
MULTIPLE-TABLE DATA IN R

Multiple-table data in R
by Steven C Walker, Guillaume Guénard, and Pierre Leg-
endre

Abstract Data frames are integral to R. They
provide a standard format for passing data to
model-fitting and plotting functions, and this
standard makes it easier for experienced users to
learn new functions that accept data as a single
data frame. Still, many data sets do not easily fit
into a single data frame. Manipulating such in-
herently multiple-table data using several data
frames can result in long and difficult-to-read
workflows. We introduce the multitable pack-
age to provide new data storage objects called
data.list objects, which extend the data.frame
concept to explicitly multiple-table settings. Like
data frames, data lists are lists of variables stored
as vectors; what is new is that these vectors have
dimension attributes that make accessing and
manipulating them easier. As data.list objects
can be coerced to data.frame objects, they can
be used with all R functions that accept an object
that is coercible to a data.frame.

Introduction

The standard data management paradigm in R
is based on data.frame objects, which are two-
dimensional data tables with rows and columns rep-
resenting replicates (sometimes also called objects)
and variables. Standard R workflows require that the
data to be analysed are organised into a data frame
(Chambers and Hastie, 1992). Hypotheses about the
relationships between variables in the data frame are
expressed using formula objects. Data frames and
formulas are combined by passing them to functions
that produce analyses (e.g. plots; fitted models; sum-
mary statistics). This framework allows scientists to
concentrate on their primary interests—the relation-
ships between variables—without explicit reference
to mathematical and algorithmic details. It also pro-
vides access to those details, which are required for
more effective analyses and to develop new meth-
ods of analysis within the framework. As new meth-
ods are developed, researchers simply pass their data
frames to new functions in much the same way they
would pass them to older functions. Thus, by sep-
arating low-level methods development from high-
level data analysis, R fosters the formation of a com-
munity of researchers where both methodologists
and analysts have mutually beneficial interactions.

Research in community ecology (i.e. the ecol-
ogy of more than one species) sometimes involve
data sets that do not easily fit within a single data
frame. A common example is the fourth-corner prob-
lem (Legendre et al., 1997), in which three data ta-

bles are to be analysed: a sites-by-species table of
abundances or occurrences; a table of environmen-
tal variables at each site; and a table of traits for each
species (Fig. 1). Such data are characterised by a con-
spicuous (lower-right) ‘fourth-corner’, where there
are no data. The missing data in the fourth corner
are not caused by the usual problems (e.g. broken
field equipment; budget restrictions; bad weather;
dead subjects), but are part of the study design it-
self. The fourth-corner problem is a special case of a
general ‘multiple-table problem’, which can be much
more complex (e.g. could involve three-dimensional
‘cubes’ of data, Fig. 2). The challenge of analysing
such multiple-table data sets in R is that it is not ob-
vious how to organise them into a single data.frame,
which is required in standard R workflows. Our goal
with the multitable package is to provide tools that
make analysing multiple-table data sets easier.

abundance

species environmental
variables

fourth
corner

si
te

s
tr

ai
ts

Figure 1: Schematic diagram of a data structure with
a fourth-corner problem.

One possible solution is to develop new R
analysis functions—or new software packages
altogether—that are specifically designed to accept
several tables as input. There have been several such
methods developed in ecology, focusing on data with
a fourth-corner problem (Dolédec et al., 1996; Legen-
dre et al., 1997; Dray and Legendre, 2008; Pillar and
Duarte, 2010; Leibold et al., 2010; Ives and Helmus,
2011). However, these methods do not apply to data
sets that have other more complex multiple-table
data structures (e.g. zooplankton communities in

1

THE STRUCTURE OF DATA LISTS MULTIPLE-TABLE DATA IN R

Lac Croche, Fig. 2) (Cantin et al., 2011). One ap-
proach to such issues would be to develop suites
of data analysis functions for each new data struc-
ture. But such an approach is less than ideal, as it
would require that new methods be developed for
each new structure—it does not take advantage of
the large number of tools developed for standard R
workflows (Chambers and Hastie, 1992). The multi-
table package provides an alternative approach, by
introducing a multiple-table generalisation of data
frames—called data lists—which can be analysed
with virtually any function that can be used to anal-
yse a data frame. Thus, instead of providing new
methods of analysis, multitable provides new meth-
ods of data management and organisation.

abundance

traits

time

si
te

s
ti

m
e

sc
al

es

sp
ec

ies

en
vrn

m
ntl

vrb
ls

Figure 2: The structure of the Lac Croche zoo-
plankton community data. The abundances of zoo-
plankton species and several environmental vari-
ables were measured every two weeks in the sum-
mer at various basins (i.e. sites) in the lake over two
years. In addition, the species were characterised by
a suite of traits.

