Template library of C++, commonly known as the STL. It is comparable in speed to the spray

package for sparse arrays, while retaining the symbolic capabilities of the mpoly package (Kahle 2013). The
mvp package uses the excellent print and coercion methods of mpoly. The mvp package provides improved
speed over mpoly, the ability to handle negative powers, and a more sophisticated substitution mechanism.

The STL map class

A map is a sorted associative container that contains key-value pairs with unique keys. It is interesting here
because search and insertion operations have logarithmic complexity. Multivariate polynomials are considered
to be the sum of a finite number of terms, each multiplied by a coefficient. A term is something like x2y3z.
We may consider this term to be the map

{"x" -> 2, "y" -> 3, "z" -> 1}

where the map takes symbols to their (integer) power; it is understood that powers are nonzero. A mvp object
is a map from terms to their coefficients; thus 7xy2

− 3x2yz5 would be

{{"x" -> 1, "y" -> 2} -> 7, {"x" -> 2, 'y" -> 1, "z" ->5} -> -3}

and we understand that coefficients are nonzero. In C++ the declarations would be

typedef vector <signed int> mypowers;

typedef vector <string> mynames;

typedef map <string, signed int> term;

typedef map <term, double> mvp;

Thus a term maps a string to a (signed) integer, and a mvp maps terms to doubles. One reason why the map

class is fast is that the order in which the keys are stored is undefined: the compiler may store them in the
order which it regards as most propitious. This is not an issue for the maps considered here as addition and
multiplication are commutative and associative.

Note also that constant terms are handled with no difficulty (constants are simply maps from the empty map
to its value), as is the zero polynomial (which is simply an empty map).

The package in use

Consider a simple multivariate polynomial 3xy + z3 + xy6z and its representation in the following R session:

library("mvp",quietly=TRUE)

(p <- as.mvp("3 x y + z^3 + x y^6 z"))

#> mvp object algebraically equal to

#> 3 x y + x y^6 z + z^3

1

Coercion and printing are accomplished by the mpoly package (there is no way I could improve upon Kahle’s
work). Note carefully that the printed representation of the mvp object is created by the mpoly package
and the print method can rearrange both the terms of the polynomial (3xy + z3 + xy6z = z3 + 3xy + xy6z,
for example) and the symbols within a term (3xy = 3yx, for example) to display the polynomial in a
human-friendly form.

However, note carefully that such rearranging does not affect the mathematical properties of the polynomial
itself. In the mvp package, the order of the terms is not preserved (or even defined) in the internal representation
of the object; and neither is the order of the symbols within a single term. Although this might sound odd, if
we consider a marginally more involved situation, such as

(M <- as.mvp("3 stoat goat^6 -4 + 7 stoatboat^3 bloat -9 float boat goat gloat^6"))

#> mvp object algebraically equal to

#> -4 + 7 bloat stoatboat^3 - 9 boat float gloat^6 goat + 3 goat^6 stoat

dput(M)

#> structure(list(names = list(character(0), c("bloat", "stoatboat"

#>), c("boat", "float", "gloat", "goat"), c("goat", "stoat")),

#> power = list(integer(0), c(1L, 3L), c(1L, 1L, 6L, 1L), c(6L,

#> 1L)), coeffs = c(-4, 7, -9, 3)), class = "mvp")

it is not clear that any human-discernable ordering is preferable to any other, and we would be better off
letting the compiler decide a propitious ordering. In any event, the mpoly package can specify a print order:

print(M,order="lex", varorder=c("stoat","goat","boat","bloat","gloat","float","stoatboat"))

#> mvp object algebraically equal to

#> 3 stoat goat^6 - 9 goat boat gloat^6 float + 7 bloat stoatboat^3 - 4

Arithmetic operations

The arithmetic operations *, +, - and ˆ work as expected:

(S1 <- rmvp(5,2,2,4))

#> mvp object algebraically equal to

#> a^2 b + 5 a^2 c^2 + 3 b c^2 + 2 b^2 c + 4 c^2 d

(S2 <- rmvp(5,2,2,4))

#> mvp object algebraically equal to

#> a^2 b + 3 b^2 c + 9 b^3 + 2 c d^2

S1 + S2

#> mvp object algebraically equal to

#> 2 a^2 b + 5 a^2 c^2 + 3 b c^2 + 5 b^2 c + 9 b^3 + 2 c d^2 + 4 c^2 d

S1 * S2

#> mvp object algebraically equal to

#> 2 a^2 b c d^2 + 4 a^2 b c^2 d + 3 a^2 b^2 c^2 + 15 a^2 b^2 c^3 + 5 a^2 b^3 c + 45 a^2 b^3 c^2

S1^2

#> mvp object algebraically equal to

#> 8 a^2 b c^2 d + 30 a^2 b c^4 + 6 a^2 b^2 c^2 + 20 a^2 b^2 c^3 + 4 a^2 b^3 c + 40 a^2 c^4 d

