
Users Guide to the mimR package for Graphical
Modelling in R

Søren Højsgaard

January 30, 2006

Contents

1 Introduction and background 2

2 Preliminaries 3
2.1 Availability: . 3
2.2 MIM as inference engine: . 3
2.3 Installation: . 3
2.4 Known problems . 3
2.5 Getting help: . 3
2.6 Referring to mimR . 4

3 The rats dataset 4

4 Objects in mimR 4

5 gmData objects – graphical meta data 5
5.1 Making a gmData object from a data frame 5
5.2 Discrete data arranged as a table 6
5.3 Discrete data arranged as cummulated cell counts in data frame . 6
5.4 Creating a gmData from a list of sufficient statistics 7

5.4.1 Purely continuous data . 7
5.4.2 Purely discrete data . 7
5.4.3 Mixed data . 8

5.5 Creating a gmData object without data 8

6 Models in mimR 8

7 Displaying models graphically 9

8 Model fitting 9

1

9 Fitted values (parameter estimates) 10

10 Model summary 10

11 Model editing and model selection 11
11.1 Editing models directly . 11
11.2 Stepwise model selection . 13

12 Missing values and/or latent variables 13

13 Example – Mathematics marks 13
13.1 Selecting a graphical model . 13
13.2 Fitting a model with a discrete latent variable 14
13.3 Controlling the EM algorithm . 16
13.4 Fitting a model with a continuous latent variable 17

14 Discussion 17

15 Acknowledgements 18

A Converting numerical variables to factors 19

B Low level access to MIM from R 19
B.1 Primitive use of MIM from R – the mim.cmd() function 19
B.2 Using MIM directly from mimR– the mcm() function 19

1 Introduction and background

The mimR1 package provides facilities for graphical modelling in the statistical
program R (R Development Core Team, 2004) and is a part of the gR–project2

which is a project to make graphical models available in R. mimR is available
as an R–package on the Comprehensive R Archive Network (CRAN)3.

The statistical foundation for mimR is Mixed Interaction Models, a very
general class of statistical models for mixed discrete and continuous variables.
Statistical inference in mixed interaction models can be made with the stand–
alone program MIM4, and the core of mimR is an interface from R to the MIM
program. Edwards (2000) describes the models and the MIM program in a very
clear way. For a comprehensive account of graphical models we refer to Lau-
ritzen (1996). Other important references are Edwards (1990) and Lauritzen and

1http://genetics.agrsci.dk/~sorenh/mimR
2http://www.R-project.org/gR
3http://www.R-project.org
4http://www.hypergraph.dk

2

Wermuth (1989). In this paper, the statistical theory behind mixed interaction
models will not be outlined; instead the reader is referred to Edwards (2000).

2 Preliminaries

2.1 Availability:

mimR is available only on Windows platforms because MIM only runs on Win-
dows platforms.

2.2 MIM as inference engine:

From the users perspective, the MIM stand–alone program can be regarded as
an“inference engine”which the user (at least in principle) needs not be concerned
with. However, in practice it is worth keeping in mind that MIM is indeed a
stand–alone program rather than integrated with mimR: In MIM there can at
any time be only 1) one specification of a data set, 2) one data set and 3) one
model. This means that when fitting a new model, a lot of information may have
to be conveyed to MIM, and this may take some time (if the data set is large).
Likewise, returning fitted values etc. from MIM to R may take some time too.

2.3 Installation:

Because mimR uses MIM as inference engine, the MIM program must be
installed on the computer. The communication between R and MIM is based on
the rcom package, which will be automatically installed when mimR is installed.
The mimR package is loaded by the command:

> library(mimR)

2.4 Known problems

When mimR invokes MIM it sometimes happens that a window with the text
Access violation at address... pops up. We have not yet been able to
track down the source of this error message. It so happens that mimR (and
MIM) work in most cases despite this message. However, the problem can be
avoided completely by starting MIM manually before starting to use mimR.
We recommend to do so.

