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Introduction

Linear regression has long been a staple of introductory statistics courses. While the cur-
ricula of introductory statistics courses has much evolved of late, the overall importance
of regression remains the same (American Statistical Association Undergraduate Guide-
lines Workgroup 2016). To facilitate the teaching of regression while leveraging modern
computational tools, we’ve created the moderndive R package of datasets and functions
for tidyverse-friendly introductory linear regression (Wickham, Averick, et al. 2019).

This R package is designed to supplement the book “Statistical Inference via Data Science:
A ModernDive into R and the Tidyverse” (Ismay and Kim 2019). Note that the book is
also available online at https://www.moderndive.com and is referred to as “ModernDive”
for short.

Before we proceed, let’s load all the R packages we are going to need.
library(moderndive)
library(ggplot2)
library(dplyr)
library(readr)
library(knitr)
library(broom)

Let’s consider data gathered from end of semester student evaluations for a sample of
463 courses taught by 94 professors from the University of Texas at Austin (Diez, Barr,
and Çetinkaya-Rundel 2015). This data is included in the evals data frame from the
moderndive package.

In the following table, we present a subset of 9 of the 14 variables included for a random
sample of 5 courses1:

1. ID uniquely identifies the course whereas prof_ID identifies the professor who taught
this course. This distinction is important since many professors taught more than
one course.

2. score is the outcome variable of interest: average professor evaluation score out of
5 as given by the students in this course.

3. The remaining variables are demographic variables describing that course’s instruc-
tor, including bty_avg (average “beauty” score) for that professor as given by a
panel of 6 students.2

1For details on the remaining 5 variables, see the help file by running ?evals.
2Note that gender was collected as a binary variable at the time of the study (2005).
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ID prof_ID score age bty_avg gender ethnicity language rank
129 23 3.7 62 3.000 male not minority english tenured
109 19 4.7 46 4.333 female not minority english tenured
28 6 4.8 62 5.500 male not minority english tenured

434 88 2.8 62 2.000 male not minority english tenured
330 66 4.0 64 2.333 male not minority english tenured

Regression analysis the “good old-fashioned” way

Let’s fit a simple linear regression model of teaching score as a function of instructor age
using the lm() function.
score_model <- lm(score ~ age, data = evals)

Let’s now study the output of the fitted model score_model “the good old-fashioned
way”: using summary() which calls summary.lm() behind the scenes (we’ll refer to them
interchangeably throughout this paper).
summary(score_model)
##
## Call:
## lm(formula = score ~ age, data = evals)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.9185 -0.3531 0.1172 0.4172 0.8825
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 4.461932 0.126778 35.195 <2e-16 ***
## age -0.005938 0.002569 -2.311 0.0213 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.5413 on 461 degrees of freedom
## Multiple R-squared: 0.01146, Adjusted R-squared: 0.009311
## F-statistic: 5.342 on 1 and 461 DF, p-value: 0.02125

Here are 5 common student questions we’ve heard over the years in our introductory
statistics courses based on this output:

1. “Wow! Look at those p-value stars! Stars are good, so I should try to get many
stars, right?”

2. “How do we extract the values in the regression table?”
3. “Where are the fitted/predicted values and residuals?”
4. “How do I apply this model to a new set of data to make predictions?”
5. “What is all this other stuff at the bottom?”

Regression analysis using moderndive

To address these questions, we’ve included three functions in the moderndive package that
take a fitted model object as input and return the same information as summary.lm(),
but output them in tidyverse-friendly format (Wickham, Averick, et al. 2019). As we’ll
see later, while these three functions are merely wrappers to existing functions in the
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broom package for converting statistical objects into tidy tibbles, we modified them with
the introductory statistics student in mind (Robinson and Hayes 2019).