Substitution

The package has two substitution functionalities. Firstly, we can substitute one or more variables for a
numeric value. Define a mvp object:

(S3 <- as.mvp("x + 5 x^4 y + 8 y^2 x z^3"))

#> mvp object algebraically equal to

2

#> x + 8 x y^2 z^3 + 5 x^4 y

And then we may substitute x = 1:

subs(S3, x = 1)

#> mvp object algebraically equal to

#> 1 + 5 y + 8 y^2 z^3

Note the natural R idiom, and that the return value is another mvp object. We may subsitute for the other
variables:

subs(S3, x = 1, y = 2, z = 3)

#> [1] 875

(in this case, the default behaviour is to return the the resulting polynomial coerced to a scalar). We can
suppress the coercion using the lose argument:

subs(S3, x = 1, y = 2, z = 3,lose=FALSE)

#> mvp object algebraically equal to

#> 875

The idiom also allows one to substitute a variable for an mvp object:

subs(as.mvp("a+b+c"), a="x^6")

#> mvp object algebraically equal to

#> b + c + x^6

Note carefully that subs() depends on the order of substitution:

subs(as.mvp("a+b+c"), a="x^6",x="1+a")

#> mvp object algebraically equal to

#> 1 + 6 a + 15 a^2 + 20 a^3 + 15 a^4 + 6 a^5 + a^6 + b + c

subs(as.mvp("a+b+c"), x="1+a",a="x^6")

#> mvp object algebraically equal to

#> b + c + x^6

Pipes

Substitution works well with pipes:

as.mvp("a+b") %>% subs(a="a^2+b^2") %>% subs(b="x^6")

#> mvp object algebraically equal to

#> a^2 + x^6 + x^12

Differentiation

Differentiation is implemented. First we have the deriv() method:

(S <- as.mvp("a + 5 a^5*b^2*c^8 -3 x^2 a^3 b c^3"))

#> mvp object algebraically equal to

#> a - 3 a^3 b c^3 x^2 + 5 a^5 b^2 c^8

deriv(S, letters[1:3])

#> mvp object algebraically equal to

#> -27 a^2 c^2 x^2 + 400 a^4 b c^7

deriv(S, rev(letters[1:3])) # should be the same.

#> mvp object algebraically equal to

#> -27 a^2 c^2 x^2 + 400 a^4 b c^7

3

Also a slightly different form: aderiv(), here used to evaluate ∂
6
S

∂a3∂b∂c2 :

aderiv(S, a = 3, b = 1, c = 2)

#> mvp object algebraically equal to

#> 33600 a^2 b c^6 - 108 c x^2

Again, pipes work quite nicely:

S %<>% aderiv(a=1,b=2) %>% subs(c="x^4") %>% `+`(as.mvp("o^99"))

S

#> mvp object algebraically equal to

#> 50 a^4 x^32 + o^99

Taylor series

The package includes functionality to deal with Taylor and Laurent series:

(X <- as.mvp("1+x+x^2 y")^3)

#> mvp object algebraically equal to

#> 1 + 3 x + 3 x^2 + 3 x^2 y + x^3 + 6 x^3 y + 3 x^4 y + 3 x^4 y^2 + 3 x^5 y^2 + x^6 y^3

trunc(X,3) # truncate, retain only terms with total power <= 3

#> mvp object algebraically equal to

#> 1 + 3 x + 3 x^2 + 3 x^2 y + x^3

trunc1(X,x=3) # truncate, retain only terms with power of x <= 3

#> mvp object algebraically equal to

#> 1 + 3 x + 3 x^2 + 3 x^2 y + x^3 + 6 x^3 y

onevarpow(X,x=3) # retain only terms with power of x == 3

#> mvp object algebraically equal to

#> 1 + 6 y

second order taylor expansion of f(x)=sin(x+y) for x=1.1, about x=1:

sinxpy <- horner("x+y",c(0,1,0,-1/6,0,+1/120,0,-1/5040)) # sin(x+y)

dx <- as.mvp("dx")

t2 <- sinxpy + aderiv(sinxpy,x=1)*dx + aderiv(sinxpy,x=2)*dx^2/2

(t2 %<>% subs(x=1,dx=0.1)) # (Taylor expansion of sin(y+1.1), left in symbolic form)

#> mvp object algebraically equal to

#> 0.8912877 + 0.4534028 y - 0.4458333 y^2 - 0.07597222 y^3 + 0.03659722 y^4 + 0.003291667 y^5

(t2 %>% subs(y=0.3)) - sin(1.4) # numeric; should be small

#> [1] -1.416914e-05

Function series() will decompose an mvp object into a power series in a single variable:

p <- as.mvp("a^2 x b + x^2 a b + b c x^2 + a b c + c^6 x")

p

#> mvp object algebraically equal to

#> a b c + a b x^2 + a^2 b x + b c x^2 + c^6 x

series(p,'x')

