
Getting started with Mokken scale analysis in R

Andries van der Ark

May 26, 2010

Chapter 1

Getting started

1.1 Introduction

This report aims at researchers who have Windows installed on their com-
puter and who wish to conduct Mokken scale analysis using the freeware R-
package mokken (Van der Ark, 2007) but who do not know anything about
R. It is a step by step guide from scratch to actually performing Mokken
scale analysis. A more elaborate book on learning R for SPSS and SAS
users is Muenchen (2008). The report is organized as follows. In this chap-
ter (chap. 1), I discuss the preparations that are needed before mokken can
be used. In section 1.2, I discuss the installation of R and all the necessary
packages. In section 1.3, I discuss how SPSS, SAS, STATA, and Splus data
sets should be converted to R. In section 1.4, I show a few R commands that
come in handy for data manipulation (e.g., variable selection). In chapter 2,
I explain mokken. In section 2.1, I give an overview of mokken’s most im-
portant commands (known as functions in R) illustrated by examples. In
section 2.2, I explain the use of mokken by showing the code for most analy-
ses in the book Introduction to nonparametric item response theory (Sijtsma
& Molenaar, 2003).

The report can be read best from a computer screen because it contains
colored text: internet links, R code, R results, and Links as they appear on
the R websites. The R code may be selected from the document and pasted
into the R console.

1.2 Installation

1.2.1 What is R?

R (R Development Core Team, 2006) is a language and environment for
statistical computing and graphics. It is something in between a statistical
package such as SPSS, STATA, or SAS and a programming language such

1

as C++, PASCAL, or FORTRAN. It has two big advantages: It is for free
and it has open source. Because it is for free it is accessible for anyone at
any time, and because it has an open source researchers can add packages to
R. Currently, over 2100 packages are added — the package mokken is one of
them — allowing the user to conduct almost every possible statistical pro-
cedure ranging from common statistical procedures, which are also available
in commercial software packages, to statistical techniques such as item re-
sponse theory, spectral analysis, marginal modelling, Bayesian analysis, and
latent class analysis. Every two months or so R releases a new version. At
the time of writing version R-2.10.1 was the most recent version. Although,
it is good to have a recent version of R, I only update a new version once a
year or so. The major R website is http://cran.r-project.org/. It con-
tains an abundance of information. A special page is devoted to packages
that are of interest to psychometricians
(http://cran.r-project.org/web/views/Psychometrics.html).

1.2.2 Installing R

Installing R requires the following steps

1. Go to http://cran.r-project.org/.

2. Click on Windows (See Figure 1.1)

3. Click on base (See Figure 1.2)

4. Click on Download R 2.10.1 for Windows (or a more recent version;
see Figure 1.3)

5. Save the file R-2.10.1-win32.exe on your computer (e.g., on C:/).

6. Run the file R-2.10.1-win32.exe from your computer. You can
choose all the default values in the installation Wizard.

7. R will be available from the desk top icon, and from the programme’s
menu.

1.2.3 Installing the package mokken

1. Open R (Figure 1.4 shows the R console).

2. In the pull down menu choose Packages, Install package(s) (Fig-
ure 1.5), choose a location nearby you (Figure 1.6), and choose the
package mokken (Figure 1.7).

The package mokken is now installed on your computer and need not be
installed anymore. It may be noted that the same procedure applies to the
installation of all packages.

2

http://cran.r-project.org/
http://cran.r-project.org/web/views/Psychometrics.html
http://cran.r-project.org/

CRAN

Mirrors
What's new?
Task Views
Search

About R

R Homepage
The R Journal

Software

R Sources
R Binaries
Packages
Other

Documentation

Manuals
FAQs
Contributed

The Comprehensive R Archive Network

Frequently used pages

Download and Install R

Precompiled binary distributions of the base system and contributed packages, Windows

and Mac users most likely want one of these versions of R:

� Linux
� MacOS X
� Windows

Source Code for all Platforms

Windows and Mac users most likely want the precompiled binaries listed in the upper box,
not the source code. The sources have to be compiled before you can use them. If you do
not know what this means, you probably do not want to do it!

� The latest release (2009-12-14): R-2.10.1.tar.gz (read what's new in the latest
version).

� Sources of R alpha and beta releases (daily snapshots, created only in time periods
before a planned release).

� Daily snapshots of current patched and development versions are available here.
Please read about new features and bug fixes before filing corresponding feature
requests or bug reports.

� Source code of older versions of R is available here.

� Contributed extension packages

Questions About R

Figure 1.1: R website. Click on Windows.

CRAN

Mirrors
What's new?
Task Views
Search

About R

R Homepage
The R Journal

Software

R Sources
R Binaries
Packages
Other

Documentation

Manuals
FAQs
Contributed

R for Windows

This directory contains binaries for a base distribution and packages to run on i386/x64 Windows.

Note: CRAN does not have Windows systems and cannot check these binaries for viruses. Use the normal
precautions with downloaded executables.

Subdirectories:

Please do not submit binaries to CRAN. Package developers might want to contact Duncan Murdoch or Uwe
Ligges directly in case of questions / suggestions related to Windows binaries.

You may also want to read the R FAQ and R for Windows FAQ.

Last modified: April 4, 2004, by Friedrich Leisch

base Binaries for base distribution (managed by Duncan Murdoch)

contrib Binaries of contributed packages (managed by Uwe Ligges)

Figure 1.2: R website. Click on base.

3

CRAN

Mirrors
What's new?
Task Views
Search

About R

R Homepage
The R Journal

Software

R Sources
R Binaries
Packages
Other

Documentation

Manuals
FAQs
Contributed

R-2.10.1 for Windows

Download R 2.10.1 for Windows (32 megabytes)

Installation and other instructions

New features in this version: Windows specific, all platforms.

If you want to double-check that the package you have downloaded exactly matches the package distributed by R,
you can compare the md5sum of the .exe to the true fingerprint. You will need a version of md5sum for windows:
both graphical and command line versions are available.

Frequently asked questions

� How do I install R when using Windows Vista?
� How do I update packages in my previous version of R?

