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The mosaic package provides a command notation in R designed to make
it easier to teach and to learn introductory calculus, statistics, and modeling.
The principle behind mosaic is that a notation can more effectively support
learning when it draws clear connections between related concepts, when it is
concise and consistent, and when it suppresses extraneous form. At the same
time, the notation needs to mesh clearly with R, facilitating students’ moving
on from the basics to more advanced or individualized work with R.

This document describes the calculus-related features of mosaic. As they
have developed historically, and for the main as they are taught today, cal-
culus instruction has little or nothing to do with statistics. Calculus software
is generally associated with computer algebra systems (CAS) such as Mathe-
matica, which provide the ability to carry out the operations of differentiation,
integration, and solving algebraic expressions.

At the core of the mosaic calculus features are a set of operators that work
with mathematical functions of one or more variables and implement the core
operations of calculus — differentiation and integration — as well plotting, mod-
eling, fitting, interpolating, smoothing, solving, etc. The notation is designed
to emphasize the roles of different kinds of mathematical objects — variables,
functions, parameters, data — without unnecessarily turning one into another.
For example, the derivative of a function in mosaic, as in mathematics, is itself
a function. The result of fitting a functional form to data is similarly a function,
not a set of numbers.

Traditionally, the calculus curriculum has emphasized symbolic algorithms
and rules (such as xn → nxn−1 and sin(x) → cos(x)). Computer algebra
systems provide a way to automate such symbolic algorithms and extend them
beyond human capabilities. The mosaic package provides only limited symbolic
capabilities, so it will seem to many instructors that there is no mathematical
reason to consider using mosaic for teaching calculus. For such instructors, non-
mathematical reasons may not be very compelling for instance that R is widely
available, that students can carry their R skills from calculus to statistics, that
R is clearly superior to the most widely encountered systems used in practice,
viz. graphing calculators. Indeed, instructors will often claim that it’s good for
students to learn multiple software systems — a claim that they don’t enforce
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on themselves nearly so often as on their students.
Section 9 outlines an argument that computer algebra systems are in fact

a mis-step in teaching introductory calculus. Whether that argument applies
to any given situation depends on the purpose for teaching calculus. Of course,
purpose can differ from setting to setting.

The mosaic calculus features were developed to support a calculus course
with these goals:

• introduce the operations and applications of differentiation and integration
(which is what calculus is about),

• provide students with the skills needed to construct and interpret useful
models that can apply inter alia to biology, chemistry, physics, economics,

• familiarize students with the basics of functions of multiple variables,

• give students computational skills that apply outside of calculuus,

• prepare students for the statistical interpretation of data and models re-
lating to data.

These goals are very closely related to the objectives stated by the Mathematical
Association of American in its series of reports on Curriculum Reform and the
First Two Years.[?] As such, even though they may differ from the goals of a
typical calculus class, they are likely a good set of goals to aspire to in most
settings.

1 Functions at the Core

In introducing calculus to a lay audience, mathematician Steven Strogatz wrote:

The subject is gargantuan — and so are its textbooks. Many exceed
1,000 pages and work nicely as doorstops.

But within that bulk you’ll find two ideas shining through. All
the rest, as Rabbi Hillel said of the Golden Rule, is just commen-
tary. Those two ideas are the “derivative” and the “integral.” Each
dominates its own half of the subject, named in their honor as dif-
ferential and integral calculus. — New York Times, April 11, 2010

Although generations of students have graduated calculus courses with the
ideas that a derivative is ”the slope of a tangent line” and the integral is the ‘area
under a curve,” these are merely interpretations of the application of derivatives
and integrals — and limited ones at that.

More basically, a derivative is a function, as is an integral. What’s more, the
operation of differentiation takes a function as an input and produces a function
as an output. Similarly with integration. The “slope” and “area” interpretations
relate to the values of those output functions when given a specific input.
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The traditional algebraic notation is problematic when it comes to reinforc-
ing the function → function operation of differentiation and integration. There
is often a confusion between a “variable” and a “function.” The notation doesn’t
clearly identify what are the inputs and what is the output. Parameters and
constants are identified idiomatically: a, b, c for parameters, x, y for variables.
When it comes to functions, it’s usually implicit that x is the input and y is the
output.