2.5 Getting help:

In addition to the documentation in the mimR package, the MIM program itself
contains a comprehensive help function which the user of mimR is encouraged

3

to make use of. To access the help function in MIM either type

> helpmim()

or go to the MIM program and press F1.

2.6 Referring to mimR

The ’official’ reference to the mimR package is Højsgaard (2004). The BibTeX
source is:

ARTICLE{,

author = {Søren Højsgaard},

title = {The mim{R} Package for Graphical Modelling in {R}},

journal = {Journal of Statistical Software},

year = {2004},

volume = {11},

number = {6}

}

3 The rats dataset

Some features of mimR will be illustrated in the present paper on the basis of
the rats dataset in the mimR package. The rats dataset is from a hypothetical
drug trial, where the weight losses of male and female rats under three different
drug treatments have been measured after one and two weeks. See Edwards
(2000) for more details. To load the data, type

> data(rats)

The first rows of the data are:

> head(rats)

Sex Drug W1 W2

1 M D1 5 6

2 M D1 7 6

3 M D1 9 9

4 M D1 5 4

5 M D2 9 12

6 M D2 7 7

4

4 Objects in mimR

The core of mimR are the gmData and mim objects. Informally, a gmData object
can be regarded as the mimR analogue to a dataframe in R, whereas a mim

object can be regarded as the mimR analogue to model objects in R, e.g. lm
and glm objects. However, there are important exceptions to these analogies:

gmData objects A gmData object contains information about variables, their la-
bels, their levels (for discrete variables) etc. A gmData object may also
contain data, but need not do so. The name “gmData” is short for “graphi-
cal meta data”. The idea behind separating the specification of the variables
from data is that some properties of a model can be investigated without
any reference to data, for example decomposability and collapsibility. See
Section 5 for details.

mim objects A mim object links a model formula to a gmData object. Since a
gmData object need not contain any data, fitting a mim model is separate
process. (This is an important difference between models in mimR and
e.g. the lm() function R, which also fits the model to data.) When the
model has been fitted (provided that there are data in the gmData object),
the mim object also contains the fitted values, parameter estimates etc. See
Section 6 for details.

5 gmData objects – graphical meta data

This section describes how to create a gmData object from data in various formats,
primarily from data frames and tables. Other options are available too. The
generic function for this purpose is as.gmData().

5.1 Making a gmData object from a data frame

To create a gmData object (with data) from a data frame do:

> data(rats)

> gmdRats <- as.gmData(rats)

> gmdRats

name letter factor levels

1 Sex a TRUE 2

2 Drug b TRUE 3

3 W1 c FALSE NA

4 W2 d FALSE NA

Data origin: data.frame

5

To see the values of the factors use the 'vallabels' function

To see the data use the 'observations' function

This methods apply for discrete, continuous and mixed data where each row
in the data frame represents a case; see Section 5.3 for alternative options with
data frames.

To each variable, there is associated a letter. This letter is used in connection
with the internal representation of models and variables in MIM and the user
should not be concerned with this. It is possible use the letters in specifying
models but it is not recommended.

5.2 Discrete data arranged as a table

To create a gmData object (with data) from a table do:

> data(HairEyeColor)

> gmdHec <- as.gmData(HairEyeColor)

> gmdHec

name letter factor levels

1 Hair a TRUE 4

2 Eye b TRUE 4

3 Sex c TRUE 2

Data origin: table

To see the values of the factors use the 'vallabels' function

To see the data use the 'observations' function

This method obviously only works when all variables are discrete.

5.3 Discrete data arranged as cummulated cell counts in
data frame

Sometimes discrete data are arranged as cummulated cell counts, for example

> library(MASS)

> data(housing)

> head(housing)

Sat Infl Type Cont Freq

1 Low Low Tower Low 21

2 Medium Low Tower Low 21

3 High Low Tower Low 28

4 Low Medium Tower Low 34

5 Medium Medium Tower Low 22

6 High Medium Tower Low 36

6

Here Freq contains the counts. The way ahead is to first create a table and then
turn this into a gmData object:

> housingTab <- xtabs(Freq ~ Sat + Infl + Type +

Cont, data = housing)

> gmHT <- as.gmData(housingTab)

> gmHT

name letter factor levels

1 Sat a TRUE 3

2 Infl b TRUE 3

3 Type c TRUE 4

4 Cont d TRUE 2

Data origin: table

To see the values of the factors use the 'vallabels' function

To see the data use the 'observations' function

5.4 Creating a gmData from a list of sufficient statistics

For purely continuous and purely discrete data it is possible to read in the suffi-
cient statistics directly. This is done by putting data in the form of a list.