Please see the R FAQ for general information about R and the R Windows FAQ for Windows-specific information.

Other builds

� Patches to this release are incorporated in the r-patched snapshot build.
� A build of the development version (which will eventually become the next major release of R) is available

in the r-devel snapshot build.
� Previous releases

Note to webmasters: A stable link which will redirect to the current Windows binary release is
<CRAN MIRROR>/bin/windows/base/release.htm.

Last change: 2009-12-14, by Duncan Murdoch

Figure 1.3: R website. Click on Download R 2.10.1 for Windows.

Figure 1.4: R console.

4

Figure 1.5: R console. Choose Packages, Install package(s).

Figure 1.6: R console. Choose a location nearby you.

5

Figure 1.7: R console. Choose mokken.

1.2.4 Working with R

Except for loading packages (section 1.2.3), almost everything in R is con-
ducted by typing (or pasting) code in the R console (Figure 1.4) just after
the prompt (>) and end with hard return (Enter). Code to be typed is
printed in red, the resulting output on the screen produced by R is printed
in blue. Note that R is case sensitive. Some examples.

If you type

6 - 3

R returns 6− 3 =

[1] 3

If you type

x <- sqrt(2)
x

R assigns the value
√

2 to variable x (line 1) and displays the value of
x (line 2), which is approximately equal to

[1] 1.414214

To load the procedures of mokken into the memory of R type

6

library(mokken)

To quit R, type q()

Free of charge introductions to R are available on the Internet.

• R Development Core Team (2009). An Introduction to R. Retrieved
from http://cran.r-project.org/doc/manuals/R-intro.html (html)
or http://cran.r-project.org/doc/manuals/R-intro.pdf (pdf).

• Paradis, E. (2005). R for beginners. Retrieved from http://cran.
r-project.org/doc/contrib/Paradis-rdebuts_en.pdf

• Baron, J., & Li, Y. (2007). Notes on the use of R for psychology
experiments and questionnaires. Retrieved from http://www.psych.
upenn.edu/~baron/rpsych/rpsych.html

Many more sources are available from http://cran.r-project.org/ (Con-
tributed Documentation).

1.3 Converting data to R and back again

Converting a data set from a commercial package to R is the Achilles Heel
of Mokken scale analysis in R. Commercial packages have no interest in free
software that can easily read their data sets and these companies put no
effort making their data files compatible with R. As a result, small things
that you may not be aware of (e.g., whether your computer uses a point or
a comma as a decimal separator, whether or not the rows in your data set
have labels) may affect the conversion. An elaborated manual for converting
many types of files in to files that can be read by R is available from http://
cran.r-project.org/doc/manuals/R-data.html. Here only conversions
to and from SPSS, SAS, STATA, and Splus are briefly discussed. The fasted
strategy is to read the SPSS, SAS, STATA, or Splus file directly in R. Direct
reading may occasionally go wrong and an alternative option is to save the
SPSS, SAS, STATA, or Splus file as a text-only file (ASCII file), and read
the ASCII file into R. In the latter procedure, the variable names may get
lost.

1.3.1 SPSS files

Converting SPSS files directly

I assume that an SPSS data set named ExampleSPSS.sav has been saved
on C:/ 1 .

1ExampleSPSS.sav is a completely arbitrary name and your data set probably has a
different name and may be located on another drive than C:/ . Therefore, you should
replace C:/ExampleSPSS.sav by your complete path and file name. The SPSS-file is not
included in the Mokken package.

7

http://cran.r-project.org/doc/manuals/R-intro.html
http://cran.r-project.org/doc/manuals/R-intro.pdf
http://cran.r-project.org/doc/contrib/Paradis-rdebuts_en.pdf
http://cran.r-project.org/doc/contrib/Paradis-rdebuts_en.pdf
http://www.psych.upenn.edu/~baron/rpsych/rpsych.html
http://www.psych.upenn.edu/~baron/rpsych/rpsych.html
http://cran.r-project.org/
http://cran.r-project.org/doc/manuals/R-data.html
http://cran.r-project.org/doc/manuals/R-data.html

1. Type the following code in the R console

library(foreign)
ExampleR <- data.frame(read.spss("C:/ExampleSPSS.sav"))
fix(ExampleR)

Note that data.frame() is an R function; it saves the data in a matrix-
like manner, allowing different measurement levels for the scores in
each column. Most data sets in R belong to the class data.frame. The
data file is now stored in the memory of R under the name ExampleR2.
The last command is not necessary. It opens the R data in a spread
sheet in another window in R; the spreadsheet can be used to check
whether the transformation went well. If necessary, the spread sheet
may be modified. If the spreadsheet window is closed (by clicking
the close button in the upper right-hand corner, see Figure 1.8) the
changes are saved. Note that library(foreign) may be omitted, if
it has been typed in before during the same R session.

2. If R is closed, ExampleR are lost. Therefore, the data should be saved
in an R format that can be retrieved easily. To save the data (in the
file C:/ExampleR.Rdata) type

save(ExampleR, file="C:/ExampleR.Rdata")

To get the data back into R type

load("C:/ExampleR.Rdata")

Saving SPSS files as ASCII files and read the ASCII files

Save the data as a tab delimited ASCII file (.dat file) This format can be
read easily by R. The SPSS syntax is

SAVE TRANSLATE OUTFILE=’C:\ExampleSPSS2.dat’
/TYPE=TAB
/MAP
/REPLACE
/FIELDNAMES
/CELLS=LABELS.

2Again ExampleR is a completely arbitrary name and you may decide to name it dif-
ferently, for example, NKSPdata2008.

8

Figure 1.8: Close the spreadsheet by clicking the button in the upper right-
hand corner

Converting R data to SPSS

To convert R data sets to SPSS directly is impossible. R creates an SPSS
syntax file and an ASCII data file. The SPSS syntax file should be run
within SPSS. To create the syntax file "ExampleSPSS.SPS" and the data
file "ExampleSSPS.txt" from the R data ExampleR, type

library(foreign)
write.foreign(ExampleR, datafile="C:/ExampleSPSS.txt",

codefile="C:/ExampleSPSS.SPS", package="SPSS")

1.3.2 SAS XPORT files

Converting SAS XPORT files directly

I assume that the SAS data set ExampleSAS.xpt has been saved on C:/.