R has a standard syntax for defining functions, for instance:

f <- function(x) {

m * x + b

}

This syntax is nice in many respects. It’s completely explicit that a function
is being created. The input variable is also explicitly identified. To use this
syntax, students need to learn how computer notation for arithmetic differs
from algebraic notation: m*x + b rather than mx+b. This isn’t hard, although
it does take some practice. Assignment and naming must also be taught. Far
from being a distraction, this is an important component of doing technical
computing and transfers to future work, e.g. in statistics.

The native syntax also has problems. In the example above, the parameters
m and b pose a particular difficulty. Where will those values come from? This
is an issue of scoping. Scoping is a difficult subject to teach and scoping rules
differ among languages.

For many years I taught introductory using the native function-creation
syntax, trying to finesse the matter of scoping by avoiding the use of symbolic
parameters. This sent the wrong message to students: they concluded that
computer notation was not as flexible as traditional notation.

In the mosaic calculus operators we provide a simple means to step around
scoping issues while retaining the use of symbolic parameters. Here’s an example
using the makeFun() operator from mosaic.

f <- makeFun(m * x + b ~ x)

One difference is that the input variable is identified using the R ~ syntax:
the ”body” of the function is on the left of ~ and the input variable to the right.

This is perhaps a slightly cleaner notation than function, and indeed my
experience with introductory calculus students is that they make many fewer
errors with the makeFun() notation.

More important, though, makeFun() provides a simple framework for scoping
of symbolic parameters: they are all explicit arguments to the function being
created. You can see this by examining the function itself:

f

## function (x, m, b)

## m * x + b
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When evaluating f(), you need to give values not just to the independent
variables (x here), but to the parameters. This is done using the standard
named-argument syntax in R:

f(x = 2, m = 3.5, b = 10)

## [1] 17

Typically, you will assign values to the symbolic parameters at the time the
function is created:

f <- makeFun(m * x + b ~ x, m = 3.5, b = 10)

This allows the function to be used as if the only input were x, while allowing
the roles of the parameters to be explicit and self-documenting and enabling the
parameters to be changed later on.

f(x = 2)

## [1] 17

The variable pi is handled differently; it’s always treated as the number π.
In general, functions can have more than one input. The mosaic package

handles this using an obvous extension to the notation:

g <- makeFun(A * x * sin(x * y) ~ x & y, A = 10)

g

## function (x, y, A = 10)

## A * x * sin(x * y)

In evaluating functions with multiple inputs, it’s helpful to use the variable
names to identify which input is which:

g(x = 0.2, y = 3)

## [1] 1.129

Mathematically, the makeFun() notation highlights the distinction between
parameters and inputs to functions. It allows the inputs to be identified explic-
itly, but it also does not enforce an artificial distinction between parameters and
”inputs.” Sometimes, you want to study what happens as you vary a parameter.

It also introduces the ~ notation early and in a fundamental way. The mosaic
package builds on this to enhance functionality while maintaining a common
theme. In addition, the notation sets students up for a natural transition to
functions of multiple variables.
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You can, of course, use functions constructed using function() or in any
other way in the mosaic package operators. Indeed, mosaic is designed to
make it straightforward to employ calculus operations to construct and interpret
functions that do not have a simple algebraic expression, for instance splines,
smoothers, and fitted functions. (See Section 7.)

2 Graphs

The mosaic package provides a basic operator for graphing functions: plotFun().
This one function handles three different formats of graph: the standard line
graph of a function of one variable; a contour plot of a function of two variables;
and a surface plot of a function of two variables.