5.4.1 Purely continuous data

For continuous data, the format of the list is as follows:

> suffc <- list(means = apply(mathmark, 2, mean),

stddev = apply(mathmark, 2, sd), corr = cor(mathmark),

n = nrow(mathmark))

> as.gmData(suffc)

name letter factor levels

1 mechanics a FALSE NA

2 vectors b FALSE NA

3 algebra c FALSE NA

4 analysis d FALSE NA

5 statistics e FALSE NA

Data origin: contSuffStats

To see the values of the factors use the 'vallabels' function

To see the data use the 'observations' function

5.4.2 Purely discrete data

For discrete data the format is:

7

> suffd <- list(names = c("foo", "bar"), levels = c(2,

2), counts = c(1, 2, 3, 4), vallabels = list(foo = c("f1",

"f2"), bar = c("b1", "b2")))

> as.gmData(suffd)

name letter factor levels

1 foo a TRUE 2

2 bar b TRUE 2

Data origin: discSuffStats

To see the values of the factors use the 'vallabels' function

To see the data use the 'observations' function

The slot vallabels can be omitted.

5.4.3 Mixed data

Currently it is not possible to represent mixed data as a set of sufficient statistics.
Hence, the only way to work with mixed data is through data frames.

5.5 Creating a gmData object without data

A gmData object (without data) can be created by the gmData() function:

> gmdRatsNodata <- gmData(c("Sex", "Drug", "W1",

"W2"), factor = c(2, 3, FALSE, FALSE), vallabels = list(c("M",

"F"), c("D1", "D2", "D3")))

> gmdRatsNodata

name letter factor levels

1 Sex a TRUE 2

2 Drug b TRUE 3

3 W1 c FALSE NA

4 W2 d FALSE NA

Data origin: table

To see the values of the factors use the 'vallabels' function

To see the data use the 'observations' function

With such a specification, one can afterwards specify models and have mimR
to find important properties of these models, e.g. whether a given model is de-
composable.

8

6 Models in mimR

Currently, only undirected models are available in mimR. That is, models in
which all variables are treated on equal footing as response variables. (Thus
models where a possible response structure has to be accounted for can not be
dealt with in mimR).

An undirected model is created using the mim() function (which returns a mim

object):

> mRats <- mim("Sex:Drug/Sex:Drug:W1+Sex:Drug:W2/W1:W2",

data = gmdRats)

Observe that models in mimR are specified as a string i.e. in quotes (”...”).
It is NOT possible to specify models using the conventional R syntax, i.e. with
~....

It is possible to specify 1) the main effects, 2) the saturated and 3) the ho-
mogeneous saturated models (possibly for only a subset of the variables) in short
form:

> mainRats <- mim(".", data = gmdRats, marginal = c("Sex",

"Drug", "W1"))

> satRats <- mim("..", data = gmdRats, marginal = c("Sex",

"Drug", "W1"))

> hsatRats <- mim("..h", data = gmdRats, marginal = c("Sex",

"Drug", "W1"))

7 Displaying models graphically

A very simple function display() can display a model graphically. This function
requires the packages Rgraphviz and graph from the Bioconductor repository to
be loaded.

> library(Rgraphviz)

> library(graph)

> display(mRats)

8 Model fitting

Model fitting is separated from model specification so the models created above
are not fitted to data. For model fitting two functions are available: fit() and
emfit() (emfit() will be discussed in Section 13).