1. Type the following code in the R console

library(foreign)
ExampleR <- data.frame(read.xport("C:/ExampleSAS.xpt"))
fix(ExampleR)

9

The data file is now stored in the memory of R under the name
ExampleR. The last command is not necessary. It opens the R data
in a spread sheet, which can be used to check whether the transfor-
mation went well. If necessary, the spread sheet may be modified. If
the spread-sheet window is closed the changes are saved. Note that
library(foreign) may be omitted, if it has been typed in before
during the same R session.

2. If R is closed, ExampleR are lost. Therefore, the data should be saved
in an R format that can be retrieved easily. To save the data (in the
file C:/ExampleR.Rdata) type

save(ExampleR, file="C:/ExampleR.Rdata")

To get the data back into R type

load("C:/ExampleR.Rdata")

Converting R data to SAS

To convert R data sets to SAS directly is impossible. R creates a SAS
syntax file and an ASCII data file. The SAS syntax file should be run
within SAS. To create the syntax file "ExampleSAS.XXX" and the data file
"ExampleSAS.txt" from the R data ExampleR, type

library(foreign)
write.foreign(ExampleR, datafile="C:/ExampleSAS.txt",

codefile="C:/ExampleSAS.XXX", package="SAS")

1.3.3 STATA files

Converting STATA files directly

I assume that the STATA data set ExampleSTATA.dta has been saved on
C:/.

1. Type the following code in the R console

library(foreign)
ExampleR <- data.frame(read.dta("C:/ExampleSTATA.dta"))
fix(ExampleR)

The data file is now stored in the memory of R under the name
ExampleR. The last command is not necessary. It opens the R data

10

in a spread sheet, which can be used to check whether the transfor-
mation went well. If necessary, the spread sheet may be modified. If
the spread-sheet window is closed the changes are saved. Note that
library(foreign) may be omitted, if it has been typed in before
during the same R session.

2. If R is closed, ExampleR are lost. Therefore, the data should be saved
in an R format that can be retrieved easily. To save the data (in the
file C:/ExampleR.Rdata) type

save(ExampleR, file="C:/ExampleR.Rdata")

To get the data back into R type

load("C:/ExampleR.Rdata")

Converting R data to STATA

To convert R data sets to STATA directly is impossible. R creates a STATA
syntax file and an ASCII data file. The STATA syntax file should be run
within STATA. To create the syntax file "ExampleSTATA.do" and the data
file "ExampleSTATA.dat" from the R data ExampleR, type

library(foreign)
write.foreign(ExampleR, datafile="C:/ExampleSTATA.dat",

codefile="C:/ExampleSTATA.do", package="Stata")

1.3.4 Splus files

Converting Splus files directly

I assume that the Splus data set ExampleSplus.ssc has been saved on C:/.

1. Type the following code in the R console

library(foreign)
ExampleR <- data.frame(read.s("C:/ExampleSplus.ssc"))
fix(ExampleR)

The data file is now stored in the memory of R under the name
ExampleR. The last command is not necessary. It opens the R data
in a spread sheet, which can be used to check whether the transfor-
mation went well. If necessary, the spread sheet may be modified. If
the spread-sheet window is closed the changes are saved. Note that
library(foreign) may be omitted, if it has been typed in before
during the same R session.

11

2. If R is closed, ExampleR are lost. Therefore, the data should be saved
in an R format that can be retrieved easily. To save the data (in the
file C:/ExampleR.Rdata) type

save(ExampleR, file="C:/ExampleR.Rdata")

To get the data back into R type

load("C:/ExampleR.Rdata")

Converting Splus objects to R objects

I assume that the you have an Splus object ExampleSplus in Splus, and
that all data can be stored in C:/. Type in the Splus console

dump(ExampleSplus,"C:/Example.dmp")

Next, type in the R console
ExampleR <- dget("C:/Example.dmp")

1.4 R commands required for mokken

Rather than typing commands in the R console, I advice to type the com-
mands in a plain text file, save the file, and paste a command or a series of
commands into R. In this way the commands will not be lost.

• If mokken is used, then one should start each R session with

library(mokken)

• If help is required at any stage use the command help(). For example,

help(mokken)

The help file contains examples of mokken. It can be instructive to
paste these examples into the R console.

• A hash (#) indicates that everything beyond it on the same line is a
comment.

help(mokken)

does not do anything.

12

• There are three data sets included in mokken: acl, cavalini, and
trans.reas.

data(acl)
data(cavalini)
data(trans.reas)

makes them available in R. Note that without these data() commands,
the data sets are are not available.

help(acl)

will give all the information on acl

fix(cavalini)

will show cavalini in a spreadsheet.

• An arrow <- is used for assignment. Examples

X <- acl
Y <- 3
Z <- c(1,2,3,8:11)

The value of X is the data matric acl (X and acl are now equivalent).
The value of Y is 3. The value of Z is the vector (1,2,3,8,9,10,11). It
can be verified by typing

X # lots of output
Y
Z

• To select columns and rows from the data matrix brackets are used.

X1 <- acl[,1]

X1 are the scores on the first item ‘Reliable’)

X2 <- acl[,11:20]

X2 are the scores on items 11 to 20 (i.e., only the scores on the 10
items of the scale ‘Achievement’)

X3 <- acl[1:10,]

X3 are the scores of the first 10 respondents items on all items

X4 <- acl[232,133]

X4 is the score of respondent 232 on item 133

13

scale.1 <- c(1,2,4)
X5 <- acl[c(1:100,201:300),scale.1]

X5 are the scores of respondents 1-100 and 201-300, on items 1, 2, and
4

X6 <- acl[acl[,1]==2,]

X6 are the scores of those respondents who had a score 2 on item 1.

Note that in data matrices X3 to X6, the cases (rows) not selected are thrown
away, and case numbers are not available. Case numbers can be made
through the following commands. If you want to identify the them, you can
create case numbers for acl.

dimnames(acl)[[1]] <- 1:nrow(acl)

If you repeat the analyses above, you may observe that the case numbers
have been preserved.