The variables to the right of ~ set the independent axes plotting variables.
The plotting domain can be specified by a lim argument whose name is con-
structed to be prefaced by the variable being set. For example, here’s a conven-
tional line plot of a function of t alongside a contour plot of two variables:

plotFun(A * exp(k * t) * sin(2 * pi * t/P) ~ t,

t.lim = range(0, 10), k = -0.3, A = 10, P = 4)
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plotFun(A * exp(k * t) * sin(2 * pi * t/P) ~ t &

k, t.lim = range(0, 10), k.lim = range(-0.3, 0), A = 10,

P = 4)
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For functions of two variables, you can override the default with surface=TRUE,
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plotFun(A * exp(k * t) * sin(2 * pi * t/P) ~ t &

k, t.lim = range(0, 10), k.lim = range(-0.3, 0), A = 10,

P = 4, surface = TRUE)
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In general, surface plots are hard to interpret, but they are useful in teaching
students how to interpret contour plots.

The resolution of the two-variable plots can be changed with the npts ar-
gument. By default, it’s set to be something that’s rather chunky in order to
enhance the speed of drawing. A value of npts=300 is generally satisfactory for
publication purposes.

The lattice graphics package is used to implement plotFun. We hope even-
tually to use the lattice panel capabilities to provide support for displaying
functions of three variables.

Common graphical tasks are comparing two functions or plotting a function
along with data. The standard lattice approach to this can be daunting for
students. To make the task of overlaying plots easier, plotFun() has an add

argument to control whether to make a new plot or overlay an old one. Here’s
an example of laying a constraint t+ 1/k ≤ 0 over another function:

plotFun(A * exp(k * t) * sin(2 * pi * t/P) ~ t &

k, t.lim = range(0, 10), k.lim = range(-0.3, 0), A = 10,

P = 4)

plotFun(t + 1/k <= 0 ~ t & k, add = TRUE, npts = 300,

alpha = 0.2)
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The lighter region shows where the constraint is satisfied. Note also that a
high resolution (npts=300) was used for plotting the constraint. At the default
resolution, such contraints are often distractingly chunky.

The mosaic graphics operators are built on lattice but provide an interface
similar to that of makeFun().

plotFun(dt(t, df) ~ t & df, t.lim = range(-3,

3), df.lim = range(1, 10))
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3 Differentiation

A derivative is an operation that takes a function as input and returns a function
as an output. In mosaic, differentiation is implemented by the D() operator.1

masks the original D) operator from the stats package.2

A function is not the only input to differentiation; one also needs to specify
the variable with respect to which the derivative is taken. Traditionally, this is
represented as the variable in the denominator of the Leibniz quotient, e.g. x
in ∂/∂x.

1mosaic D
2The stats operator can be accessed, if desired, by using the double-colon notation

stats::D.
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To enable functions of multiple variables to be differentiated flexibly, the
mosaic D() operator takes not a bare function name, like sin, but an expression
that applies the function to a variable. For instance,

D(sin(x) ~ x)

## function (x)

## cos(x)

The use of expressions in this way makes it straightforward to move on to
functions of multiple variables and functions with symbolic parameters. For
example,

D(A * x^2 * sin(y) ~ x)

## function (x, A, y)

## A * (2 * x) * sin(y)

D(A * x^2 * sin(y) ~ y)

## function (y, A, x)

## A * x^2 * cos(y)

Notice that the object returned by D() is a function. The function takes
as arguments both the variables of differentiation and any other variables or
symbolic paremeters in the expression being differentiated. Default values for
parameters will be retained in the return function. Even parameters or vari-
ables that are eliminated in the process of differentiation will be retained in the
function. For example:

D(A * x + b ~ y, A = 10, b = 5)

## function (y, A = 10, x, b = 5)

## 0

The controlling rule here is that the derivative of a function should have the
same arguments as the function being differentiated.

Second- and higher-order derivatives can be handled using an obvious ex-
tention to the notation:

D(A * x^2 * sin(y) ~ x & x)

## function (x, A, y)

## A * 2 * sin(y)

D(A * x^2 * sin(y) ~ y & y)
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## function (y, A, x)

## -(A * x^2 * sin(y))

D(A * x^2 * sin(y) ~ x & y) #mixed partial

## function (x, y, A)

## A * (2 * x) * cos(y)

The ability to carry out symbolic differentiation is inherited from the stats::deriv()
operator. This is valuable for two reasons. First, seeing R return something that
matches the traditional form can be re-assuring for students and instructors.
Second, derivatives — especially higher-order derivatives — can have notice-
able pathologies when evaluated through non-symbolic methods such as simple
finite-differences. Fortunately, stats::deriv() is capable of handling the large
majority of sorts of expressions encountered in calculus courses.