1. Get a tidy regression table with confidence intervals:
get_regression_table(score_model)
## # A tibble: 2 x 7
## term estimate std_error statistic p_value lower_ci upper_ci
## <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 intercept 4.46 0.127 35.2 0 4.21 4.71
## 2 age -0.006 0.003 -2.31 0.021 -0.011 -0.001

2. Get information on each point/observation in your regression, including fit-
ted/predicted values and residuals, in a single data frame:
get_regression_points(score_model)
## # A tibble: 463 x 5
## ID score age score_hat residual
## <int> <dbl> <int> <dbl> <dbl>
## 1 1 4.7 36 4.25 0.452
## 2 2 4.1 36 4.25 -0.148
## 3 3 3.9 36 4.25 -0.348
## 4 4 4.8 36 4.25 0.552
## 5 5 4.6 59 4.11 0.488
## 6 6 4.3 59 4.11 0.188
## 7 7 2.8 59 4.11 -1.31
## 8 8 4.1 51 4.16 -0.059
## 9 9 3.4 51 4.16 -0.759
## 10 10 4.5 40 4.22 0.276
## # ... with 453 more rows

3. Get scalar summaries of a regression fit including R2 and R2
adj but also the (root)

mean-squared error:
get_regression_summaries(score_model)
## # A tibble: 1 x 8
## r_squared adj_r_squared mse rmse sigma statistic p_value df
## <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 0.011 0.009 0.292 0.540 0.541 5.34 0.021 2

Bonus: Visualizing parallel slopes models with moderndive

Furthermore, say you would like to create a visualization of the relationship between two
numerical variables and a third categorical variable with k levels. Let’s create this using
a colored scatterplot via the ggplot2 package for data visualization (Wickham, Chang,
et al. 2019). Using geom_smooth(method = "lm", se = FALSE) yields a visualization
of an interaction model where each of the k regression lines has their own intercept and
slope. For example in Figure 1, we extend our previous regression model by now mapping
the categorical variable ethnicity to the color aesthetic.
# Code to visualize interaction model:
ggplot(evals, aes(x = age, y = score, color = ethnicity)) +
geom_point() +
geom_smooth(method = "lm", se = FALSE) +
labs(x = "Age", y = "Teaching score", color = "Ethnicity")

However, many introductory statistics courses start with the easier to teach “common
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Figure 1: Visualization of interaction model.

slope, different intercepts” regression model, also known as the parallel slopes model.
However, no argument to plot such models exists within geom_smooth().

Evgeni Chasnovski thus wrote a custom geom_ extension to ggplot2 called
geom_parallel_slopes(); this extension is included in the moderndive pack-
age. Much like geom_smooth() from the ggplot2 package, you merely add a
geom_parallel_slopes() layer to the code, resulting in Figure 2.
# Code to visualize parallel slopes model:
ggplot(evals, aes(x = age, y = score, color = ethnicity)) +
geom_point() +
geom_parallel_slopes(se = FALSE) +
labs(x = "Age", y = "Teaching score", color = "Ethnicity")

At this point however, students will inevitably ask a sixth question: “When would you
ever use a parallel slopes model?”

Why should you use the moderndive package?

To recap this introduction, we believe that the following functions included in the
moderndive package

1. get_regression_table()
2. get_regression_points()
3. get_regression_summaries()
4. geom_parallel_slopes()

are effective pedagogical tools that can help address the six common questions posed by
students about introductory linear regression performed in R. We now argue why.
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Figure 2: Visualization of parallel slopes model.

Features

1. Less p-value stars, more confidence intervals

The first common student question:

“Wow! Look at those p-value stars! Stars are good, so I should try to get
many stars, right?”

We argue that the summary.lm() output is deficient in an introductory statistics setting
because:

1. The Signif. codes: 0 '' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 only
encourage p-hacking. In case you have not yet been convinced of the pernicious-
ness of p-hacking, perhaps comedian John Oliver can convince you.

2. While not a silver bullet for eliminating misinterpretations of statistical inference,
confidence intervals present students with a sense of the associated effect sizes of
any explanatory variables. Thus, practical as well as statistical significance is em-
phasized. These are not included by default in the output of summary.lm().

Instead of summary(), let’s use the get_regression_table() function:
get_regression_table(score_model)
## # A tibble: 2 x 7
## term estimate std_error statistic p_value lower_ci upper_ci
## <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 intercept 4.46 0.127 35.2 0 4.21 4.71
## 2 age -0.006 0.003 -2.31 0.021 -0.011 -0.001

Observe how the p-value stars are omitted and confidence intervals for the point estimates
of all regression parameters are included by default. By including them in the output,
we can easily emphasize to students that they “surround” the point estimates in the
estimate column. Note the confidence level is defaulted to 95%.
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2. Outputs as tibbles

The second common student question:

“How do we extract the values in the regression table?”