14

Chapter 2

The R package mokken

2.1 An overview of the functions

The package mokken consists of the following functions

2.1.1 aisp

Function aisp performs Mokken’s (1971) automated item selection algo-
rithm. In Example ?? the scores on the first ten items from ACL are used;
these are the items of the scale Communality. Mokken’s automated item
selection algorithm is applied to the ten items. The output (in blue) shows
that items unscrupulous* and unintelligent* are unscalable, that items
reliable, honest, deceitful*, and dependable are in scale 1, and items
obnoxious*, thankless*, unfriendly*, and cruel* are in scale 2.

Example 1 labelE1

data(acl)
Communality <- acl[,1:10]
scale <- aisp(Communality)
scale

scale
Scale

reliable 1
honest 1
unscrupulous* 0
deceitful* 1
unintelligent* 0
obnoxious* 2
thankless* 2
unfriendly* 2

15

dependable 1
cruel* 2

Variations of aisp are the following (for more information type help(aisp)).

• Use a genetic algorithm (Straat, van der Ark, & Sijtsma, 2010) rather
than Mokken’s algorithm.

scale2 <- aisp(Communality, search="ga")

• Use different values for the lower bound (default lowerbound = .3)
and or the nominal type I error rate (default alpha = .05)

scale3 <- aisp(Communality, lowerbound = .2, alpha =.10)

• Direct no output to the screen during the item selection (default
verbose = TRUE)

scale4 <- aisp(Communality, verbose=FALSE)

Note that search = "extend" has not yet been implemented.

2.1.2 coefH

Computes scalability coefficients Hij , Hi, and H for a set of items.

In Example 2 the scores on the first ten items from ACL are used; these are
the items of the scale Communality. First, scalability coefficients Hij , Hi,
and H are computed (no output given here because it is rather voluminous).
Second, only the item scalability coefficients are computed. Third, the item
scalability coefficients are computed but rounded to two integers.

Example 2

data(acl)
Communality <- acl[,1:10]
coefH(Communality)
coefH(Communality)$Hi
round(coefH(Communality)$Hi,2)

The output for the last two commands is as follows.

reliable honest unscrupulous* deceitful* unintelligent*
0.3038656 0.2651096 0.2360455 0.3191367 0.1160265
obnoxious* thankless* unfriendly* dependable cruel*

16

0.2879527 0.2454761 0.3085198 0.2994265 0.2522276

reliable honest unscrupulous* deceitful* unintelligent*
0.30 0.27 0.24 0.32 0.12

obnoxious* thankless* unfriendly* dependable cruel*
0.29 0.25 0.31 0.30 0.25

2.1.3 check.iio

Investigates invariant item ordering (IIO) using method Manifest IIO (MIIO;
Ligtvoet, Van der Ark, Te Marvelde, & Sijtsma, 2010) and methods Man-
ifest Scale - Cumulative Probability Model (MS-CPM) and Increasingness
in Transposition (IT) (Ligtvoet, Van der Ark, Bergsma, & Sijtsma, 2010).
Method Manifest IIO is the default. First, all result with respect to IIO are
saved in iio.results. In Example 3, the scores on the first ten items from
ACL are used; these are the items of the scale Communality. Simply typing
iio.results produces a list with lots of output for each item. summary()
reduces this output by giving a summary of the results. The output shows
the method used (i.e., Manifest IIO), the violations of manifest IIO, the
items selected using the backward selection algorithm, and scalability coeffi-
cient HT for the final scale (items unfriendly* and deceitful* excluded).

Example 3

data(acl)
Communality <- acl[,1:10]
iio.results <- check.iio(Communality)
summary(iio.results)

$method
[1] "MIIO"

$item.summary
mean #ac #vi #vi/#ac maxvi sum sum/#ac tmax #tsig

cruel* 3.48 36 0 0.00 0.00 0.00 0.00 0.00 0
unintelligent* 3.32 35 2 0.06 0.15 0.29 0.01 2.17 1
unscrupulous* 3.32 35 1 0.03 0.14 0.14 0.00 1.21 0
unfriendly* 3.30 36 1 0.03 0.15 0.15 0.00 2.17 1
thankless* 3.26 36 1 0.03 0.12 0.12 0.00 1.50 0
dependable 3.25 36 0 0.00 0.00 0.00 0.00 0.00 0
obnoxious* 3.25 36 1 0.03 0.12 0.12 0.00 1.50 0
reliable 3.09 36 0 0.00 0.00 0.00 0.00 0.00 0

17

honest 3.02 36 2 0.06 0.18 0.31 0.01 2.08 1
deceitful* 2.94 34 2 0.06 0.18 0.31 0.01 2.08 1

$backward.selection
step 1 step 2 step 3

cruel* 0 0 0
unintelligent* 1 1 0
unscrupulous* 0 0 0
unfriendly* 1 1 NA
thankless* 0 0 0
dependable 0 0 0
obnoxious* 0 0 0
reliable 0 0 0
honest 1 0 0
deceitful* 1 NA NA

$HT
[1] 0.05468516

Variations of check.iio are the following (for more information type help(check.iio)).

• Other values for minvi and minsize (Molenaar & Sijtsma, 2000, pp.
45-46) .

check.iio(Communality, minvi=0.00, minsize=50)

• Using methods MS-CPM and IT

summary(check.iio(Communality, method="MS-CPM"))
summary(check.iio(Communality, method="IT"))

• Different nominal Type I error rate for t-test (method MIIO), z-test
(Method MS-CPM), and McNemar test (method IT).

summary(check.iio(Communality, alpha=.01))

• Without backward selection algorithm, and with information screen

summary(check.iio(Communality, item.selection=FALSE))
x <- summary(check.iio(Communality, verbose=TRUE))

18

2.1.4 check.monotonicity (a.k.a. check.single)

Investigates the monotonicity assumption using the observable property
manifest monotonicity (Molenaar & Sijtsma, 2000, pp. 70-77). In Exam-
ple 4 the scores on the first ten items from ACL are used; these are the
items of the scale Communality. First, all result with respect to man-
ifest monotonicity are saved in monotonicity.results. Simply typing
monotonicity.results produces a list with lots of output for each item.
summary() and plot() reduce this output by giving a summary of the results
and graphically displaying the estimated item (step) response functions, re-
spectively. For interpretation of the output see Molenaar and Sijtsma (2000,
chap. 6, chap. 7). Without further specifications plot() displays 10 graphs
(1 for each item) in a separate R Window, and requires a hard return to go
to the next graph. Figure 2.1 shows the 10 graphs.