Not every function has an algebraic form that can be differentiated using
the algebraic rules of differentiation. In such cases, numerical differentiation
can be used. D() is designed to carry out numerical differentiation and to
package up the results as a function that can be used like any other function. To
illustrate, consider the derivative of the density of the t-distribution. The density
is implemented in R with the dt(t, df) function, taking two parameters, t and
the ”degrees of freedom” df. Here’s the derivative of density with respect to df
constructed using D():

f1 = D(dt(t, df) ~ df)

f1(t = 2, df = 1)

## [1] 0.012

plotFun(f1(t = 2, df = df) ~ df, df.lim = range(1,

10))
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Numerical differentiation, especially high-order differentiation, has problem-
atic numerical properties. For this reason, only second-order numerical differ-
entiation is directly supported. You can, of course, construct a higher-order
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numerical derivative by iterative application of D() to a derivative function,
but don’t expect very accurate results.

4 Anti-Differentiation

The antiD() operator carries out anti-differentiation. The syntax and return
of a function is very similar to D() with two exceptions:

• Only first-order integration is directly supported.

• The returned function retains the same arguments as the function being
integrated, but splits the variable of integration into a ”from” and a ”to”
part.

To illustrate, here is
∫
ax2dx (which should give a

3x
2):

F = antiD(a * x^2 ~ x, a = 1)

F

## function (x.to = NaN, x.from = 0, a = 1)

## {

## numerical.integration(.newf, .wrt, as.list(match.call())[-1],

## formals())

## }

## <environment: 0x105ed5c70>

F(x.to = 1) #should be 1/3

## [1] 0.3333

Being a function, the output of antiD() can be plotted:

plotFun(F(x.to = x) ~ x, x.lim = range(-2, 2))

plotFun(F(x.from = -1.5, x.to = x) ~ x, add = TRUE,

col = "red")
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At this time, integration is purely numerical. The mechanics are hidden
behind the function numerical.integration(), which is not intended to be
used directly.

Unlike differentiation, integration has good numerical properties. Even in-
tegrals out to infinity can often be handled with great precision. Here, for
instance, is a calculation of the mean of a normal distribution via integration
from −∞ to ∞:

F = antiD(x * dnorm(x, mean = 3, sd = 2) ~ x)

F(x.from = -Inf, x.to = Inf)

## [1] 3

F = antiD(x * dexp(x, rate = rate) ~ x)

F(x.from = 0, x.to = Inf, rate = 10)

## [1] 0.1

F(x.from = 0, x.to = Inf, rate = 100)

## [1] 0.01

Because anti-differentiation is done numerically, you can compute the anti-
derivative of any function that’s numerically well behaved, even when there is
no simple algebraic form. In particular, you can take the anti-derivative of a
function that is itself an anti-derivative. Here, for example, is a double integral
for the area of a circle of radius 1:

one = makeFun(1 ~ x & y)

by.x = antiD(one(x = x, y = y) ~ x)

by.xy = antiD(by.x(x.from = -sqrt(1 - y^2), x.to = sqrt(1 -

y^2), y = y) ~ y)

by.xy(y.from = -1, y.to = 1)

## [1] 3.142

5 Solving

The findZeros() function will locate zeros of a function in a flexible way that’s
easy to use. The syntax is very similar to that of plotFun(), D(), and antiD():
You specify an expression and the values of any symbolic parameters. The search
for zeros is conducted over a range that can be specified in a number of ways.
To illustrate:

• Find the zeros within a specified range:

11



findZeros(sin(t) ~ t, t.lim = range(-5, 1))

## [1] -3.142 0.000

• Find the nearest several zeros to a point:

findZeros(sin(t) ~ t, nearest = 5, near = 10)

## [1] 3.142 6.283 9.425 12.566 15.708

• Specify a range via a center and width:

findZeros(sin(t) ~ t, near = 0, within = 8)

## [1] -3.142 0.000 3.142

We hope to extend findZeros() to work with multiple functions of multiple
variables.