> mRatsFit <- fit(mRats)

9

Deviance: 27.8073 DF: 15

Printing format: 12,8

> mRatsFit

Formula: Sex:Drug/Sex:Drug:W1+Sex:Drug:W2/W1:W2

likelihood: 273.705 DF: 15

9 Fitted values (parameter estimates)

The fitted values (parameters estimates) can be obtained using the fitted()

function:

> fitted(mRatsFit)

Drug Sex Freq W1 W2 W1:W1 W1:W2 W2:W1 W2:W2

1 1 1 4 7.50 8.25 3.938 3.187 3.187 4.75

2 2 1 4 7.75 8.75 3.938 3.187 3.187 4.75

3 3 1 4 13.50 8.50 3.938 3.187 3.187 4.75

4 1 2 4 6.50 6.25 3.938 3.187 3.187 4.75

5 2 2 4 7.25 8.25 3.938 3.187 3.187 4.75

6 3 2 4 16.00 12.00 3.938 3.187 3.187 4.75

The data frame contains for each configuration of the discrete variables 1) the
number of cases with that configuration and 2) the estimated mean vector and
covariance matrix. The function modelInfo() provides fitted values (along with
other information) in a different form.

10 Model summary

A summary (including certain model properties) of a mim can be achieved using
the summary() and properties() functions:

> summary(mRatsFit)

Formula: Sex:Drug/Sex:Drug:W1+Sex:Drug:W2/W1:W2

Formula(letter): ab/abc,abd/cd

Variable type: mixed

deviance: 27.8073 DF: 15 likelihood: 273.705

Cliques: [1] "Sex:Drug:W1:W2"

For model properties, use : 'properties()'

For fitting information etc. use : 'modelInfo()'

10

The formula as letters show the internal representation of the models in MIM.
The variable type being mixed shows that the model contains both discrete and
continuous variables.

> properties(mRatsFit)

Variables in model : Sex Drug W1 W2

Is fitted : TRUE

Is graphical : TRUE Is decomposable: TRUE

Is mean linear : TRUE Is homogeneous : TRUE

Is delta-collapsible: TRUE

The model summary reads as follows: 1) The model is fitted to data. 2) The
model is graphical (such that there is a 1–1 correspondence between the model
and its interaction graph). 3) The model is decomposable meaning that the
maximum likelihood estimate exists in closed form (i.e. no iteration is needed).
4) The model is mean linear meaning that the regressions of each continuous
variable on the discrete variables all have the same structural form. 5) The model
is homogeneous meaning that the variance of the continuous variables does not
vary with the levels of the discrete variables. 6) Finally, the model is ∆–collapsible
which means that the model can be collapsed onto the discrete variables.

11 Model editing and model selection

11.1 Editing models directly

Models can be edited using the editmim() function by which one can 1) delete
edges, 2) add edges, 3) homogeneously add edges, 4) delete terms (interactions)
and 5) add terms. We refer to Edwards (2000) for the precise definitions of these
terms. It should be noted that operations are conducted in the order specified
above. For example:

> mainRats <- mim(".", data = gmdRats)

> m2Rats <- editmim(mainRats, addEdge = c("Sex:Drug",

"Sex:W2"))

Printing format: 12,8

The model specified this way is heterogeneous as the variance of W2 depends on
Sex. Some properties of this model are

> summary(m2Rats)

11

Formula: Sex:Drug/W1+Sex:W2/W1+Sex:W2

Formula(letter): ab/c,ad/c,ad

Variable type: mixed

Cliques: [1] "Sex:Drug" "Sex:W2" "W1"

For model properties, use : 'properties()'

For fitting information etc. use : 'modelInfo()'

> properties(m2Rats)

Variables in model : Sex Drug W1 W2

Is fitted : FALSE

Is graphical : TRUE Is decomposable: TRUE

Is mean linear : TRUE Is homogeneous : FALSE

Is delta-collapsible: TRUE

We see that m2Rats is not homogeneous (because the variance of W2 depends on
Sex). To add homogeneous terms, the haddEdge keyword can be used as in