While one might argue that extracting the intercept and slope coefficients can be simply
done using coefficients(score_model), what about the standard errors? For example,
a Google query of “how do I extract standard errors from lm in R” yielded results from
the R mailing list and from crossvalidated suggesting we run:
sqrt(diag(vcov(score_model)))
## (Intercept) age
## 0.126778499 0.002569157

We argue that this task shouldn’t be this hard, especially in an introductory statistics
setting. To rectify this, the three get_regression_* functions all return data frames in
the tidyverse-style tibble (tidy table) format (Müller and Wickham 2019). Therefore you
can easily extract columns using the pull() function from the dplyr package (Wickham
et al. 2020):
get_regression_table(score_model) %>%
pull(std_error)

## [1] 0.127 0.003

or equivalently you can use the $ sign operator from base R:
get_regression_table(score_model)$std_error
## [1] 0.127 0.003

Furthermore, by piping the above get_regression_table(score_model) output into
the kable() function from the knitr package (Xie 2020), you can obtain aesthetically
pleasing regression tables in R Markdown documents, instead of tables written in jarring
computer output font:
get_regression_table(score_model) %>%
kable()

term estimate std_error statistic p_value lower_ci upper_ci
intercept 4.462 0.127 35.195 0.000 4.213 4.711
age -0.006 0.003 -2.311 0.021 -0.011 -0.001

3. Birds of a feather should flock together: Fitted values & residuals

The third common student question:

“Where are the fitted/predicted values and residuals?”

How can we extract point-by-point information from a regression model, such as the
fitted/predicted values and the residuals? (Note we only display the first 10 out of 463 of
such values for brevity’s sake.)
fitted(score_model)

## 1 2 3 4 5 6 7
## 4.248156 4.248156 4.248156 4.248156 4.111577 4.111577 4.111577
## 8 9 10
## 4.159083 4.159083 4.224403
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residuals(score_model)

## 1 2 3 4 5
## 0.45184376 -0.14815624 -0.34815624 0.55184376 0.48842294
## 6 7 8 9 10
## 0.18842294 -1.31157706 -0.05908286 -0.75908286 0.27559666

But why have the original explanatory/predictor age and outcome variable score in
evals, the fitted/predicted values score_hat, and residual floating around in separate
vectors? Since each observation relates to the same course, we argue it makes more sense
to organize them together in the same data frame using get_regression_points():
score_model_points <- get_regression_points(score_model)
score_model_points

## # A tibble: 10 x 5
## ID score age score_hat residual
## <int> <dbl> <int> <dbl> <dbl>
## 1 1 4.7 36 4.25 0.452
## 2 2 4.1 36 4.25 -0.148
## 3 3 3.9 36 4.25 -0.348
## 4 4 4.8 36 4.25 0.552
## 5 5 4.6 59 4.11 0.488
## 6 6 4.3 59 4.11 0.188
## 7 7 2.8 59 4.11 -1.31
## 8 8 4.1 51 4.16 -0.059
## 9 9 3.4 51 4.16 -0.759
## 10 10 4.5 40 4.22 0.276

Observe that the original outcome variable score and explanatory/predictor variable age
are now supplemented with the fitted/predicted values score_hat and residual columns.
By putting the fitted values, predicted values, and residuals next to the original data, we
argue that the computation of these values is less opaque. For example, instructors can
easily emphasize how all values in the first row of output are computed.

Furthermore, recall that since all outputs in the moderndive package are tibble data
frames, custom residual analysis plots can be created instead of relying on the default
plots yielded by plot.lm(). For example, we can check for the normality of residuals
using the histogram of residuals shown in Figure 3.
# Code to visualize distribution of residuals:
ggplot(score_model_points, aes(x = residual)) +
geom_histogram(bins = 20) +
labs(x = "Residual", y = "Count")

As another example, we can investigate potential relationships between the residuals and
all explanatory/predictor variables and the presence of heteroskedasticity using partial
residual plots, like the partial residual plot over age shown in Figure 4. If the term
“heteroskedasticity” is new to you, it corresponds to the variability of one variable being
unequal across the range of values of another variable. The presence of heteroskedasticity
violates one of the assumptions of inference for linear regression.
# Code to visualize partial residual plot over age:
ggplot(score_model_points, aes(x = age, y = residual)) +
geom_point() +
labs(x = "Age", y = "Residual")

, (). Take a moderndive into introductory linear regression with R. Journal of Open Source Software, (), . https://doi.org/ 7

https://doi.org/


0

20

40

60

−2 −1 0 1
Residual

C
ou

nt

Figure 3: Histogram visualizing distribution of residuals.