6 Random-Example Functions

In teaching, it’s helpful to have a set of functions that can be employed to
illustrate various concepts. Sometimes, all you need is a smooth function that
displays some ups and downs and has one or two local maxima or minima. The
rfun() function will generate such functions “at random.” That is, a random
seed can be used to control which function is generated.

f = rfun(~x, seed = 345)

plotFun(f(x) ~ x, x.lim = range(-5, 5))
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These random functions are particularly helpful to develop intuition about
functions of two variables, since they are readily interpreted as a landscape:
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f = rfun(~x & y, seed = 345)

plotFun(f(x, y) ~ x & y, x.lim = range(-5, 5),

y.lim = range(-5, 5))
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7 Functions from Data

Aside from rfun(), all the examples to this point have involved functions ex-
pressed algebraically, as is traditional in calculus instruction. In practice, how-
ever, functions are often created from data. The mosaic package supports three
different types of such functions:

1. Interpolators: functions that connect data points.

2. Smoothers: smooth functions that follow general trends in data.

3. Fitted functions: parametrically specified functions where the parameters
are chosen to approximate the data in a least-squares sense.

7.1 Interpolators

Interpolating function connect data points. Different interpolating functions
have different properties of smoothness, monotonicity, end-points, etc. These
properties can be important in modeling.

At present, mosaic implements only interpolating functions of one variable.
To illustrate, here are some data from a classroom example intended to

illustrate the measurement of flow using derivatives. Water was poured out of
a bottle into a cup set on a scale. Every three seconds, a student read off the
digital reading from the scale, in grams. Thus, the data indicate the mass of
the water in the cup.

water <- data.frame(mass = c(57, 76, 105, 147,

181, 207, 227, 231, 231, 231), time = c(0, 3, 6, 9, 12,

15, 18, 21, 24, 27))
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Plotting out the data can be done in the usual way (using lattice graphics)

xyplot(mass ~ time, data = water)
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Of course, the mass in the cup varied continuously with time. It’s just the
recorded data that are discrete. Here’s how to create a cubic-spline interpolant
that connects the measured data:3

f <- spliner(mass ~ time, data = water)

The function f() created has input time. It’s been arranged so that when
time is one of the values in the data water, the output will be the corresponding
value of mass in the data.

f(time = c(0, 3, 6))

## [1] 57 76 105

At intermediate values of time, the function takes on interpolating values:

f(time = c(0, 0.5, 1, 1.5, 2, 2.5, 3))

## [1] 57.00 59.71 62.59 65.64 68.89 72.33 76.00

xyplot(mass ~ time, data = water)

plotFun(f(t) ~ t, add = TRUE, t.lim = range(0,

27))

3Should this function be changed to makeSpline()?
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Like any other smooth function, f() can be differentiated:

Df <- D(f(t) ~ t)

There are, of course, other interpolating functions. In situations that de-
mand monotonicity (remember, the water was being poured into the cup, not
spilling or draining out), monotonic, smooth splines can be created

fmono <- spliner(mass ~ time, data = water, monotonic = TRUE)

If smoothness isn’t important, the straight-line connector might be an ap-
propriate interpolant:

fline <- connector(mass ~ time, data = water)

The mathematical issues of smoothness and monotonicity are illustrated by
these various interpolating functions in a natural way. Sometimes these are
better ways to think about the choice of functions for modeling — you’re not
going to find a global polynomial or exponential or any other classical function
to represent these data.