> m3Rats <- editmim(mainRats, addEdge = "Sex:Drug",

haddEdge = "Drug:W1:W2")

Printing format: 12,8

> summary(m3Rats)

Formula: Sex:Drug/Drug:W2+Drug:W1/W1:W2

Formula(letter): ab/bd,bc/cd

Variable type: mixed

Cliques: [1] "Sex:Drug" "Drug:W1:W2"

For model properties, use : 'properties()'

For fitting information etc. use : 'modelInfo()'

> properties(m3Rats)

Variables in model : Sex Drug W2 W1

Is fitted : FALSE

Is graphical : TRUE Is decomposable: TRUE

Is mean linear : TRUE Is homogeneous : TRUE

Is delta-collapsible: TRUE

Note the difference between deleting edges and terms:

> msatHec <- mim("..", data = gmdHec)

> msatHec

12

Formula: Hair:Eye:Sex//

> editmim(msatHec, deleteEdge = "Hair:Eye:Sex")

Printing format: 12,8

Formula: Sex+Eye+Hair//

> editmim(msatHec, deleteTerm = "Hair:Eye:Sex")

Printing format: 12,8

Formula: Eye:Sex+Hair:Sex+Hair:Eye//

11.2 Stepwise model selection

To a mim object the function stepwise() applies and this function takes as addi-
tional arguments all arguments that the STEPWISE command in MIM does. The
stepwise() function returns a new mim object.

> data(carcass)

> gmdCarc <- as.gmData(carcass)

> mainCarc <- mim(".", data = gmdCarc)

> satCarc <- mim("..", data = gmdCarc)

> carcForw <- stepwise(mainCarc, arg = "f")

> carcBack <- stepwise(satCarc, arg = "s")

The arg="f" specifies forward selection (default is backward) and arg="s"

requests exact tests. The selected models are:

> carcForw

Formula: //F11:F12:M12:F13+F11:F12:M12:M13+F11:F12:M13:LMP+M11:M12:M13

likelihood: 11405.13 DF: 7

> carcBack

Formula: //F11:M11:F12:M12:M13+F11:M11:F12:F13:LMP+F11:M11:F12:M13:LMP

likelihood: 11370.74 DF: 3

12 Missing values and/or latent variables

To fit a model with to incomplete data or to fit a latent variable model, the
emfit() function can be used. This function be illustrated in connection with a
latent variable model.

13

13 Example – Mathematics marks

This dataset (taken from Mardia, Kent, and Bibby (1979)) contains the examina-
tion marks for 88 students in 5 different subjects. Data is contained the data set
mathmark in the mimR package. Edwards (2000) also investigates these data.

13.1 Selecting a graphical model

We start out by specifying the saturated model and do a backward elimination:

> data(mathmark)

> gmdMath <- as.gmData(mathmark)

> satMath <- mim("..", data = gmdMath)

> m2Math <- stepwise(satMath)

> m2Math

Formula: //mechanics:vectors:algebra+algebra:analysis:statistics

likelihood: 3391.021 DF: 4

The model math2 is shown in Figure 1.

Mechanics

Vectors

Algebra

Analysis

Statistics

Figure 1: The “butterfly” model selected for the mathmarks data.

13.2 Fitting a model with a discrete latent variable

Next we consider a latent variable model: We suppose that there is a latent binary
variable A such that the manifest variables are all conditionally independent given
A. We fit such a model by:

> math <- mathmark

> math$A <- factor(NA, levels = 1:2)

> gmdMath <- as.gmData(math)

With the specification above, A is a binary variable consisting of NA values.
Next, we make explicit in the gmData object that A is indeed a latent variable
using the latent() function:

14

> latent(gmdMath) <- "A"

In Section 13.4 it will become clear why it must be specified explicitely that
A is indeed a latent variable.