How can data lists make data organisation eas-
ier? Although practically any data set can be forced
into a single data.frame by either repeating some of
the data or adding missing values, other structures
often exist that would make a particular data set eas-
ier to understand, manipulate, and analyse. Accord-
ingly, we have designed data.list objects to pro-

vide a richer structure than data.frame objects for
representing our data ‘as we understand them’. As
we have discussed, there are important advantages
to organising data in data.frame objects—perhaps
the most important advantage being the powerful
catalogue of R functions that accept data in such a
form. The multitable package provides methods for
coercing data.list objects into data.frame objects,
thus making standard R tools available to multiple-
table data organised as a data.list object. In sum-
mary, the multitable model of data organisation is
to manipulate, transform, and extract subsets of our
data in data.list-form, and then to coerce them into
data.frame-form when we are ready to pass them to
analysis functions (Fig. 3). Importantly, data, formu-
las, and functions are kept separate, thus preserving
the benefits of using R in the standard way.

There are several existing R packages that are de-
signed to make data organisation easier (e.g. re-
shape2; Wickham, 2007). In fact, the mefa and mefa4
packages have been developed to organise data with
a slight generalisation1 of the fourth-corner problem
(Sólymos, 2009). The multitable package has much
in common with mefa, but there are noticeable dif-
ferences. For example, multitable is designed to han-
dle more general data structures than mefa or mefa4;
in particular, mefa is not able to represent the rela-
tional structure of the Lac Croche data depicted in
Fig. 2). On the other hand, mefa provides more ex-
tensive tools for data summarisation than multitable
and mefa4 integrates tools for sparse-matrix compu-
tations. We therefore expect mefa and multitable to
often be complementary in practice.

The purpose of this article is to justify and in-
troduce the use of the multitable package. We be-
gin by describing the structure of a toy data.list
object. Then we illustrate one of the most power-
ful features of data.list objects: methods that al-
low related variables, which do not easily fit into a
single data frame, to be subscripted simultaneously.
Next we show that variables in data lists can be trans-
formed and modelled, in much the same manner that
is standard for variables in data frames. Finally, we
describe a simple method for creating data.list ob-
jects, and use this method to introduce some helpful
concepts associated with multiple-table data in gen-
eral.

The structure of data lists

The multitable package comes with a fictitious
data.list, to illustrate how these objects work.

> library(multitable)
> data(fake.community)
> fake.community

abundance:

1Several community matrices—called segments—with identical dimensions are allowed in mefa.

2

THE STRUCTURE OF DATA LISTS MULTIPLE-TABLE DATA IN R

data files data list data frame + formula + function = analysis

Figure 3: The multitable paradigm for including multiple-table data (in red) into standard R workflows (in
blue). Data lists are used to organise and manipulate multiple-table data as a single R object, even though such
data will typically be originally stored in multiple text-based data files. When such data are ready for analy-
sis, they are coerced into a data frame. Once in data frame form, they can be used in analyses by combining
them with formulas (to specify hypothetical relationships between variables) and functions (to call statistical
methods).