Example 4

data(acl)
Communality <- acl[,1:10]
monotonicity.results <- check.monotonicity(Communality)
monotonicity.results
summary(monotonicity.results)
plot(monotonicity.results)

The output for the last two commands is as follows.

ItemH #ac #vi #vi/#ac maxvi sum sum/#ac zmax #zsig
reliable 0.30 24 0 0.00 0.00 0.00 0 0.00 0
honest 0.27 24 0 0.00 0.00 0.00 0 0.00 0
unscrupulous* 0.24 24 0 0.00 0.00 0.00 0 0.00 0
deceitful* 0.32 24 0 0.00 0.00 0.00 0 0.00 0
unintelligent* 0.12 24 1 0.04 0.07 0.07 0 0.85 0
obnoxious* 0.29 24 0 0.00 0.00 0.00 0 0.00 0
thankless* 0.25 24 0 0.00 0.00 0.00 0 0.00 0
unfriendly* 0.31 24 0 0.00 0.00 0.00 0 0.00 0
dependable 0.30 24 0 0.00 0.00 0.00 0 0.00 0
cruel* 0.25 24 0 0.00 0.00 0.00 0 0.00 0

Waiting to confirm page change...
Waiting to confirm page change...
Waiting to confirm page change...
Waiting to confirm page change...
Waiting to confirm page change...
Waiting to confirm page change...
Waiting to confirm page change...

19

Waiting to confirm page change...
Waiting to confirm page change...
Waiting to confirm page change...

Variations of check.monotonicity are the following (for more information
type help(check.monotonicity)).

• Other values for minvi and minsize (Molenaar & Sijtsma, 2000, pp.
45-46) .

check.monotonicity(Communality, minvi=0.00, minsize=50)

• Plot the results for items 1 and 2 only

plot(check.monotonicity(Communality), item=c(1,2))

• Save graphs in a pdf file. ask=FALSE assures that no hard return
is required between subsequent graphs. The functions pdf() and
dev.off() are not part of mokken.

pdf("monotonicity.pdf")
plot(monotonicity.results, ask=FALSE)
dev.off()

2.1.5 check.pmatrix

Investigates the assumption of nonintersecting item step response functions
using the P++ and P−− matrix (Molenaar & Sijtsma, 2000, pp. 80-85).
In Example 5 the scores on the first ten items from ACL are used; these
are the items of the scale Communality. First, all result with respect to
the P++ (indicted by ppp) and P−− (indicated by pmm) matrix are saved
in pmatrix.results. Simply typing pmatrix.results produces a list with
lots of output for each item. summary() and plot() reduce this output
by giving a summary of the results and graphically displaying the estimated
item (step) response functions, respectively. For interpretation of the output
see Molenaar and Sijtsma (2000, pp. 80-85). Without further specifications
plot() displays 20 graphs (2 for each item) in a separate R Window, and
requires a hard return to go to the next graph.

Example 5

data(acl)
Communality <- acl[,1:10]
pmatrix.results <- check.pmatrix(Communality)

20

Figure 2.1: Plots in Example 4.

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Rest score group

Ite
m

 r
es

t f
un

ct
io

n

reliable

13−26 27−29 30−32 33−36

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Rest score group

Ite
m

 r
es

t f
un

ct
io

n

honest

14−26 27−29 30−32 33−36

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Rest score group

Ite
m

 r
es

t f
un

ct
io

n

unscrupulous*

13−25 26−28 29−31 32−36

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Rest score group

Ite
m

 r
es

t f
un

ct
io

n

deceitful*

15−26 27−29 30−31 32−36

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Rest score group

Ite
m

 r
es

t f
un

ct
io

n

unintelligent*

12−25 26−28 29−31 32−36

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Rest score group

Ite
m

 r
es

t f
un

ct
io

n

obnoxious*

13−25 26−28 29−31 32−36

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Rest score group

Ite
m

 r
es

t f
un

ct
io

n

thankless*

14−25 26−28 29−31 32−36

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Rest score group

Ite
m

 r
es

t f
un

ct
io

n

unfriendly*

14−25 26−28 29−31 32−36

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Rest score group

Ite
m

 r
es

t f
un

ct
io

n

dependable

13−26 27−29 30−32 33−36

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Rest score group

Ite
m

 r
es

t f
un

ct
io

n

cruel*

15−25 26−28 29−31 32−36

21

pmatrix.results
summary(pmatrix.results)
plot(pmatrix.results)

The output for summary(pmatrix.results) is as follows.

$ppp.summary.matrix
ItemH #ac #vi #vi/#ac maxvi sum sum/#ac

reliable 0.30 144 6 0.001 0.08 0.39 0.003
honest 0.27 144 11 0.000 0.05 0.43 0.003
unscrupulous* 0.24 144 0 0.000 0.00 0.00 0.000
deceitful* 0.32 144 0 0.000 0.00 0.00 0.000
unintelligent* 0.12 144 0 0.000 0.00 0.00 0.000
obnoxious* 0.29 144 0 0.000 0.00 0.00 0.000
thankless* 0.25 144 1 0.000 0.05 0.05 0.000
unfriendly* 0.31 144 1 0.000 0.04 0.04 0.000
dependable 0.30 144 10 0.000 0.05 0.35 0.002
cruel* 0.25 144 1 0.000 0.03 0.03 0.000

$pmm.summary.matrix
ItemH #ac #vi #vi/#ac maxvi sum sum/#ac

reliable 0.30 144 10 0 0.07 0.44 0.003
honest 0.27 144 6 0 0.05 0.23 0.002
unscrupulous* 0.24 144 0 0 0.00 0.00 0.000
deceitful* 0.32 144 0 0 0.00 0.00 0.000
unintelligent* 0.12 144 0 0 0.00 0.00 0.000
obnoxious* 0.29 144 0 0 0.00 0.00 0.000
thankless* 0.25 144 0 0 0.00 0.00 0.000
unfriendly* 0.31 144 0 0 0.00 0.00 0.000
dependable 0.30 144 5 0 0.05 0.21 0.001
cruel* 0.25 144 3 0 0.03 0.10 0.001

Variations of check.pmatrix are the following (for more information
type help(check.pmatrix)).