−2

−1

0

1

30 40 50 60 70
Age

R
es

id
ua

l

Figure 4: Partial residual residual plot over age.
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Figure 5: House prices Kaggle competition homepage.

4. A quick-and-easy Kaggle predictive modeling competition submis-
sion!

The fourth common student question:

“How do I apply this model to a new set of data to make predictions?”

With the fields of machine learning and artificial intelligence gaining prominence, the
importance of predictive modeling cannot be understated. Therefore, we’ve designed the
get_regression_points() function to allow for a newdata argument to quickly apply a
previously fitted model to new observations.

Let’s create an artificial “new” dataset consisting of two instructors of age 39 and 42
and save it in a tibble data frame called new_prof. We then set the newdata argument
to get_regression_points() to apply our previously fitted model score_model to this
new data, where score_hat holds the corresponding fitted/predicted values.
new_prof <- tibble(age = c(39, 42))
get_regression_points(score_model, newdata = new_prof)
## # A tibble: 2 x 3
## ID age score_hat
## <int> <dbl> <dbl>
## 1 1 39 4.23
## 2 2 42 4.21

Let’s do another example, this time using the Kaggle House Prices: Advanced Regression
Techniques practice competition (Figure 5 displays the homepage for this competition).

This Kaggle competition requires you to fit/train a model to the provided train.csv
training set to make predictions of house prices in the provided test.csv test set. We
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Figure 6: Resulting Kaggle RMSLE score.

present an application of the get_regression_points() function allowing students to
participate in this Kaggle competition. It will:

1. Read in the training and test data.
2. Fit a naive model of house sale price as a function of year sold to the training data.
3. Make predictions on the test data and write them to a submission.csv file that

can be submitted to Kaggle using get_regression_points(). Note the use of the
ID argument to use the id variable in test to identify the rows (a requirement of
Kaggle competition submissions).

library(readr)
library(dplyr)
library(moderndive)

# Load in training and test set
train <- read_csv("https://moderndive.com/data/train.csv")
test <- read_csv("https://moderndive.com/data/test.csv")

# Fit model:
house_model <- lm(SalePrice ~ YrSold, data = train)

# Make predictions and save in appropriate data frame format:
submission <- house_model %>%
get_regression_points(newdata = test, ID = "Id") %>%
select(Id, SalePrice = SalePrice_hat)

# Write predictions to csv:
write_csv(submission, "submission.csv")

After submitting submission.csv to the leaderboard for this Kaggle competition, we
obtain a “root mean squared logarithmic error” (RMSLE) score of 0.42918 as seen in
Figure 6.

5. Scalar summaries of linear regression model fits

The fifth common student question:

“What is all this other stuff at the bottom?”

Recall the output of the standard summary.lm() from earlier:

##
## Call:
## lm(formula = score ~ age, data = evals)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.9185 -0.3531 0.1172 0.4172 0.8825
##
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Figure 7: Interaction (left) and parallel slopes (right) models.

## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 4.461932 0.126778 35.195 <2e-16 ***
## age -0.005938 0.002569 -2.311 0.0213 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.5413 on 461 degrees of freedom
## Multiple R-squared: 0.01146, Adjusted R-squared: 0.009311
## F-statistic: 5.342 on 1 and 461 DF, p-value: 0.02125

Say we wanted to extract the scalar model summaries at the bottom of this output, such
as R2, R2

adj , and the F -statistic. We can do so using the get_regression_summaries()
function.
get_regression_summaries(score_model)
## # A tibble: 1 x 8
## r_squared adj_r_squared mse rmse sigma statistic p_value df
## <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 0.011 0.009 0.292 0.540 0.541 5.34 0.021 2

We’ve supplemented the standard scalar summaries output yielded by summary() with
the mean squared error mse and root mean squared error rmse given their popularity in
machine learning settings.

6. Plot parallel slopes regression models

Finally, the last common student question:

“When would you ever use a parallel slopes model?”

For example, recall the earlier visualizations of the interaction and parallel slopes models
for teaching score as a function of age and ethnicity we saw in Figures 1 and 2. Let’s
present both visualizations side-by-side in Figure 7.