, , capybara

2009 2008 1537
midlatitude 4 0 0
subtropical 0 10 0
tropical 8 0 0
equatorial 0 7 0
arctic 0 0 0
subarctic 0 0 0

, , moss

2009 2008 1537
midlatitude 0 6 0
subtropical 0 0 0
tropical 9 0 0
equatorial 0 3 0
arctic 5 0 0
subarctic 0 0 0

, , vampire

2009 2008 1537
midlatitude 0 0 0
subtropical 0 0 1
tropical 0 0 0
equatorial 0 0 0
arctic 0 0 0
subarctic 0 0 0

Replicated along: || sites || years || species ||

temperature:

2009 2008 1537
midlatitude NA 10 NA
subtropical 25 20 NA
tropical 48 50 NA
equatorial 50 30 NA
arctic -37 -30 NA
subarctic 3 0 NA
Replicated along: || sites || years ||

precipitation:

2009 2008 1537
midlatitude NA 20 NA
subtropical 99 100 NA
tropical 149 150 NA
equatorial 199 200 NA
arctic 21 20 NA

subarctic 41 40 NA
Replicated along: || sites || years ||

body.size:

capybara moss vampire

140 NA 190
Replicated along: || species ||

metabolic.rate:

capybara moss vampire

20 5 0
Replicated along: || species ||

homeotherm:

capybara moss vampire

Y N N
Levels: N Y
Replicated along: || species ||

REPLICATION DIMENSIONS:
sites years species

6 3 3

At first sight, this data.list object looks very dif-
ferent from standard data.frame objects, but on sec-
ond look we can see that they are really quite sim-
ilar. Just like data frames, data lists are composed
of a number of variables—in this case, we have six
variables (abundance; temperature; precipitation;
body.size; metabolic.rate; and homeotherm) each
identified in the printed object above by underlined
names. The variables in data lists must be printed
in this sequential manner, rather than as columns
neatly lined up in a data frame, precisely because
the variables in multiple-table data sets do not line
up neatly; this is the problem multitable seeks to ad-
dress.

Also as with data frames, the replication of vari-
ables in data lists are represented as vectors of val-
ues. The main difference between the two objects
in this regard is that the vectors that represent vari-
ables in data lists have dim (i.e. dimension) at-
tributes. These dim attributes give data.list ob-
jects further structure. In R, vectors with dim at-

3

SUBSCRIPTING DATA LISTS MULTIPLE-TABLE DATA IN R

tributes are best thought of as matrices and arrays
of numbers. For example, the abundance variable
is replicated along three dimensions (sites; years;
and species), and therefore is a three dimensional
array of data. This information is displayed after
the data whenever a data.list object is printed.
Some variables are only replicated along two dimen-
sions (e.g. temperature and precipitation) and
others only have one dimension (e.g. body.size;
metabolic.rate; and homeotherm).

Importantly however, although the variables are
not replicated along all of the same dimensions, they
do share dimensions; and it is this dimension sharing
that allows us to relate variables to each other. To ap-
preciate the dimension sharing of this example, we
can use the summary method for data.list objects:

> summary(fake.community)

abundance temperature precipitation
sites TRUE TRUE TRUE
years TRUE TRUE TRUE
species TRUE FALSE FALSE

body.size metabolic.rate homeotherm
sites FALSE FALSE FALSE
years FALSE FALSE FALSE
species TRUE TRUE TRUE

This method returns a logical matrix with dimen-
sions of replication as rows and variables as columns.
A value of TRUE appears in cells corresponding to
variables that are replicated along a particular di-
mension, and a value of FALSE appears otherwise.
We can see that the sites and years dimensions
relate abundance, temperature, and precipitation;
whereas, the species dimension relates abundance,
body size, metabolic rate, and homeotherm.

Note that some FALSE entries are biophysical ne-
cessities, whereas others are properties of the study
design. For example, suppose that later in the study,
the researchers decided that it was necessary to get
some idea of the spatial variation in metabolic rates.
It would then be possible to measure metabolic rates
of the species at different sites, thereby changing the
FALSE associated with the metabolic rate-sites cell to
a TRUE. To the contrary, it is both physically and log-
ically impossible to measure the precipitation of a
species, so this FALSE is mandatory.