• Other values for minvi (Molenaar & Sijtsma, 2000, pp. 45-46) .

check.pmatrix(Communality, minvi=0.00)

• Plot the results for P++, for items 1 and 2 only, and plot the results
for P−− for item 5.

plot(check.pmatrix(Communality), pmatrix="ppp", item=c(1,2))
plot(check.pmatrix(Communality), pmatrix="pmm", item=5)

22

• Save graphs in a pdf file. ask=FALSE assures that no hard return
is required between subsequent graphs. The functions pdf() and
dev.off() are not part of mokken.

pdf("pmatrix.pdf")
plot(pmatrix.results, ask=FALSE)
dev.off()

2.1.6 check.reliability

Computes reliability coefficients ρ (a.k.a., the MS statistic; Molenaar &
Sijtsma, 1984, 1988; Sijtsma & Molenaar, 1987; Van der Ark, 2010), Cron-
bach’s (1951) alpha, and lambda-2 (Guttman, 1945). In Example 6 the
scores on the first ten items from ACL are used; these are the items of the
scale Communality.

Example 6

data(acl)
Communality <- acl[,1:10]
check.reliability(Communality)

The output for summary(restscore.results) is as follows.

$MS
[1] 0.75766

$alpha
[1] 0.7465871

$lambda.2
[1] 0.7568063

2.1.7 check.restscore

Investigates the assumption of nonintersecting item step response functions
using method restscore (Molenaar & Sijtsma, 2000, pp. 77-80). In Example 7
the scores on the first ten items from ACL are used; these are the items of
the scale Communality. First, all result with respect to method restscore are
saved in restscore.results. Simply typing restscore.results produces
a list with lots of output for each item pair. summary() and plot() reduce
this output by giving a summary of the results and plotting the estimated
item (step) response functions, respectively. For interpretation of the output
see Molenaar and Sijtsma (2000, pp. 77-80). Without further specifications
plot() displays 1

2 × 10× 9 = 45 graphs (1 for each item pair) in a separate
R Window, and requires a hard return to go to the next graph.

23

Example 7

data(acl)
Communality <- acl[,1:10]
restscore.results <- check.restscore(Communality)
restscore.results
summary(restscore.results)
plot(restscore.results)

The output for summary(restscore.results) is as follows.

ItemH #ac #vi #vi/#ac maxvi sum sum/#ac zmax #zsig
reliable 0.30 432 7 0.02 0.09 0.31 0 1.43 0
honest 0.27 432 5 0.01 0.07 0.25 0 1.25 0
unscrupulous* 0.24 416 6 0.01 0.11 0.42 0 1.46 0
deceitful* 0.32 400 8 0.02 0.09 0.40 0 1.22 0
unintelligent* 0.12 416 14 0.03 0.11 0.86 0 1.99 2
obnoxious* 0.29 432 7 0.02 0.11 0.52 0 1.83 1
thankless* 0.25 432 7 0.02 0.08 0.38 0 1.14 0
unfriendly* 0.31 432 8 0.02 0.11 0.48 0 1.99 1
dependable 0.30 432 9 0.02 0.09 0.48 0 1.22 0
cruel* 0.25 432 3 0.01 0.04 0.12 0 0.67 0

Variations of check.restscore are the following (for more information type
help(check.restscore)).

• Other values for minvi and minsize (Molenaar & Sijtsma, 2000, pp.
45-46) .

check.restscore(Communality, minvi=0.00, minsize=50)

• Plot the results for the first item pair (item 1 and item 2) and the
second item pair (item 1 and item 3) only.

plot(check.restscore(Communality), item.pairs=c(1,2))

• Save graphs in a pdf file. ask=FALSE assures that no hard return
is required between subsequent graphs. The functions pdf() and
dev.off() are not part of mokken.

pdf("restscore.pdf")
plot(restscore.results, ask=FALSE)
dev.off()

24

2.1.8 check.groups

The package mokken does not have a function check.groups, which—in
analogy to the functionCHECK=GROUPS in the software program MSP (Mole-
naar & Sijtsma, 2000, pp. 85-88)—may have been expected. The reason is
that Mokken scale analysis for different subgroups can be done easily using
standard R commands. Example 8 shows how scalability coefficient H is
computed for the first ten items from ACL, constituting the scale Commu-
nality, for respondents having scores, 0 or 1, 2, 3, and 4, respectively, on
item 11 (Achievement). Also, see section 1.4.

Example 8

data(acl)
Communality <- acl[,1:10]
Group <- acl[,11]
coefH(Communality[Group==0|Group==1,])$H
coefH(Communality[Group==2,])$H
coefH(Communality[Group==3,])$H
coefH(Communality[Group==4,])$H

The output is

[1] 0.1963215
[1] 0.3038342
[1] 0.2569371
[1] 0.2465098

2.2 Examples of Mokken scale analysis in R

This section shows the code for producing the tables in Sijtsma and Molenaar
(2003).

Table 3.1

Get the transitive reasoning data, and split them into the grades (first
column of the data matrix), and the items scores (the remaining
columns in the data matrix).

library(mokken)
data(transreas)
grades <- transreas[,1]
item.scores <- transreas[,-1]

Obtaining the overall mean scores, and the mean scores per grade

25

apply(item.scores,2,mean)
apply(item.scores[grades==2,],2,mean)
apply(item.scores[grades==3,],2,mean)
apply(item.scores[grades==4,],2,mean)
apply(item.scores[grades==5,],2,mean)
apply(item.scores[grades==6,],2,mean)

Construction of Table 3.1 (advanced R code).