One consequence of this last specification is that the model can not be fitted
using the fit() function. Instead, the emfit() function which uses the EM
algorithm Dempster, Laird, and Rubin (1977), must be used:

> satMath <- mim("..", data = gmdMath)

> mathNames <- names(mathmark)

> mathNames

[1] "mechanics" "vectors" "algebra" "analysis"

[5] "statistics"

> delEdges <- paste(mathNames, collapse = ":")

> delEdges

[1] "mechanics:vectors:algebra:analysis:statistics"

> m2Math <- editmim(satMath, deleteEdge = delEdges)

Printing format: 12,8

> m2MathFit <- emfit(m2Math, plot = TRUE)

Printing format: 12,8

The argument plot=TRUE in emfit() creates the plot in Figure 2.

●

●

●●●●●●●●●●●●●●●●●

5 10 15

3
4

6
0

3
5

6
0

result$cycle

re
su

lt$
m

2
lo

g
L

−2 log Likelihood

●
●

●
●●●●●●●●●●●●●●●

5 10 15

−
6

0
−

2
0

result$cycle

re
su

lt$
ch

a
n

g
e

Change in log Likelihood

Figure 2: Convergence of the EM algorithm.

On the basis of the fitted model, mimR can impute the latent variables.
For discrete latent variables this amounts for each case to assign the value with

15

the highest probability. For a continuous latent variable, the imputed values
is the conditional mean of the latent variable given the observed variables. To
impute the missing values we use the imputeMissing() function (which takes no
arguments) as:

> imputeMissing()

To get the data (including the imputed values) we use the retrieveData() func-
tion (which takes no arguments):

> d.imp <- retrieveData()

Printing format: 12,8

> d.imp[1:5,]

mechanics vectors algebra analysis statistics A

1 77 82 67 67 81 2

2 63 78 80 70 81 2

3 75 73 71 66 81 2

4 55 72 63 70 68 2

5 63 63 65 70 63 2

and so we see that the first 5 cases are assignes A to have level 1.
Next, we plot the predicted value of A against the observation number:

> plot(d.imp$A)

The plot is shown in Figure 3. The grouping of the values of A suggests that
data have been processed somehow prior to presentation. Edwards (2000), p. 181,
conclude: “Certainly they (the data) have been mistreated in some way, doubtless
by a statistician.”

13.3 Controlling the EM algorithm

The EM algorithm needs a set of initial values for the unobserved values to start
from when calculating the parameter estimates in the first iteration. It is well
known, that the final estimate of the EM algorithm may depend on the initial
values and that (especially in the case of latent variables) the likelihood may have
multiple maxima. Default in the call of emfit() is that MIM substitutes random
values for the missing values. It is, however, possible to control the starting values
of the EM algorithm as follows: The user can 1) specify the values of A and 2)
subsequently declare A to be latent. In the call of emfit(), the argument S

causes the EM algorithm to take the specified values as starting point for the EM
algorithm.

16

0 20 40 60 80

1.
0

1.
4

1.
8

Index

as
.n

um
er

ic(
d.

im
p$

A)

Figure 3: An index plot of the discrete latent variable A.

13.4 Fitting a model with a continuous latent variable

To illustrate controlling of the EM algorithm, we make an alternative analysis,
where A is regarded as a continuous variable. To speed up the convergence of the
EM algorithm, we do a factor analysis to get good starting values:

> fa <- factanal(mathmark, factors = 1, scores = "regression")

> math$A <- fa$scores

Then we create a gmData object with this new augmented data set and declares
that A is to be regarded as a latent variable:

> gmdMath <- as.gmData(math)

> latent(gmdMath) <- "A"

> satMath <- mim("..", data = gmdMath)

> m2Math <- editmim(satMath, deleteEdge = delEdges)

Printing format: 12,8

> m2MathFit <- emfit(m2Math, arg = "S")

Printing format: 12,8

As before we impute the missing values, retrieve the data to R and plot the
imputed values for the latent variable:

> imputeMissing()

> d.imp <- retrieveData()

Printing format: 12,8

> plot(d.imp$A)

The plot of the imputed values for the latent variables are shown in Figure 4
and this also suggests that the data do not emerge in random order.