Subscripting data lists

The structure relating variables and dimensions of
replication allows us to manipulate multiple vari-
ables simultaneously. In particular, multitable
makes it possible to extract pieces of a data list while
maintaining its structure. For example, examining
the data suggests that 1537 might have been an out-
lying year relative to 2008 and 2009. We can exclude
data from 1537 just as we would with a single R ar-
ray:

> fake.community[,c("2008","2009"),]

abundance:

, , capybara

2008 2009
midlatitude 0 4
subtropical 10 0
tropical 0 8
equatorial 7 0
arctic 0 0
subarctic 0 0

, , moss

2008 2009
midlatitude 6 0
subtropical 0 0
tropical 0 9
equatorial 3 0
arctic 0 5
subarctic 0 0

, , vampire

2008 2009
midlatitude 0 0
subtropical 0 0
tropical 0 0
equatorial 0 0
arctic 0 0
subarctic 0 0

Replicated along: || sites || years || species ||

temperature:

2008 2009
midlatitude 10 NA
subtropical 20 25
tropical 50 48
equatorial 30 50
arctic -30 -37
subarctic 0 3
Replicated along: || sites || years ||

precipitation:

2008 2009
midlatitude 20 NA
subtropical 100 99
tropical 150 149
equatorial 200 199
arctic 20 21
subarctic 40 41
Replicated along: || sites || years ||

body.size:

capybara moss vampire

140 NA 190

4

TRANSFORMING VARIABLES IN DATA LISTS MULTIPLE-TABLE DATA IN R

Replicated along: || species ||

metabolic.rate:

capybara moss vampire

20 5 0
Replicated along: || species ||

homeotherm:

capybara moss vampire

Y N N
Levels: N Y
Replicated along: || species ||

REPLICATION DIMENSIONS:
sites years species

6 2 3

This command returns the same data list of variables
but without the data from 1537. Note that every
variable replicated along the years dimension is sub-
scripted appropriately, while variables that are not
replicated along this dimension are unchanged. As
another example, perhaps we want all of the data
from the first three sites, in 1537, for the first species
(i.e. capybara). The following line would produce
such a data list:

> fake.community[1:3,"1537",1]

Other subscripting commands will typically work
as expected. Type ?Extract.data.list into the R
command line for full information on subscripting
data.list objects.

Transforming variables in data lists

Often we need to transform variables before passing
data frames to functions. This is easily done with
variables in data lists as well. For example, suppose
we want to make a log(x + 1) transformation of the
abundance data.

> fake.community$abundance <-
log1p(fake.community$abundance)

> fake.community$abundance

, , capybara

2009 2008 1537
midlatitude 1.609438 0.000000 0
subtropical 0.000000 2.397895 0
tropical 2.197225 0.000000 0
equatorial 0.000000 2.079442 0
arctic 0.000000 0.000000 0
subarctic 0.000000 0.000000 0

, , moss

2009 2008 1537
midlatitude 0.000000 1.945910 0
subtropical 0.000000 0.000000 0
tropical 2.302585 0.000000 0
equatorial 0.000000 1.386294 0
arctic 1.791759 0.000000 0
subarctic 0.000000 0.000000 0

, , vampire

2009 2008 1537
midlatitude 0 0 0.0000000
subtropical 0 0 0.6931472
tropical 0 0 0.0000000
equatorial 0 0 0.0000000
arctic 0 0 0.0000000
subarctic 0 0 0.0000000

attr(,"subsetdim")
sites years species
TRUE TRUE TRUE

We note that fake.community has a lot of missing val-
ues, which were useful for illustrating how data lists
handle missing values, but will make further illus-
trations somewhat underwhelming. We can replace
these missing values with ‘observed’ values using
the standard logic of R replacement.

> fake.community$temperature[,"1537"] <-
c(5,10,30,20,-80,-10)

> fake.community$precipitation[,"1537"] <-
c(5,50,75,50,2,7)

> fake.community$body.size["moss"] <- 1

Simple analysis functions

Data lists can be passed ‘as is’ to many standard func-
tions in R that normally take data frames. In the next
section we explain in more detail why this works,
but for now we consider a simple example. Perhaps
we want to explore whether the interaction between
body size and temperature has an influence on abun-
dance. As a first attempt at model building, we fit a
linear model using lm.

> lm(abundance ~ body.size*temperature,
data=fake.community)

Call:
lm(formula = abundance ~ body.size * temperature,

data = fake.community)

Coefficients:
(Intercept) body.size
4.484e-01 -1.718e-03

temperature body.size:temperature
3.634e-03 5.041e-07

And this works just as well with mixtures of categor-
ical and numerical data.