Consider, for instance, the question of determining the rate of flow from the
bottle. This is the derivative of the mass measurement. Here are plots of the
derivatives of the three interpolating functions:

Df <- D(f(t) ~ t)

Dfmono <- D(fmono(t) ~ t)

Dfline <- D(fline(t) ~ t)

plotFun(Df(t) ~ t, t.lim = range(0, 30), lwd = 2,

col = "black")

plotFun(Dfmono(t) ~ t, t.lim = range(0, 30), add = TRUE,

col = "blue")

plotFun(Dfline(t) ~ t, t.lim = range(0, 30), add = TRUE,

col = "red")
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It’s a worthwhile classroom discussion: Which of the three estimates of flow
is best? The smoothest one has the unhappy property of negative flow near
time 25 and positive flow even after the pouring stopped.

Currently, only interpolating functions of one variable are available through
the mosaic interface.

7.2 Smoothers

A smoother is a function that follows general trends of data. Unlike an interpo-
lating function, a smoother need not replicate the data exactly. To illustrate,
consider a moderate-sized data set CPS that gives wage and demographic data
for 534 people.

data(CPS)

There is no definite relationship between wage and age, but there are general
trends:

xyplot(wage ~ age, data = CPS)

f <- smoother(wage ~ age, span = 0.9, data = CPS)

plotFun(f(age) ~ age, add = TRUE, lwd = 4)
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There appears to be a slight decline in wage — a negative derivative — for
people older than 40. Statistically, one might wonder whether the data provide
good evidence for this small effect and the extent to which the outlier affects
matters. Let’s look at the resampling distribution of the second derivative,
stripping away the outlier:

CPS2 <- subset(CPS, wage < 30)

f <- smoother(wage ~ age, span = 0.9, data = CPS2)

f2 <- D(f(age) ~ age)

plotFun(f2(age) ~ age, age.lim = range(20, 60),

lwd = 4)

do(10) * {

fr <- smoother(wage ~ age, span = 0.9, data = resample(CPS2))

fr2 <- D(fr(age) ~ age)

plotFun(fr2(age) ~ age, add = TRUE)

}

## list()

# just to display the plot

plotFun(1 ~ age, add = TRUE)

age

f2
(a

ge
)

−0.1

0.0

0.1

0.2

0.3

0.4

0.5

30 40 50

Pretty good evidence for wage going up with age, particularly for the young.
The rate of increase per year of age gets smaller and smaller. After about 35
years of age, there’s weak evidence for any systematic effect.

Smoothers can construct functions of more than one variable. Here, for in-
stance, is a representation of the relationship between wage, age, and education.

g <- smoother(log(wage) ~ age + educ + 1, span = 0.9,

data = CPS2)

plotFun(g(age = age, educ = educ) ~ age & educ,

age.lim = range(20, 50), educ.lim = range(5, 14))
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The graph suggests that people with a longer education see a steeper and
more prolonged increase in wage with age. To see this in a different way, here’s
the partial derivative of log wage with respect to age, holding education con-
stant:

DgAge <- D(g(age = age, educ = educ) ~ age)

plotFun(DgAge(age = age, educ = educ) ~ age &

educ, age.lim = range(20, 50), educ.lim = range(5, 14))
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For economists, perhaps worthwhile to think about the elasticity of wages
with respect to age for different levels of education.

CPS2$logage <- log(CPS2$age)

g2 <- smoother(log(wage) ~ logage + educ + 1,

span = 0.9, data = CPS2)

elasticity <- D(g2(logage = logage, educ = educ) ~
logage)

plotFun(elasticity(logage = log(a), educ = educ) ~
a & educ, a.lim = range(20, 50), educ.lim = range(5,

14))
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Elasticity seems to fall off with age at pretty much the same rate for different
levels of education. It just starts out more positive for the more highly educated.

7.3 Fitted Functions

Statisticians will be familiar with parametric functions fitted to data. The
lm() operator returns information about the fitted model. mosaic provides
linearModel(), which takes the output of lm() and packages it up into a
model function.

g <- linearModel(log(wage) ~ age * educ + 1, data = CPS)

g(age = 40, educ = 12)

## 1

## 2.014

dgdeduc <- D(g(age = age, educ = educ) ~ educ)

dgdeduc(age = 40, educ = 12)

## 1

## 0.08422

The mosaic function nlsModel() provides similar capabilities for nonlinear
models, that is, models that are nonlinear in their parameters such as exponen-
tials and sums of exponentials.

