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1 Introduction

This document is intended to describe relatively straightforward ways to undertake a variety of
resampling-based inferences through use of the mosaic package within R. It is derived from a series
of problems posed at USCOTS (United States Conference on Teaching Statistics) 2011 by Robin
Lock and colleagues (http://www.causeweb.org/uscots/breakout/breakout3_6.php). One of
the goals of the mosaic package is to provide elementary commands that can be easily strung
together by novices without having to master the esoteric aspects of programming. More in-
formation about the package and this initiative can be found at the Project MOSAIC website:
www.mosaic-web.org.
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The mosaic operations allow students to implement each of the operations in what George Cobb
calls the “3 Rs” of statistical inference: Randomization, Replication, and Rejection (Cobb, 2007).
By putting the 3 Rs together in various ways, students learn to generalize and internalize the logic
of inference, rather than just to blindly follow formulaic methods.

There’s an interesting discussion of the role of simulation in Speed (2011), where he notes the
changing role of simulation. It used to be:

something that people did when they can’t do the math. ... It now seems that we are
heading into an era when all statistical analysis can be done by simulation.

Arguably, the most important operation in statistics is sampling: ideally, selecting a random subset
from a population. Regrettably, sampling takes work and time, so instructors tend to de-emphasize
the actual practice of sampling in favor of theoretical descriptions. What’s more, the algebraic
notation in which much of conventional textbook statistics is written does not offer an obvious
notation for sampling.

With the computer, however, these efficiency and notation obstacles can be overcome. Sampling
can be placed in its rightfully central place among the statistical concepts in our courses.

Resampling-based inference using permutation testing and bootstrapping are an increasingly im-
portant set of techniques for introductory statistics and beyond.

Bootstrapping and permutation testing are powerful and elegant approaches to estimation and
testing, respectively that can be implemented even in many situations where asymptotic results
are difficult to find or otherwise unsatisfactory (Efron and Tibshirani, 1993; Hesterberg et al 2005).
Bootstrapping involves sampling with replacement from a population, repeatedly calculating a sam-
ple statistic of interest to empirically construct the sampling distribution. Permutation testing for
a two group comparison is done by permuting the labels for the grouping variable, then calculat-
ing the sample statistic (e.g. difference between two groups using these new labels) to empirically
construct the null distribution.

2 Background and setup

2.1 R and RStudio

R is an open-source statistical environment that has been used at a number of institutions to teach
introductory statistics. Among other advantages, R makes it easy to demonstrate the concepts
of statistical inference through randomization while providing a sensible path for beginners to
progress to advanced and professional statistics. RStudio (http://www.rstudio.org) is an open-
source integrated development environment for R which facilitates use of the system.

2.2 Setup

The mosaic package is available over the Internet and can be installed into R using the standard
features of the system (this needs only be done once).

install.packages( )


http://www.rstudio.org

Once installed, the package must be loaded so that it is available (this must be done within each
R session). In addition to loading the package, we set the number of digits to display by default as
well as the number of simulations to undertake.

require (mosaic)
options(digits = 3)
numsim <- 2000

This command would typically be provided in a set-up file for students so that it is executed
automatically each time an R session is started.

Next we load two of the datasets that will be used in the examples.

mustangs <- read.csv( )

sleep <- read.csv( )

These datasets can also be accessed over the internet using the following mosaic commands:

mustangs <- fetchData( )
sleep <- fetchData( )

3 Resampling in different settings

3.1 Bootstrapping a mean (used Mustangs)

A student collected data on the selling prices for a sample of used Mustang cars being offered for
sale at an internet website. The price (in $1,000’s), age (in years) and miles driven (in 1,000’s)
for the 25 cars in the sample are given in the [file MustangPrice. csv/. Use these data to construct
a 90% confidence interval for the mean price (in $1,000’s) of used Mustangs.

First we start by displaying the distribution of values.

stem(mustangs$Price)

The decimal point is 1 digit(s) to the right of the |

0 | 355778899
1 | 00223356
2 | 1235

3 | 238

415

The mean price can be calculated as

mean(~Price, data = mustangs)

[1] 16

Even though a single trial is of little use, it’s a nice idea to have students do the calculation to show
that they are (usually) getting a different result than without resampling. One resampling trial can
be carried out with



mean(~Price, data = resample(mustangs))

[1] 15.7

This generates a new sample (with replacement) of the same size as the original one.

Another trial can be carried out with the command:

mean(~Price, data = resample(mustangs))

[1] 15.5

Let’s generate five more:

trials <- do(5) * mean(~Price, data = resample(mustangs))
trials

result
15.2
15.6
16.4
21.6
18.4

O N

Now conduct 2000 resampling trials, saving the results in an object called trials:

numsim

[1] 2000

trials <- do(numsim) * mean(~Price, resample(mustangs))

This creates a new set of data with the result from each of the numsim = 2000 trials.