Total.group <- round(apply(item.scores,2,mean),2)
for (i in 2:6) assign(paste("Grade.",i,sep=""),

round(apply(item.scores[grades==i,],2,mean),2))
Task <- c(9,12,10,11,4,5,2,7,3,1,8,6)
Property <- attributes(transreas)$property
Format <- attributes(transreas)$format
Objects <- attributes(transreas)$objects
Measures <- attributes(transreas)$measures
Table.3.1 <- data.frame(Task,Property,Format,Objects,Measures,

Total.group,Grade.2,Grade.3,Grade.4,Grade.5,Grade.6)
Table.3.1

Table 3.2

To get the data, see Table 3.1.

Obtain scalability coefficients and Z coefficients for items and total
scale.

coefH(item.scores)$Hi
coefH(item.scores)$H
coefZ(item.scores)$Zi
coefZ(item.scores)$Z

Obtain scalability coefficients and Z coefficients for items and total
scale, when the pseudo items (2 and 4) are deleted

coefH(item.scores[,-c(2,4)])$Hi
coefH(item.scores[,-c(2,4)])$H
coefZ(item.scores[,-c(2,4)])$Zi
coefZ(item.scores[,-c(2,4)])$Z

Construction of Table 3.2 (advanced R code).

26

Task <- c("9","12","10","11","4","5","2","7","3","1","8","6",
"Total item set")

Property <- c(attributes(transreas)$property,"")
Format <- c(attributes(transreas)$format,"")
Table.3.2 <- data.frame(Task,Property,Format,matrix(NA,13,8))
analysis <- list(c(1:12),c(1,3,5:12),c(1,3,6,8:12),c(1,3,8:12))
k <- 3
for (i in 1:4) for (j in 1:2){
k <- k + 1
Table.3.2[c(analysis[[i]],13),k] <-

c(round(coefH(item.scores[,analysis[[i]]])$Hi,2),
round(coefH(item.scores[,analysis[[i]]])$H,2))

}
dimnames(Table.3.2)[[2]][4:11] <- paste(c("k=12","k=12",

"k=10","k=10","k=8","k=8","k=7","k=7"),c("Hi","Zi"))
Table.3.2

Table 5.1 To get the data, see Table 3.1.

Automated item selection algorithm

scale <- aisp(item.scores)

Construction of Table 5.1 (advanced R code).

scale.1 <- c(12,8,1,11,9,3,10)
scale.2 <- c(7,5)
Hi.top <- matrix(NA,8,6)
for (i in 1:6) Hi.top[1:(i+1),i] <-

round(coefH(item.scores[,scale.1[1:(i+1)]])$Hi,2)
for (i in 1:6) Hi.top[8,i] <-

round(coefH(item.scores[,scale.1[1:(i+1)]])$H,2)
dimnames(Hi.top)[[2]] <- paste("Step",1:6)
Table.5.1.top <- data.frame(

Task = c(Task[scale.1],"Total H"),
Property= c(Property[scale.1],""),
Format=c(Format[scale.1],""),
Pi = c(round(apply(item.scores[,scale.1],2,mean),2),NA)

)
Table.5.1.top <- cbind(Table.5.1.top,Hi.top)
Table.5.1.top

Table 5.2 Get the data, and dichotomize the scores, compute the P -values

data(cavalini)
X <- cavalini

27

X[cavalini < 2] <- 0
X[cavalini > 1] <- 1
apply(X,2,mean)

Make the table (advanced R code)

Table.5.2 <- data.frame(1:17, attributes(X)$labels,
round(apply(X,2,mean),2))

dimnames(Table.5.2)[[2]] <- c("Item.number","Item.text","Pi")
rownames(Table.5.2) <- NULL
Table.5.2

Table 5.3 Get the data, and dichotomize the scores, see previous example

Automated item selection algorithm with different values for the
lower bound.

aisp(X,lowerbound=0.00)
aisp(X,lowerbound=0.05)
aisp(X,lowerbound=0.10)
etc.

Make the table (advanced R code)

lower.bound <- seq(0,.6,by=.05)
scaling.results <- matrix(NA,length(lower.bound),ncol(X))
for (i in 1:length(lower.bound)) scaling.results[i,] <-

aisp(X, lowerbound=lower.bound[i],verbose=FALSE)
equal <- function(x,n) which(x==n)
scale.1 <- sapply(apply(scaling.results,1,"equal", 1),

paste,collapse=" ")
scale.2 <- sapply(apply(scaling.results,1,"equal", 2),

paste,collapse=" ")
scale.3 <- sapply(apply(scaling.results,1,"equal", 3),

paste,collapse=" ")
scale.4 <- sapply(apply(scaling.results,1,"equal", 4),

paste,collapse=" ")
scale.5 <- sapply(apply(scaling.results,1,"equal", 5),

paste,collapse=" ")
Table.5.3 <- data.frame(lower.bound, scale.1,scale.2,

scale.3,scale.4,scale.5)
Table.5.3

Table 5.4 Get the data, and dichotomize the scores, see previous example

Automated item selection algorithm with two different values for the
lower bound.