8 Differential Equations

A basic strategy in calculus is to divide a challenging problem into easier bits,
and then put together the bits to find the overall solution. Thus, areas are
reduced to integrating heights. Volumes come from integrating areas.

Differential equations provide an important and compelling setting for il-
lustrating the calculus strategy, while also providing insight into modeling ap-
proaches and a better understanding of real-world phenomena. A differential
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equation relates the instantaneous ”state” of a system to the instantaneous
change of state. ”Solving” a differential equation amounts to finding the value
of the state as a function of independent variables. In an “ordinary differential
equations,” there is only one independent variable, typically called time. In a
”partial differential equation,” there are two or more dependent variables, for
example, time and space.

The integrateODE() function solves an ordinary differential equation start-
ing at a given initial condition of the state.

To illustrate, here is the differential equation corresponding to logistic growth:

dx

dt
= rx(1− x/K).

There is a state x. The equation describes how the change in state over time,
dx/dt is a function of the state. The typical application of the logistic equation
is to limited population growth; for x < K the population grows while for
x > K the population decays. The state x = K is a “stable equilibrium.” It’s
an equilbrium because, when x = K, the change of state is nil: dx/dt = 0. It’s
stable, because a slight change in state will incur growth or decay that brings
the system back to the equilibrium. The state x = 0 is an unstable equilibrium.

The algebraic solution to this equation is a staple of calculus books. It is

x(t) =
Kx(0)

x(0) + (K − x(0)e−rt)
.

The solution gives the state as a function of time, x(t), whereas the differential
equation gives the change in state as a function of the state itself. The initial
value of the state (the ”initial condition”) is x(0), that is, x at time zero.

The logistic equation is much beloved because of this algebraic solution.
Equations that are very closely related in their phenomenology, do not have
analytic solutions.

The integrateODE() function takes the differential equation as an input,
together with the initial value of the state. Numerical values for all parameters
must be specified, as they would in any case to draw a graph of the solution. In
addition, must specify the range of time for which you want the function x(t).
For example, here’s the solution for time running from 0 to 20.

soln <- integrateODE(dx ~ r * x * (1 - x/K), x = 1,

K = 10, r = 0.5, tdur = list(from = 0, to = 20))

The object that is created by integrateODE() is a function of time. Or,
rather, it is a set of solutions, one for each of the state variables. In the logistic
equation, there is only one state variable x. Finding the value of x at time
t means evaluating the function at some value of t. Here are the values at
t = 0, 1, . . . , 5.
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soln$x(0:5)

## [1] 1.000 1.548 2.320 3.324 4.509 5.751

Often, you will plot out the solution against time:

plotFun(soln$x(t) ~ t, t.lim = range(0, 20))
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Differential equation systems with more than one state variable can be han-
dled as well. To illustrate, here is the SIR model of the spread of epidemics, in
which the state is the number of susceptibles S and the number of infectives I in
the population. Susceptibles become infective by meeting an infective, infectives
recover and leave the system. There is one equation for the change in S and a
corresponding equation for the change in I. The initial I = 1, corresponding to
the start of the epidemic.

epi = integrateODE(dS ~ -a * S * I, dI ~ a * S *

I - b * I, a = 0.0026, b = 0.5, S = 762, I = 1, tdur = 20)

This system of differential equations is solved to produce two functions, S(t)
and I(t).

plotFun(epi$S(t) ~ t, t.lim = range(0, 20))

plotFun(epi$I(t) ~ t, add = TRUE, col = "red")
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In the solution, you can see the epidemic grow to a peak near t = 5. At
this point, the number of susceptibles has fallen so sharply that the number of
infectives starts to fall as well. In the end, almost every susceptible has been
infected.

9 Algebra and Calculus

The acronym often used to describe the secondary-school mathematics curricu-
lum is GATC: Geometry, Algebra, Trigonometry, and Calculus. Until just a
half-century ago, calculus was an advanced topic first encountered in the univer-
sity. Trigonometry was a practical subject, useful for navigation and surveying
and design. Geometry also related to design and construction; it served as well
as an introduction to proof. Calculus was a filter, helping to sort out which
students were deemed suited for continuing studies in science and engineering
and even medicine.