> lm(abundance ~ homeotherm*temperature,
data=fake.community)

5

COERCING DATA LISTS TO DATA FRAMES MULTIPLE-TABLE DATA IN R

Call:
lm(formula = abundance ~ homeotherm * temperature,

data = fake.community)

Coefficients:
(Intercept) homeothermY

0.228770 0.090178
temperature homeothermY:temperature

0.001186 0.007512

It also works with other ‘simple’ functions, such as
rlm (robust linear model) in the MASS package.

> library(MASS)
> rlm(abundance ~ body.size*temperature,
data=fake.community)

Call:
rlm(formula = abundance ~ body.size * temperature,

data = fake.community)

Converged in 10 iterations

Coefficients:
(Intercept) body.size
2.606699e-05 -1.076827e-07
temperature body.size:temperature
3.043212e-07 -8.994997e-10

Degrees of freedom: 51 total; 47 residual
(3 observations deleted due to missingness)

Scale estimate: 5.26e-05

Therefore, in many cases, data lists enter standard
R workflows in exactly the same manner as data
frames; the advantage of data lists in these cases is
that they are represented ‘as we understand them’,
and this makes manipulating them easier.

Coercing data lists to data frames

The reason that unmodified data lists can be passed
to some functions that are expecting data frames,
is that these functions try to coerce whatever data
object they receive into a data frame. When the
multitable package is loaded, these functions can
find a method for making such a conversion. This
method can be accessed by users directly via the
as.data.frame function from the R base package.
For example, we can pass the fake.community data
to as.data.frame.

> fake.community.df <- as.data.frame(fake.community)

The resulting data frame (Table 1) contains one
column for each variable and one row for each com-
bination of replicates across the three dimensions of
replication. Notice that the row names are automat-
ically generated to be informative about the dimen-
sions of replication that have been collapsed into a
single dimension. Unlike the corresponding data list
object, the data frame has redundancy. For example,
because the traits are only replicated along species

there are only three unique trait values, one for each
of the three species. These three values are repeated
so that all of the variables can be stored side-by-side
in a single data frame.

By storing these data in a single data frame, we
can now pass them to any function that accepts data
frames. For example, we can graphically examine the
interaction between an environmental variable and a
trait using the xyplot function from the lattice pack-
age (Fig. 4):

> library(lattice)
> xyplot(abundance ~ temperature | body.size,

data=fake.community.df)

This function creates a panel for each distinct
value of the body.size variable, with the val-
ues of these body sizes indicated by the vertical
stripes in the panel titles (see ?xyplot). In this
case, there would not have been much of an in-
teraction between body size and temperature, be-
cause the relationships between temperature and
abundance do not appear to vary between panels.

temperature

ab
un

da
nc

e

0.0
0.5
1.0
1.5
2.0
2.5

−50 0 50

●

●

●

●

●

●

● ●

●

● ●●● ●●● ●

body.size

●

●

●● ●●

●

●

●

● ●●● ●●● ●

body.size
0.0
0.5
1.0
1.5
2.0
2.5

● ●●● ●●● ●●● ●●

●

●●● ●

body.size

Figure 4: An xyplot of the fake.community data.

On occasion, one may wish to iteratively coerce a
sequence of data lists to data frames. For example, in
a randomisation test one might loop over a number
of random subscripts of a data list. In such a case,
one may find that such an iterative procedure takes
too long to run. Fortunately, we can exploit the fact
that each replicated data list has the same structure
(i.e. the same replication dimensions and variables)
to reduce computation times. In particular, much of
the computational effort involved in coercing data
lists to data frames can be done once for all data lists
with the same structure. For more on this technique

6

COERCING DATA LISTS TO DATA FRAMES MULTIPLE-TABLE DATA IN R

Table 1: The fake.community data.list object that has been coerced into a data.frame.

