
The mimR∗ package for Graphical Modelling in R

Søren Højsgaard†

February 9, 2004

Abstract

The mimR package for graphical modelling in R is introduced. We present

some facilities of mimR, namely those relating specifying models, editing

models, fitting models and doing model search. We also discuss the entities

needed for flexible graphical modelling in terms of an object structure. An

example about a latent variable model is presented.

1 Introduction and background

The mimR package provides facilities for graphical modelling in the statistical
program R1. The mimR package has its own homepage2 and is furthermore a part
of the gR–project3 which is a project to make graphical models available in R.

The statistical foundation for mimR is Mixed Interaction Models, a very general
class of statistical models for mixed discrete and continuous variables. Statistical
inference in mixed interaction models can be made be the stand–alone program
MIM4, and the core of mimR is an interface from R to the MIM program.
Edwards (2000) describes the models and the MIM program in a very clear way.
For a comprehensive account of graphical models we refer to Lauritzen (1996). Other
important references are Edwards (1990) and Lauritzen and Wermuth (1989).

The reader (and user of mimR) is assumed 1) familiar with mixed interaction
models, and 2) to have a working knowledge of the MIM program.

2 Preliminaries

2.1 Getting help

In addition to the documentation in the mimR package, the MIM program itself
contains a comprehensive help function which the user of mimR is encouraged to
make use of.5

2.2 MIM as inference engine

From the users perspective, the MIM stand alone program can be regarded as an
“inference engine”with which the user (at least in principle) needs not be concerned

∗Version 1.1.4
†Biometry Research Unit, Danish Institute of Agricultural Sciences, Research Centre Foulum,

DK–8830 Tjele, Denmark. E–mail: sorenh@agrsci.dk
1available from http://www.r-project.org
2at http://www.jbs.agrsci.dk/~sorenh/mimR
3http://www.r-project.org/gR
4available from http://www.hypergraph.dk
5To access the help function in MIM go to the MIM program and press F1.

1

with. However, in practice it is worth keeping in mind that MIM is a stand alone
program: In MIM there can be only 1) one specification of a data set, 2) one data
set and 3) one model at any time. This means that in general when fitting a new
model, a lot of information may have to be conveyed to MIM, and this may take
some time (if the data set is large). Likewise, receiving fitted values from MIM to
R may take some time too.

2.3 Ways of accessing MIM from R

There are two levels of accessing MIM from R.

• The “high level approach” is by creating model objects much like one does
when working with linear, generalized linear and other models in R. This
approach is the core contents of this paper.

• The “low level approach” is by sending commands directly to MIM using the
mim.cmd and the mcm functions, see Appendices C.1 and C.2.

3 The rats dataset

Some features of mimR will be illustrated in the present paper on the basis of the
rats dataset in the mimR package. The rats dataset is from a hypothetical drug
trial, where the weight losses of male and female rats under three different drug
treatments have been measured after one and two weeks. See Edwards (2000) for
more details. The first rows of the data are:

Sex Drug W1 W2

1 M D1 5 6

2 M D1 7 6

3 M D1 9 9

4 M D1 5 4

5 M D2 9 12

6 M D2 7 7

7 M D2 7 6

8 M D2 6 8

............

4 Objects in mimR

The core of mimR are the gmData and mim objects.

gmData objects: A gmData object contains information about variables, their la-
bels, their levels (for the discrete variables) etc. A gmData object may also
contain data, but need not do so. The name“gmData”can be taken to be short
for “graphical model data” or “graphical meta data” (where we prefer the lat-
ter). The idea behind separating the specification of the variables from data
is that some properties of a model can be investigated without any reference
to data, for example decomposability and collapsibility.

mim objects: Links a model formula to a gmData object. Since a gmData object
need not contain any data, fitting a mim model is separate process. (This is an
important difference between model in mimR and e.g. linear models in R.)
When the model has been fitted (provided that there are data in the gmData

object), the mim object also contains the fitted values, parameter estimates
etc.

2

5 gmData objects – graphical meta data

A gmData object contains information about variables, their labels, their levels (for
the discrete variables) etc. A gmData object may also contain data, but need not
do so.

5.1 Creating a gmData object manually

A gmData object (without data) can be created by

> gmd.rats.nodata <- gmData(c("Sex", "Drug", "W1", "W2"), factor = c(2,

+ 3, FALSE, FALSE), vallabels = list(c("M", "F"), c("D1", "D2",

+ "D3")))

> gmd.rats.nodata

name letter factor levels

1 Sex a TRUE 2

2 Drug b TRUE 3

3 W1 c FALSE NA

4 W2 d FALSE NA

Data origin: table

To see the values of the factors use the 'vallabels' function

To see the data use the 'observations' function

To each variable, there is associated a letter. This letter is used in connection
with the internal representation of models and variables in MIM and the user
should not be concerned with this. It is possible use the letters in specifying models
(see the examples below) but it is not recommended.

5.2 Making a gmData object from a data frame or a table

Typically one will create a gmData object (with data) from a data frame (or a table)
as follows:

> data(rats)

> gmd.rats <- as.gmData(rats)

> gmd.rats

name letter factor levels

1 Sex a TRUE 2

2 Drug b TRUE 3

3 W1 c FALSE NA

4 W2 d FALSE NA

Data origin: data.frame

To see the values of the factors use the 'vallabels' function

To see the data use the 'observations' function

> data(HairEyeColor)

> gmd.hec <- as.gmData(HairEyeColor)

> gmd.hec

name letter factor levels

1 Hair a TRUE 4

2 Eye b TRUE 4

3 Sex c TRUE 2

Data origin: table

To see the values of the factors use the 'vallabels' function

To see the data use the 'observations' function

3

6 Models in mimR

Currently, only undirected models are available in mimR. That is, models in which
all variables are treated on equal footing as response variables. (Thus models where
a possible response structure has not been accounted for can currently not be dealt
with in mimR).