28

scale.3 <- aisp(X,lowerbound=0.30)
scale.35 <- aisp(X,lowerbound=0.35)

Make the table (advanced R code)

scale.30 <- aisp(X,lowerbound=0.30,verbose=F)
max.scale <- max(scale.30)
Table.5.4.left <- data.frame()
for (i in 1:max.scale){
max.item <- max(length(scale.30[scale.30==i]))
Scale <- c(i,rep("",max.item-1))
Item.30 <- which(scale.30==i)
Hi.30 <- round(coefH(X[,scale.30==i])$Hi,2)
H.30 <- c(rep("",max.item-1),round(coefH(X[,scale.30==i])$H,2))
Table.5.4.left <- rbind(Table.5.4.left,data.frame(Scale=Scale,

Item=Item.30,Hi=Hi.30,H=H.30),c("","","",""))
}
rownames(Table.5.4.left) <- NULL
Table.5.4.left

scale.35 <- aisp(X,lowerbound=0.35,verbose=F)
max.scale <- max(scale.35)
Table.5.4.right <- data.frame()
for (i in 1:max.scale){
max.item <- max(length(scale.35[scale.35==i]))
Scale <- c(i,rep("",max.item-1))
Item.35 <- which(scale.35==i)
Hi.35 <- round(coefH(X[,scale.35==i])$Hi,2)
H.35 <- c(rep("",max.item-1),round(coefH(X[,scale.35==i])$H,2))
Table.5.4.right <- rbind(Table.5.4.right,data.frame(Scale=Scale,

Item=Item.35,Hi=Hi.35,H=H.35),c("","","",""))
}
rownames(Table.5.4.right) <- NULL
Table.5.4.right

Table 6.1 Get the data. The two pseudo task. Item 2 (column 3)
and item 4 (column5) were not considered. Also, the first
column (Group) is removed from the data. Tasks 3 and 4
(items 5 and 9) were investigated in detail. This is the item
pair number 21.
library(mokken)
data(transreas)
X <- transreas[,-c(1,3,5)]

29

check.restscore(X,minsize=2)$results[[21]]
check.restscore(X,minsize=40)$results[[21]]
plot(check.restscore(X,minsize=2),item.pairs=21)
plot(check.restscore(X,minsize=40),item.pairs=21)
R <- apply(X[,-c(3,7)],1,sum)
table(X[,3],X[,7],R)
as.numeric(table(X[,3][R < 5],X[,7][R < 5]))

Table 6.2 Get the data. The two pseudo task. Item 2 (column 3)
and item 4 (column5) were not considered. Also, the first
column (Group) is removed from the data.
library(mokken)
data(transreas)
X <- transreas[,-c(1,3,5)]
Task <- c(9,10,4,5,2,7,3,1,8,6)
ppp <- check.pmatrix(X)$Ppp
dimnames(ppp) <- list(Task,Task)
round(ppp,2)

pmm <- check.pmatrix(X)$Pmm
dimnames(pmm) <- list(Task,Task)
round(pmm,2)

Acknowledgements

Thanks are due to Wybrandt van Schuur for comments on the first draft of
this report.

References

Baron, J., & Li, Y. (2007). Notes on the use of R for psychology experi-
ments and questionnaires. Unpublished manuscript. Retrieved from
http://www.psych.upenn.edu/~baron/rpsych/rpsych.html

Cronbach, L. (1951). Coefficient alpha and the internal structure of tests.
Psychometrika, 16, 297-334.

Guttman, L. (1945). A basis for analyzing test-retest reliability. Psychome-
trika, 10,255-282.

Ligtvoet, R., Van der Ark, L. A., Te Marvelde, J. M., & Sijtsma, K. (2010).
Investigating an invariant item ordering for polytomously scored items.
Educational and Psychological Measurement.

30

http://www.psych.upenn.edu/~baron/rpsych/rpsych.html

Ligtvoet, R, van der Ark, L. A. , Bergsma, W. P., & Sijtsma, K. (2010).
Polytomous latent scales for the investigation of the ordering of items.
Manuscript submitted for publication.

Mokken, R. J. (1971). A Theory and Procedure of Scale Analysis. Berlin,
Germany: De Gruyter.

Molenaar, I. W. and K. Sijtsma (1984). Internal consistency and reliabil-
ity in Mokken’s nonparametric item response model. Tijdschrift voor
onderwijsresearch, 9, 257–268.

Molenaar, I. W. and K. Sijtsma (1988). Mokken’s approach to reliability
estimation extended to multicategory items. Kwantitatieve methoden,
9(28), 115-126.

Molenaar, I.W., & Sijtsma, K. (2000). User’s Manual MSP5 for Windows
[Software manual]. Groningen, The Netherlands: IEC ProGAMMA.

Muenchen, R. A. (2008). R for SAS and SPSS Users. Berlin: Springer.

Paradis, E. (2005). R for beginners. Unpublished manuscript. Retrieved
from http://cran.r-project.org/doc/contrib/Paradis-rdebuts_
en.pdf

R Development Core Team (2006). R: A Language and Environment for
Statistical Computing. Vienna, Austria: R Foundation for Statistical
Computing.

R Development Core Team (2009). An Introduction to R. Unpublished
manuscript. Retrieved from http://cran.r-project.org/doc/manuals/
R-intro.html

Sijtsma, K. and I. W. Molenaar (1987). Reliability of test scores in non-
parametric item response theory. Psychometrika, 52,79-97.

Sijtsma, K., & Molenaar, I. W. (2002). Introduction to nonparametric item
response theory. Thousand Oaks, CA: Sage.

Straat, J. H., Van der Ark, L. A., & Sijtsma, K. (2008). Comparing opti-
mization algorithms for item selection in Mokken scale analysis. Paper
submitted for publication.

Van der Ark, L. A. (2007). Mokken scale analysis in R. Journal of Statis-
tical Software, 20 (11), 1-19.

Van der Ark, L. A. (2010). Computation of the Molenaar Sijtsma statistic.
In A. Fink, B. Lausen, W. Seidel, & A. Ultsch (Eds.), Advances in
data analysis, data handling and business intelligence (pp. 775-784).
Berlin: Springer.

31

http://cran.r-project.org/doc/contrib/Paradis-rdebuts_en.pdf
http://cran.r-project.org/doc/contrib/Paradis-rdebuts_en.pdf
http://cran.r-project.org/doc/manuals/R-intro.html
http://cran.r-project.org/doc/manuals/R-intro.html

	Getting started
	Introduction
	Installation
	What is R?
	Installing R
	Installing the package mokken
	Working with R

	Converting data to R and back again
	SPSS files
	SAS XPORT files
	STATA files
	Splus files

	R commands required for mokken

	The R package mokken
	An overview of the functions
	aisp
	coefH
	check.iio
	check.monotonicity (a.k.a. check.single)
	check.pmatrix
	check.reliability
	check.restscore
	check.groups

	Examples of Mokken scale analysis in R