abundance temperature precipitation body.size metabolic.rate homeotherm
midlatitude.2009.capybara 1.6094379 NA NA 140 20 Y
subtropical.2009.capybara 0.0000000 25 99 140 20 Y
tropical.2009.capybara 2.1972246 48 149 140 20 Y
equatorial.2009.capybara 0.0000000 50 199 140 20 Y
arctic.2009.capybara 0.0000000 -37 21 140 20 Y
subarctic.2009.capybara 0.0000000 3 41 140 20 Y
midlatitude.2008.capybara 0.0000000 10 20 140 20 Y
subtropical.2008.capybara 2.3978953 20 100 140 20 Y
tropical.2008.capybara 0.0000000 50 150 140 20 Y
equatorial.2008.capybara 2.0794415 30 200 140 20 Y
arctic.2008.capybara 0.0000000 -30 20 140 20 Y
subarctic.2008.capybara 0.0000000 0 40 140 20 Y
midlatitude.1537.capybara 0.0000000 5 5 140 20 Y
subtropical.1537.capybara 0.0000000 10 50 140 20 Y
tropical.1537.capybara 0.0000000 30 75 140 20 Y
equatorial.1537.capybara 0.0000000 20 50 140 20 Y
arctic.1537.capybara 0.0000000 -80 2 140 20 Y
subarctic.1537.capybara 0.0000000 -10 7 140 20 Y
midlatitude.2009.moss 0.0000000 NA NA 1 5 N
subtropical.2009.moss 0.0000000 25 99 1 5 N
tropical.2009.moss 2.3025851 48 149 1 5 N
equatorial.2009.moss 0.0000000 50 199 1 5 N
arctic.2009.moss 1.7917595 -37 21 1 5 N
subarctic.2009.moss 0.0000000 3 41 1 5 N
midlatitude.2008.moss 1.9459101 10 20 1 5 N
subtropical.2008.moss 0.0000000 20 100 1 5 N
tropical.2008.moss 0.0000000 50 150 1 5 N
equatorial.2008.moss 1.3862944 30 200 1 5 N
arctic.2008.moss 0.0000000 -30 20 1 5 N
subarctic.2008.moss 0.0000000 0 40 1 5 N
midlatitude.1537.moss 0.0000000 5 5 1 5 N
subtropical.1537.moss 0.0000000 10 50 1 5 N
tropical.1537.moss 0.0000000 30 75 1 5 N
equatorial.1537.moss 0.0000000 20 50 1 5 N
arctic.1537.moss 0.0000000 -80 2 1 5 N
subarctic.1537.moss 0.0000000 -10 7 1 5 N
midlatitude.2009.vampire 0.0000000 NA NA 190 0 N
subtropical.2009.vampire 0.0000000 25 99 190 0 N
tropical.2009.vampire 0.0000000 48 149 190 0 N
equatorial.2009.vampire 0.0000000 50 199 190 0 N
arctic.2009.vampire 0.0000000 -37 21 190 0 N
subarctic.2009.vampire 0.0000000 3 41 190 0 N
midlatitude.2008.vampire 0.0000000 10 20 190 0 N
subtropical.2008.vampire 0.0000000 20 100 190 0 N
tropical.2008.vampire 0.0000000 50 150 190 0 N
equatorial.2008.vampire 0.0000000 30 200 190 0 N
arctic.2008.vampire 0.0000000 -30 20 190 0 N
subarctic.2008.vampire 0.0000000 0 40 190 0 N
midlatitude.1537.vampire 0.0000000 5 5 190 0 N
subtropical.1537.vampire 0.6931472 10 50 190 0 N
tropical.1537.vampire 0.0000000 30 75 190 0 N
equatorial.1537.vampire 0.0000000 20 50 190 0 N
arctic.1537.vampire 0.0000000 -80 2 190 0 N
subarctic.1537.vampire 0.0000000 -10 7 190 0 N

7

HOW DATA LISTS ARE MADE MULTIPLE-TABLE DATA IN R

see the help file for data.list.mold in the multitable
package.

How data lists are made

Up until now we have used an existing data.list
to illustrate the use of the multitable package. Al-
though there are several ways to create data lists, one
way in particular provides a simple framework for
understanding the difference between variables and
dimensions of replication—an important distinction
to understand in order to use multitable effectively.

Consider a data frame of species abundances
counted at various sites.