Plots of distributions are straightforward, e.g.:

xhistogram(~result, data = trials, xlab =
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Calculation of the 90% confidence interval can be done directly.

qdata(c(0.05, 0.95), trials$result)



5% 95%
12.6 19.8

Alternatively, the standard error from this distribution can be used to estimate the 90% margin of
error. First calculate the critical value ¢, (or z,) for the appropriate degrees of freedom:

tstar <- qt(0.95, df = 24)
zstar <- gnorm(0.95)

The resulting margin of error will be

tstar * sd(trials$result)

[1] 3.73

zstar * sd(trials$result)

[1] 3.59

3.2 Testing a proportion (NFL Overtimes)

The National Football League (NFL) uses an overtime period to determine a winner for games that
are tied at the end of regulation time. The first team to score in the overtime wins the game and a
coin flip is used to determine which team gets the ball first. Is there an advantage to winning the
coin flip? Data from the 1974 through 2009 seasons show that the coin flip winner won 240 of the
428 games where a winner was determined in overtime. Treat these as a sample of NFL games to
test whether there is sufficient evidence to show that the proportion of overtime games won by the
coin flip winner is more than one half.

If the coin flip result were unrelated to the outcome of the game, the observed 240 game wins out
of 428 events would itself be a plausible outcome of a coin flip.

Style 1 Using the built-in binomial distribution operators.

Generate a simulation where each trial is a random sample of 428 games from a world in which the
null hypothesis holds true.
prop(rbinom(1e+05, prob = 0.5, size = 428) >=

240)

TRUE
0.0071

It’s very unlikely, if the null were true, that the coin flip winner would win 240 or more times.

Of course, such a calculation can be done directly, but that raises issues such as which tail pbinom()
is calculating (R always does the left tail) and adjusting the cut-off appropriately

pbinom(239, prob = 0.5, size = 428)



[1] 0.993

Style 2 Explicitly simulating a coin flip.
Recognizing that coin flips are a staple of statistics courses, the mosaic package offers a random
flip operator that does the tabulation for you. Here is one trial involving flipping 428 coins:

do(1) * rflip(428)

n heads tails
1 428 233 195

We’ll do 2000 trials, and count what fraction of the trials the coin toss winner (say, “heads”) wins
240 or more of the 428 attempts:

trials <- do(numsim) * rflip(428)

prop(trials$heads >= 240)

TRUE
0.0065

xhistogram(~heads, groups = (heads >= 240),
data = trials)

0.04 — —
2 0.03 — —
2
S 002 — —
a)
0.01 — —
0.00 — —
T T T T
180 200 220 240
heads

The observed pattern of 240 wins is not a likely outcome under the null hypothesis. The shading
added through the groups = option helps to visually reinforce the result.

3.3 Permutation test of means from two groups (sleep and memory)

In an experiment on memory, students were given lists of 24 words to memorize. After hearing the
words they were assigned at random to different groups. One group of 12 students took a nap for 1.5
hours while a second group of 12 students stayed awake and was given a caffeine pill. The results
below display the number of words each participant was able to recall after the break. Test whether
the data indicate a difference in mean number of words recalled between the two treatments.

sleep



Group Words

1 Sleep 14
2 Sleep 18
3 Sleep 11
4 Sleep 13
5 Sleep 18
6 Sleep 17
7 Sleep 21
8 Sleep 9
9 Sleep 16
10 Sleep 17
11 Sleep 14
12 Sleep 15
13 Caffeine 12
14 Caffeine 12
15 Caffeine 14
16 Caffeine 13
17 Caffeine 6
18 Caffeine 18
19 Caffeine 14
20 Caffeine 16
21 Caffeine 10
22 Caffeine 7
23 Caffeine 15
24 Caffeine 10

The Sleep group seems to have remembered somewhat more words on average:

mean (Words ~ Group, data = sleep)

Caffeine Sleep
12.2 15.2

obs <- diff (mean(Words ~ Group, data = sleep))
obs

Sleep
3

bwplot (Words ~ Group, data = sleep)
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To implement the null hypothesis, scramble the Group with respect to the outcome, Words:

diff (mean(Words ~ shuffle(Group), data = sleep))

Sleep
-1.67

That’s just one trial. Let’s try again:
diff (mean(Words ~ shuffle(Group), data

sleep))

Sleep
0.5

To get the distribution under the null hypothesis, we carry out many trials:

trials <- do(numsim) * diff(mean(Words ~ shuffle(Group),
data = sleep))

xhistogram(~Sleep, groups = Sleep >= obs,
data = trials, xlab =

)
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We can calculate the one-sided p-value for this test by summing up the number of trials which
yielded a result as extreme or more extreme as the observed difference. Here only 0 of the permu-
tations were that large, so the p-value is equal to 0. We conclude that it’s unlikely that the two



groups have the same mean word recall back in their respective populations.