Students might be wondering “Why would you use the parallel slopes model on the right
when the data clearly form an”X” pattern as seen in the interaction model on the left?”
This is an excellent opportunity to gently introduce the notion of model selection and
Occam’s Razor: an interaction model should only be used over a parallel slopes model if
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the additional complexity of the interaction model is warranted. Here, we define
model “complexity/simplicity” in terms of the number of parameters in the corresponding
regression tables:
# Regression table for interaction model:
interaction_evals <- lm(score ~ age * ethnicity, data = evals)
get_regression_table(interaction_evals)
## # A tibble: 4 x 7
## term estimate std_error statistic p_value lower_ci upper_ci
## <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 intercept 2.61 0.518 5.04 0 1.59 3.63
## 2 age 0.032 0.011 2.84 0.005 0.01 0.054
## 3 ethnicitynot~ 2.00 0.534 3.74 0 0.945 3.04
## 4 age:ethnicit~ -0.04 0.012 -3.51 0 -0.063 -0.018

# Regression table for parallel slopes model:
parallel_slopes_evals <- lm(score ~ age + ethnicity, data = evals)
get_regression_table(parallel_slopes_evals)
## # A tibble: 3 x 7
## term estimate std_error statistic p_value lower_ci upper_ci
## <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 intercept 4.37 0.136 32.1 0 4.1 4.63
## 2 age -0.006 0.003 -2.5 0.013 -0.012 -0.001
## 3 ethnicitynot~ 0.138 0.073 1.89 0.059 -0.005 0.282

The interaction model is “more complex” as evidenced by its regression table involving 4
rows of parameter estimates whereas the parallel slopes model is “simpler” as evidenced by
its regression table involving only 3 parameter estimates. It can be argued however that
this additional complexity is warranted given the clearly different slopes in the left-hand
plot of Figure 7.

We now present a contrasting example, this time from Chapter 6 of the online version of
ModernDive Subsection 6.3.1 involving Massachusetts USA public high schools.3 Let’s
plot both the interaction and parallel slopes models in Figure 8.
# Code to plot interaction and parallel slopes models for MA_schools
ggplot(MA_schools,

aes(x = perc_disadvan, y = average_sat_math, color = size)) +
geom_point(alpha = 0.25) +
labs(x = "% economically disadvantaged",

y = "Math SAT Score",
color = "School size") +

geom_smooth(method = "lm", se = FALSE)

ggplot(MA_schools,
aes(x = perc_disadvan, y = average_sat_math, color = size)) +

geom_point(alpha = 0.25) +
labs(x = "% economically disadvantaged",

y = "Math SAT Score",
color = "School size") +

geom_parallel_slopes(se = FALSE)

In terms of the corresponding regression tables, observe that the corresponding regression
table for the parallel slopes model has 4 rows as opposed to the 6 for the interaction
model, reflecting its higher degree of “model simplicity.”

3For more details on this dataset, see the help file by running ?MA_schools.
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Figure 8: Interaction (left) and parallel slopes (right) models.

# Regression table for interaction model:
interaction_MA <-
lm(average_sat_math ~ perc_disadvan * size, data = MA_schools)

get_regression_table(interaction_MA)
## # A tibble: 6 x 7
## term estimate std_error statistic p_value lower_ci upper_ci
## <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 intercept 594. 13.3 44.7 0 568. 620.
## 2 perc_disadvan -2.93 0.294 -9.96 0 -3.51 -2.35
## 3 sizemedium -17.8 15.8 -1.12 0.263 -48.9 13.4
## 4 sizelarge -13.3 13.8 -0.962 0.337 -40.5 13.9
## 5 perc_disadva~ 0.146 0.371 0.393 0.694 -0.585 0.877
## 6 perc_disadva~ 0.189 0.323 0.586 0.559 -0.446 0.824

# Regression table for parallel slopes model:
parallel_slopes_MA <-
lm(average_sat_math ~ perc_disadvan + size, data = MA_schools)

get_regression_table(parallel_slopes_MA)
## # A tibble: 4 x 7
## term estimate std_error statistic p_value lower_ci upper_ci
## <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 intercept 588. 7.61 77.3 0 573. 603.
## 2 perc_disadvan -2.78 0.106 -26.1 0 -2.99 -2.57
## 3 sizemedium -11.9 7.54 -1.58 0.115 -26.7 2.91
## 4 sizelarge -6.36 6.92 -0.919 0.359 -20.0 7.26

Unlike our earlier comparison of interaction and parallel slopes models in Figure 7, in
this case it could be argued that the additional complexity of the interaction model is
not warranted since the 3 three regression lines in the left-hand interaction are already
somewhat parallel. Therefore the simpler parallel slopes model should be favored.