17

0 20 40 60 80
−3

−1
0

1
2

Index

d.
im

p$
A

Figure 4: An index of the predicted value of the continuous latent variable A.

14 Discussion

In this manual we have illustrated some aspects of the mimR package for graphi-
cal modelling in R. It is the hope that mimR will be obsolete in a not too distant
future – not because of lack of relevance of being able to work with graphical mod-
els in R. Rather, it is the hope that a more proper package with with at least the
functionality of mimR will be created. That is one of the aims of the gR–project,
which has lead to the minimal package gRbase which is available on CRAN. The
fucntionality of gRbase is however very limited and as such mimR is a relevant
package to use for graphical modelling in R.

15 Acknowledgements

David Edwards (the creator of MIM) is greatly acknowledged for his support in
the creation of mimR. Also the members of the gR project are acknowledged for
their inspiration.

References

A. P. Dempster, N. Laird, and D. B. Rubin. Maximum likelihood from incomplete
data via the EM algorithm (with discussion). Journal of the Royal Statistical
Society, Series B, 39:1–38, 1977.

David Edwards. Hierarchical interaction models. Journal of the Royal Statistical
Society, Series B, 52(1):3–20, 1990.

David Edwards. Introduction to Graphical Modelling. Springer Verlag, New York,
2nd edition edition, 2000.

18

Søren Højsgaard. The mimR package for graphical modelling in R. Journal of
Statistical Software, 11(6), 2004.

S. L. Lauritzen and N. Wermuth. Graphical models for associations between
variables, some of which are qualitative and some quantitative. Annals of
Statistics, 17:31–57, 1989.

Steffen L. Lauritzen. Graphical Models. Oxford University Press, 1996.

K. V. Mardia, J. T. Kent, and J. M. Bibby. Multivariate Analysis. Academic
Press, 1979.

R Development Core Team. R: A language and environment for statistical com-
puting. R Foundation for Statistical Computing, Vienna, Austria, 2004. URL
http://www.R-project.org. ISBN 3-900051-00-3.

A Converting numerical variables to factors

The data set cadcomplete consists purely of factors, but these are all coded as
numerical variables. Therefore all columns of cadcomplete must be converted to
factors. This can be done in one go along these lines.

> data(cadcomplete)

> cadcomplete <- transform(cadcomplete, Sex = factor(Sex),

AngPec = factor(AngPec))

B Low level access to MIM from R

B.1 Primitive use of MIM from R – the mim.cmd() func-
tion

The core of mimR is the mim.cmd function. The arguments to mim.cmd are
simply MIM commands (given as strings). For example:

>mim.cmd("fact a2 b2; statread ab; 25 2 17 8 !")

>mim.cmd("mod a,b; fit; print; print f")

The mim.cmd function returns the result of the commands submitted to MIM.
The result of the last call of mim.cmd above is:

Deviance: 5.3111 DF: 1

The current model is: a,b.

Fitted counts, means and covariances.

19

a b Count

1 1 21.808

1 2 5.192

2 1 20.192

2 2 4.808

B.2 Using MIM directly from mimR– the mcm() function

The mcm function (short for “MIM command mode”) provides a direct interface
to MIM, i.e. the possibility to write MIM commands directly. The mcm function
returns no value to R, and is intended only as an easy way to submit MIM
commands without the overhead of wrapping them into the mim.cmd function (or
submitting the commands directly to MIM). Hence, using mcm, the session above
would be:

> mcm()

Enter MIM commands here. Type quit to return to R

MIM->fact a2 b2; statread ab

MIM->25 2 17 8 !

Reading completed.

MIM->mod a,b; fit

Deviance: 5.3111 DF: 1

MIM->print; print f

The current model is: a,b.

Fitted counts, means and covariances.

a b Count

1 1 21.808

1 2 5.192

2 1 20.192

2 2 4.808

MIM->quit

>

To return to R from the mcm function type ’quit’, ’exit’, ’end’, ’q’ or ’e’ (i.e.
the commands one would use to terminate MIM). These commands, however,
do not terminate MIM – they only return control to R.

20