> abundance

sites species abundance
1 midlatitude capybara 4
2 subtropical capybara 10
3 tropical capybara 8
4 equatorial capybara 7
5 arctic moss 5
6 midlatitude moss 6
7 tropical moss 9
8 equatorial moss 3
9 subtropical vampire 1

We have six sites and three species, but each species
is not present at each site and so there are missing
site-species combinations. Related to this abundance
data frame we have a data frame of environmental
variables at each site and a data frame of traits for
each species.

> environment

sites temperature precipitation
1 subarctic 0 40
2 midlatitude 10 20
3 subtropical 20 100
4 tropical 50 150
5 equatorial 30 200

> trait

species body.size metabolic.rate
1 capybara 140 20
2 moss 5 5
3 vampire 190 0

To make things interesting to scientists with real
data, we assume that our environmental data are
missing from the arctic site (perhaps because it is too
remote to go there and make measurements).

The three data frames are related because they
share two columns: sites and species. The specific
pattern of sharing for these data can be illustrated
with a bipartite graph (i.e. matching diagram; Fig.5).
Columns that are shared between data frames are
called dimensions of replication and those that are not
are called variables. The reason for this terminology

is that in standard single-table statistical settings, we
are able to relate variables because they are repli-
cated along some common dimension. For example,
one can relate pH and temperature if they are both
replicated along the same set of lakes. Similarly, we
can relate the variables in several tables together if
they share columns (i.e. dimensions of replication).

sites

species

environment

abundance

traits

Figure 5: Bipartite graph of the multiple-table struc-
ture of data with a standard fourth-corner structure
(Fig. 1). Dimensions of replication are in blue (on the
left) and tables are in red (on the right).

To create a data list out of these data frames we
use the dlcast function from multitable, which was
inspired by the acast function in the reshape2 pack-
age (Wickham, 2007).

> dl <- dlcast(list(abundance,environment,trait),
dimids=c("sites","species"),
fill=c(0,NA,NA)

)
> dl

abundance:

capybara moss vampire
arctic 0 5 0
equatorial 7 3 0
midlatitude 4 6 0
subtropical 10 0 1
tropical 8 9 0
subarctic 0 0 0
Replicated along: || sites || species ||

temperature:

arctic equatorial midlatitude
NA 30 10

subtropical tropical subarctic
20 50 0

Replicated along: || sites ||

precipitation:

arctic equatorial midlatitude
NA 200 20

subtropical tropical subarctic
100 150 40

Replicated along: || sites ||

8

MULTIPLE-TABLE CONCEPTS MULTIPLE-TABLE DATA IN R

body.size:

capybara moss vampire

140 5 190
Replicated along: || species ||

metabolic.rate:

capybara moss vampire

20 5 0
Replicated along: || species ||

REPLICATION DIMENSIONS:
sites species

6 3

This function takes three arguments: (1) a list of data
frames, (2) a character vector, dimids, with the names
identifying the dimensions of replication (i.e. the
names of the columns shared between the tables),
and (3) a vector, fill, with one element for each data
frame giving the value with which to fill in any struc-
tural missing values. This last argument is interest-
ing because we can both (1) fill missing abundances
with zeros because those site-species combinations
were not observed and (2) fill missing traits and en-
vironmental variables with NA values.

Researchers will often have text files or spread-
sheets of data that are not stored in the same for-
mat as the three data frames in our example. Our
three data frames have two types of columns—some
columns represent dimensions of replication and
others represent variables. This data storage format
is sometimes called ‘long format’ (see ?reshape), be-
cause more sampling results in a lengthening of the
data (i.e. the addition of rows) without any widen-
ing (i.e. the addition of columns). In contrast, it is
common in community ecology for example to store
abundance data as spreadsheets with sites as rows
and species as columns (e.g. as in Fig 1). Such a data
storage format is often called ‘wide format’, because
more sampling may result in a widening of the data
(e.g. more columns are required as further sampling
reveals a greater diversity of species). Fortunately,
the multitable package provides tools for reading
data stored in a variety of different formats into a
data list. For example, the as.data.list, data.list,
read.multitable, and read.fourthcorner functions
are all alternatives to dlcast for creating data lists.