Going one step further, notice how the three regression lines in the visualization of the
parallel slopes model in the right-hand plot of Figure 8 have similar intercepts. In can thus
be argued that the additional model complexity induced by introducing the categorical
variable school size is not warranted. Therefore, a simple linear regression model using
only perc_disadvan percent of the student body that are economically disadvantaged
should be favored.
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While many students will inevitably find these results depressing, in our opinion, it is
important to additionally emphasize that such regression analyses can be used as an
empowering tool to bring to light inequities in access to education and inform policy
decisions.

The Details

Three wrappers to broom functions

As we mentioned earlier, the three get_regression_* functions are merely wrappers
of functions from the broom package for converting statistical analysis objects into tidy
tibbles along with a few added tweaks, but with the introductory statistics student in
mind (Robinson and Hayes 2019):

1. get_regression_table() is a wrapper for broom::tidy().
2. get_regression_points() is a wrapper for broom::augment().
3. get_regression_summaries is a wrapper for broom::glance().

Why did we take this approach to address the initial 5 common student questions at the
outset of the article?

1. By writing wrappers to pre-existing functions, instead of creating new custom func-
tions, there is minimal re-inventing of the wheel necessary.

2. In our experience, novice R users had a hard time understanding the broom
package function names tidy(), augment(), and glance(). To make them
more user-friendly, the moderndive package wrappers have much more in-
tuitively named get_regression_table(), get_regression_points(), and
get_regression_summaries().

3. The variables included in the outputs of the above 3 broom functions are not all
applicable to an introductory statistics students and of those that were, we found
them to be unintuitively named. We therefore cut out some of the variables from
the output and renamed some of the remaining variables. For example, compare
the outputs of the get_regression_points() wrapper function and the parent
broom::augment() function.

get_regression_points(score_model)
## # A tibble: 463 x 5
## ID score age score_hat residual
## <int> <dbl> <int> <dbl> <dbl>
## 1 1 4.7 36 4.25 0.452
## 2 2 4.1 36 4.25 -0.148
## 3 3 3.9 36 4.25 -0.348
## 4 4 4.8 36 4.25 0.552
## 5 5 4.6 59 4.11 0.488
## 6 6 4.3 59 4.11 0.188
## 7 7 2.8 59 4.11 -1.31
## 8 8 4.1 51 4.16 -0.059
## 9 9 3.4 51 4.16 -0.759
## 10 10 4.5 40 4.22 0.276
## # ... with 453 more rows
broom::augment(score_model)
## # A tibble: 463 x 9
## score age .fitted .se.fit .resid .hat .sigma .cooksd
## <dbl> <int> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 4.7 36 4.25 0.0405 0.452 0.00560 0.542 1.97e-3
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## 2 4.1 36 4.25 0.0405 -0.148 0.00560 0.542 2.12e-4
## 3 3.9 36 4.25 0.0405 -0.348 0.00560 0.542 1.17e-3
## 4 4.8 36 4.25 0.0405 0.552 0.00560 0.541 2.94e-3
## 5 4.6 59 4.11 0.0371 0.488 0.00471 0.541 1.93e-3
## 6 4.3 59 4.11 0.0371 0.188 0.00471 0.542 2.88e-4
## 7 2.8 59 4.11 0.0371 -1.31 0.00471 0.538 1.39e-2
## 8 4.1 51 4.16 0.0261 -0.0591 0.00232 0.542 1.39e-5
## 9 3.4 51 4.16 0.0261 -0.759 0.00232 0.541 2.29e-3
## 10 4.5 40 4.22 0.0331 0.276 0.00374 0.542 4.88e-4
## # ... with 453 more rows, and 1 more variable: .std.resid <dbl>

The source code for these three get_regression_* functions can be found on GitHub.

Custom geometries

The geom_parallel_slopes() is a custom built geom extension to the ggplot2 package.
For example, the ggplot2 webpage page gives instructions on how to create such exten-
sions. The source code for geom_parallel_slopes() written by Evgeni Chasnovski can
be found on GitHub.
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