#> x^0(a b c) + x^1(a^2 b + c^6) + x^2(a b + b c)

This works nicely with subs() if we wish to take a power series about x-v, where v is any mvp object. For
example:

p %>% subs(x="xmv+a+b") %>% series("xmv")

#> xmv^0(a b c + 2 a b^2 c + a b^3 + a c^6 + a^2 b c + 3 a^2 b^2 + 2

#> a^3 b + b c^6 + b^3 c) + xmv^1(2 a b c + 2 a b^2 + 3 a^2 b + 2 b^2 c

#> + c^6) + xmv^2(a b + b c)

4

is a series in powers of x-a-b. We may perform a consistency check by a second substitution, returning us to
the original expression:

p == p %>% subs(x="xmv+a+b") %>% subs(xmv="x-a-b")

#> [1] TRUE

If function series() is given a variable name ending in _m_foo, where foo is any variable name, then this is
typeset as (x-foo). For example:

as.mvp('x^3 + x*a') %>% subs(x="x_m_a + a") %>% series("x_m_a")

#> (x-a)^0(a^2 + a^3) + (x-a)^1(a + 3 a^2) + (x-a)^2(3 a) + (x-a)^3(1)

So above we see the expansion of x2 + ax in powers of x − a. If we want to see the expansion of a mvp in
terms of a more complicated expression then it is better to use a nonce variable v:

as.mvp('x^2 + x*a+b^3') %>% subs(x="x_m_v + a^2+b") %>% series("x_m_v")

#> (x-v)^0(a b + 2 a^2 b + a^3 + a^4 + b^2 + b^3) + (x-v)^1(a + 2 a^2

#> + 2 b) + (x-v)^2(1)

where it is understood that v = a + b2. Function taylor() is a convenience wrapper that does some of the
above in one step:

p <- as.mvp("1+x-x*y+a")^2

taylor(p,'x','a')

#> (x-a)^0(1 + 4 a - 2 a y + 4 a^2 - 4 a^2 y + a^2 y^2) + (x-a)^1(2 +

#> 4 a - 6 a y + 2 a y^2 - 2 y) + (x-a)^2(1 - 2 y + y^2)

But it’s not as good as I expected it to be and frankly it’s overkill.

Extraction

Given a multivariate polynomial, one often needs to extract certain terms. Because the terms of an mvp

object have an implementation-dependent order, this can be difficult. But we can use function onevarpow():

P <- as.mvp("1 + z + y^2 + x*z^2 + x*y")^4

onevarpow(P,x=1,y=2)

#> mvp object algebraically equal to

#> 12 z^2 + 24 z^3 + 12 z^4

Negative powers

The mvp package handles negative powers, although the idiom is not perfect and I’m still working on it.
There is the invert() function:

(p <- as.mvp("1+x+x^2 y"))

#> mvp object algebraically equal to

#> 1 + x + x^2 y

invert(p)

#> mvp object algebraically equal to

#> 1 + x^-2 y^-1 + x^-1

In the above, p is a regular multivariate polynomial which includes negative powers. It obeys the same
arithmetic rules as other mvp objects:

p + as.mvp("z^6")

#> mvp object algebraically equal to

#> 1 + x + x^2 y + z^6

5

We can see the generating function for a chess knight:

knight(2)

#> mvp object algebraically equal to

#> a^-2 b^-1 + a^-2 b + a^-1 b^-2 + a^-1 b^2 + a b^-2 + a b^2 + a^2 b^-1 + a^2 b

How many ways are there for a 4D knight to return to its starting square after four moves? Answer:

constant(knight(4)^4)

#> [1] 12528

Some timings

I will show some timings using a particularly favourable example that exploits the symbolic nature of the mvp

package.

library("spray")

library("mpoly")

n <- 100

k <- kahle(n, r = 3, p = 1:3, symbols = paste0("x", sprintf("%03d", 1:n)))

In the above, polynomial k has 500 terms of the form xy2z3. Coercing k to spray form would need a 500×500
matrix for the indices, almost every element of which would be zero. This makes the spray package slower:

library("microbenchmark")

spray_k <- mvp_to_spray(k)

microbenchmark(k^2, spray_k^2)

#> Unit: milliseconds

#> expr min lq mean median uq max neval

#> k^2 100.64278 103.16840 106.62547 104.40147 109.4789 124.0488 100

#> spray_k^2 45.79949 47.58065 51.46645 49.23919 52.8457 101.1597 100

In the above, the first line uses mvp functionality, and the second line uses spray functionality. The speedup
increases for larger polynomials.

References

Kahle, D. 2013. “Mpoly: Multivariate Polynomials in R.” R Journal 5 (1): 162.

6

https://github.com/RobinHankin/spray

	Introduction
	The STL map class
	The package in use
	Arithmetic operations
	Substitution
	Pipes

	Differentiation
	Taylor series
	Extraction
	Negative powers
	Some timings

	References