Multiple-table concepts

The multitable package is based on a distinction
between dimensions of replication and variables.
One benefit of this distinction is that it provides
a common framework for understanding both sim-

ple and more complex multiple-table data structures.
In particular, the framework allows us to visualise
the structure of complex data; for example the Lac
Croche zooplankton community data (Fig. 2) (Cantin
et al., 2011) has a structure given by Fig. 6. To store
these data in a format amenable to dlcast (i.e. ‘long
format’), we would create one data frame for each of
the groups of variables (red boxes on the right) and
add a column for each dimension of replication (blue
boxes on the left) associated with those variables.

sites

time

species

environment

abundance

time scales

traits

Figure 6: Bipartite graph of the Lac Croche data in
Fig. 2.

Visualising the structure of data in this way will
help to clarify how it should be both organised and
analysed. One of the central themes of multitable
is that thinking about data organisation goes a long
way towards clarifying how analysis should pro-
ceed. The names of what we store as variables will
appear in formula objects, so that we can study the
relationships between these variables. On the other
hand, the information that we have for inferring
these relationships will come from what we store as
dimensions of replication. In single-table settings we
keep these two elements of data analysis separate by
storing variables as columns and replicates as rows
in a data.frame. The data.list concept is very sim-
ilar except that replication now has a dimensionality,
which allows for the storage of more complex data
structures. The basic distinction between variables
and replicates guides analysis in multiple-table set-
tings just as it does in single-table settings.

The two requirements for using data.list ob-
jects are that (1) every table must share at least one
dimension of replication with at least one other table
and (2) at least one table must be replicated along all
of the dimensions present in the data set. The first
criterion ensures that the tables will relate to each
other; the second criterion ensures that some vari-
ables will be relatable to all other variables, a prop-
erty that is necessary for a response variable.

9

CONCLUSION BIBLIOGRAPHY

Conclusion

The structure of data.list objects is sufficiently rich
to give rise to a much wider variety of uses than can
be described in detail here. Our intention was to il-
lustrate the basic features and concepts of the mul-
titable package, and to demonstrate its utility. Our
long-term goal with the multitable project in general
is to make standard analyses in R simpler to conduct
on complex multiple-table data.

Acknowledgements

We thank Levi Waldron, Ben Bolker, and Philip
Dixon for discussions and suggestions about soft-
ware design and Beatrix Beisner for discussions
about biology.

Bibliography

A. Cantin, B. E. Beisner, J. M. Gunn, Y. T. Prairie,
and J. G. Winter. Effects of thermocline deepening
on lake plankton communities. Canadian Journal of
Fisheries and Aquatic Science, 68:260–276, 2011.

J. M. Chambers and T. J. Hastie. Statistical models in S.
Wadsworth and Brooks, Pacific Grove, California,
1992.

S. Dolédec, D. Chessel, C. ter Braak, and S. Cham-
pely. Matching species traits to environmental

variables: a new three-table ordination method.
Environmental and Ecological Statistics, 3:143–166,
1996.

S. Dray and P. Legendre. Testing the species traits-
environment relationships: the fourth-corner
problem revisited. Ecology, 89(12):3400–3412, 2008.

A. R. Ives and M. R. Helmus. Generalized linear
mixed models for phylogenetic analyses of com-
munity structure. Ecological Monographs, 81(3):511–
523, 2011.

P. Legendre, R. Galzin, and M. L. Harmelin-Vivien.
Relating behavior to habitat: solutions to the
fourth-corner problem. Ecology, 78(2):547–562,
1997.

M. A. Leibold, E. P. Economo, and P. R. Peres-
Neto. Metacommunity phylogenetics: separat-
ing the roles of environmental filters and historical
biogeography. Ecology Letters, 13:1290–1299, 2010.

V. D. Pillar and L. D. Duarte. A framework for
metacommunity analysis of phylogenetic struc-
ture. Ecology Letters, 13:587–596, 2010.

P. Sólymos. Journal of statistical software. Process-
ing Ecological Data in R with the mefa Package, 29(8):
1–28, 2009.

H. Wickham. Reshaping data with the reshape pack-
age. Journal of Statistical Software, 21(12), 2007.

10

	Multiple-table data in R
	Introduction
	The structure of data lists
	Subscripting data lists
	Transforming variables in data lists
	Simple analysis functions
	Coercing data lists to data frames
	How data lists are made
	Multiple-table concepts
	Conclusion