Nowadays, calculus is widely taught in high-school rather than university.
Trigonometry, having lost its clientelle of surveyers and navigators, has become
an algebraic prelude to calculus. Indeed, the goal of GAT has become C — it’s
all a preparation for doing calculus.

There is a broad dissatisfaction. Instructors fret that students are not pre-
pared for the calculus they teach. Students fail calculus at a high rate. Huge
resources of time and student effort are invested in “college algebra,” remedial
courses intended to prepare students for a calculus course that the vast ma-
jority — more than 90% — will never take. As stated in the Mathematical
Association of America’s CRAFTY report,“Students do not see the connections
between mathematics and their chosen disciplines; instead, they leave mathe-
matics courses with a set of skills that they are unable to apply in non-routine
settings and whose importance to their future careers is not appreciated. In-
deed, the mathematics many students are taught often is not the most relevant
to their chosen fields.”[?, p.1] Seen in this context, college algebra is a filter that
keeps students away from career paths for which they are otherwise suited.

Accept, for the sake of argument, that calculus is important, or at least
is potentially important if students are brought to relate calculus concepts to
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inform their understanding of the world.
Is algebra helpful for most students who study it? It’s not so much the

direct applications. The nursing students who are examined in completing the
square will never use it or any form of factoring in their careers. Underwood
Dudley, in the 2010 Notices of the American Mathematical Society, wrote, “I
keep looking for the uses of algebra in jobs, but I keep being disappointed. To
be more accurate, I used to keep looking until I became convinced that there
were essentially none.”

There was a time when algebra was essential to calculus, when performing
calculus relied on algebraic manipulation. The use of the past tense may surprise
many readers. The way calculus is taught, algebra is still essential to teaching
calculus. Most people who study calculus think of the operations in algebraic
terms. For the last hundred years or more, however, there have been numerical
approaches to calculus problems.

The numerical approaches are rarely emphasized in introductory calculus,
except as demonstrations when trying to help students visualize operations like
the integral that are otherwise too abstract. There are both good and bad rea-
sons for this lack of emphasis on numerics. Tradition and aesthetics both play
a role. The preference for exact solutions of algebra rather than the approxi-
mations of numerics is understandable. Possibly also important is the lack of
a computational skill set for students and instructors; very few instructors and
almost no high-school students learn about technical computing in a way that
would make it easier for them to do numerical calculus rather than algebraic
calculus. (Here’s a test for instructors: In some computer language that you
know, how do you write a computer function that will return a computer func-
tion that provides even a rough and ready approximation to the derivative of
an arbitrary mathematical function?)

There are virtues to teaching calculus using numerics rather than algebra.
Approximation is important and should be a focus of courses such as calculus.
As John Tukey said, “Far better an approximate answer to the right question,
which is often vague, than an exact answer to the wrong question, which can
always be made precise.” And computational skill is important. Indeed, it can
be one of the most useful outcomes of a calculus course.

In terms of the basic calculus operations themselves, the need to compute
derivatives and integrals using algebra-based algorithms limits the sorts of func-
tions that can be employed in calculus. Students and textbooks have to stay on
a narrow track which allows the operations to be successfully performed. That’s
why there are so many calculus optimization problems that amount to differen-
tiating a global cubic and solving a quadratic.(When was the last time you used
a global cubic to represent something in the real world?) There’s little room
for realism, innovation, and creativity in modeling. Indeed, so much energy
and time is needed for algebra, that its conventional for functions of multiple
variables to be deferred to a third-semester of calculus, a level reached by only
a small fraction of students who will use data intensively in their careers.

With time, it’s likely that more symbolic capabilities will be picked up in the
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mosaic package.4 This will speed up some computations, add precision, and be
gratifying to those used to algebraic expressions. But it will not fundamentally
change the pedagogical issues and the desirability of applying the operations of
calculus to functions that often may not be susceptible to symbolic calculation.
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