3.4 Permutation test of proportions from two groups (HELP RCT)

We can undertake a test of difference in two proportions, in this case, the proportion homeless by
gender in the HELP randomized clinical trial.

tally(~ homeless | sex, data=HELPrct)

sex
homeless female male
homeless 0.374 0.488
housed 0.626 0.512
Total 1.000 1.000

prop(~ homeless | sex, data=HELPrct)

homeless:female homeless:male
0.374 0.488

obs <- diff(prop(- homeless | sex, data=HELPrct))
obs # observed value

homeless:male
0.115

We will use the same general approach to empirically calculate the null distribution by permuting
the labels for the grouping variable.

# compute permutation distribution
nulldist <- do(numsim) * diff(prop(homeless ~ shuffle(sex), data=HELPrct))

Here we undertake a two-sided test.

statTally(obs, nulldist, center = 0, xlab = )

Null distribution appears to be symmetric. (p = 0.97 )
Test statistic applied to sample data = 0.1146
Quantiles of test statistic applied to random data:

50% 90% 957, 99%
0.00448 0.06566 0.09014 0.12697

0f the random samples
16 ( 0.8 % ) had test stats = 0.1146

40 ( 2 % ) had test stats < -0.1146



27 ( 1.35 % ) had test stats > 0.1146
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We can also directly calculate a two-sided p-value:

sum(abs(nulldist) >= abs(obs))/numsim

[1] 0.0415

3.5 Bootstrapping a correlation

The data on Mustang prices in Problem #1 also contains the number of miles each car had
been driven (in thousands). Find a 95% confidence interval for the correlation between price and
mileage.

with(mustangs, cor(Price, Miles))

[1] -0.825

trials <- do(numsim) * with(resample(mustangs),
cor(Price, Miles))
quantiles <- gdata(c(0.025, 0.975), trials$result)

quantiles
2.5% 97.5%
-0.929 -0.726

xhistogram(~result, data = trials, groups = cut (result,
c(-Inf, quantiles, Inf)), nbin = 30)

10
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3.6 Bootstrapping a regression model

But there’s no reason to restrict oneself to the correlation: we can also fit the linear model and
consider the coefficients themselves:

do(1) * 1lm(Price ~ Miles, data = mustangs)

Intercept Miles sigma r-squared
1 30.5 -0.219 6.42 0.68

trials <- do(numsim) * lm(Price ~ Miles, data = resample(mustangs))
xhistogram(~Miles, data = trials)
sd(trials) # standard errors

Intercept Miles sigma r-squared
2.9765 0.0302 1.5866 0.0923

Density

I I I I I I
-0.35 -0.30 -0.25 -0.20 -0.15

Miles

The predicted average price goes down by 22 + 6 cents per mile driven.

Using simulations in other ways The basic technology of resampling and shuffling can be
used to demonstrate many other concepts in statistics than the generation of confidence intervals
and p-values. For example, it is very useful for showing the origins of distributions such as t and F.
Similarly, it can be helpful to show students the distribution of p-values under the null hypothesis
— students are surprised to see that it’s uniform. Seeing this helps them to understand the sense
in which the “significance level” refers to a false rejection of the null in a world in which the null

11



is true.

4 Acknowledgments

Thanks to Sarah Anoke for comments on an earlier draft, as well as to Robin Lock of St. Lawrence
University for organizing the session at USCOTS. Project MOSAIC is supported by the US National
Science Foundation (DUE-0920350). More information about the package and this initiative can
be found at the Project MOSAIC website: www.mosaic-web.org.

5 References

e G. W. Cobb, The introductory statistics course: a Ptolemaic curriculum?, Technology Inno-
vations in Statistics Education, 2007, 1(1).

e B. Efron & R. J. Tibshirani, An introduction to the bootstrap, 1993, Chapman & Hall, New
York.

T Hesterberg, D. S. Moore, S. Monaghan, A. Clipson & R. Epstein. Bootstrap methods and
permutation tests (2nd edition), (2005), W.H. Freeman, New York.

D. Kaplan, Statistical modeling: A fresh approach, http://www.macalester.edu/~kaplan/
ISM.

T. Speed, Simulation, IMS Bulletin, 2011, 40(3):18.

12


www.mosaic-web.org
http://www.macalester.edu/~kaplan/ISM
http://www.macalester.edu/~kaplan/ISM

	Introduction
	Background and setup
	R and RStudio
	Setup

	Resampling in different settings
	Bootstrapping a mean (used Mustangs)
	Testing a proportion (NFL Overtimes)
	Permutation test of means from two groups (sleep and memory)
	Permutation test of proportions from two groups (HELP RCT)
	Bootstrapping a correlation
	Bootstrapping a regression model

	Acknowledgments
	References