An undirected model is created using the mim function (which returns a mim

object). The following two specifications are equivalent:

> m1 <- mim("Sex:Drug/Sex:Drug:W1+Sex:Drug:W2/W1:W2", data = gmd.rats)

> m2 <- mim("ab/abc+abd/cd", data = gmd.rats, letter = TRUE)

It is possible to specify 1) the main effects, 2) the saturated and 3) the homogeneous
saturated models (possibly for only a subset of the variables) in short form:

> m.main <- mim(".", data = gmd.rats, marginal = c("Sex", "Drug",

+ "W1"))

> m.sat <- mim("*", data = gmd.rats, marginal = c("Sex", "Drug",

+ "W1"))

> m.hsat <- mim("*h", data = gmd.rats, marginal = c("Sex", "Drug",

+ "W1"))

7 Model fitting

Model fitting is separated from model specification, so the models created above
are not fitted to data. For model fitting two functions are available: fit and emfit

(emfit will be discussed later).

> m1f <- fit(m1)

Deviance: 27.8073 DF: 15

> m1f

Formula: Sex:Drug/Sex:Drug:W1+Sex:Drug:W2/W1:W2

likelihood: 273.705 DF: 15

8 Model summary

A summary (including certain model properties) of a mim can be achieved using the
summary() function:

> summary(m1f)

Formula: Sex:Drug/Sex:Drug:W1+Sex:Drug:W2/W1:W2

Formula(letter): ab/abc,abd/cd

deviance: 27.8073 DF: 15 likelihood: 273.705

Model properties:

Variables in model: Sex Drug W1 W2

Is graphical: TRUE

Is decomposable: TRUE

Is mean linear: TRUE

Is homogeneous: TRUE

Is delta-collapsible: TRUE

Degrees of freedom: 15

Cliques:

[1] "Sex:Drug:W1:W2"

4

9 Model selection and model editing

9.1 Editing models directly

Models can be edited directly, using the editmim function by which one can 1)
delete, 2) add and 3) homogeneously add interactions:

> m.main <- mim(".", data = gmd.rats)

> m2 <- editmim(m.main, add = c("Sex:Drug", "Sex:W2"))

> m3 <- editmim(m.main, add = c("Sex:Drug", "Sex:W2"), hadd = "Drug:W1:W2")

9.2 Stepwise model selection

To a mimModel object the function stepwise applies which takes as additional
arguments all arguments that the STEPWISE command in MIM does. The stepwise
function returns a new mimModel object.

> data(carcass)

> gmd.carc <- as.gmData(carcass)

> m.main <- mim(".", data = gmd.carc)

> m.sat <- mim("*", data = gmd.carc)

> m.m <- stepwise(m.main, "f")

> m.s <- stepwise(m.sat, "s")

The selected models are:

> m.m

Formula: //F11:F12:M12:F13+F11:F12:M12:M13+F11:F12:M13:LMP+M11:M12:M13

likelihood: 11405.13 DF: 7

> m.s

Formula: //F11:M11:F12:M12:M13+F11:M11:F12:F13:LMP+F11:M11:F12:M13:LMP

likelihood: 11370.74 DF: 3

10 Fitted values (parameter estimates)

The fitted values (parameters estimates) can be obtained using the fitted function:

> mf2 <- fit(m2)

Deviance: 92.2956 DF: 24

> parms <- fitted(mf2)

> parms

Drug Sex Freq W1 W2 W1:W1 W1:W2 W2:W1 W2:W2

1 1 1 4 9.75 8.500 17.104 0 0 5.583

2 2 1 4 9.75 8.500 17.104 0 0 5.583

3 3 1 4 9.75 8.500 17.104 0 0 5.583

4 1 2 4 9.75 8.833 17.104 0 0 9.639

5 2 2 4 9.75 8.833 17.104 0 0 9.639

6 3 2 4 9.75 8.833 17.104 0 0 9.639

5

11 Simulating data from a fitted model

Simulating data from a fitted model can be done by the simulate function:

> samp <- simulate(mf2, size = 10)

12 Obtaining the linear predictor

The linpredict function can be used to get the linear predictor for a set y given
another set x (possibly empty) of variables, for example

> linpredict(mf2, y = "W2", x = "W1:Sex")

Entering sufficient statistics... done

Deviance: 92.2956 DF: 24

Distribution of W2 given W1:Sex

Sex=1

int W1

W2 8.5 0

W2

W2 5.583333

Sex=2

int W1

W2 8.833333 0

W2

W2 9.638889

> linpredict(mf2, y = "Sex", x = "W1:W2")

Entering sufficient statistics... done

Deviance: 92.2956 DF: 24

Distribution of Sex given W1:W2

Sex Constant W1 W2

1 1 0.000000 0 0.0000000

2 2 2.149589 0 -0.6059615

13 Missing values and/or latent variables

To fit a model with to incomplete data or to fit a latent variable model, use the
emfit function. See e.g. the Example in Section 14.

14 Example – Mathematics marks

This dataset (taken from Mardia, Kent, and Bibby (1979)) contains the examina-
tion marks for 88 students in 5 different subjects. Data is contained the data set
mathmark in the mimR package. Edwards (2000) also investigates these data.

We start out by specifying the saturated model and do a backward elimination:

> data(mathmark)

> gmd.math <- as.gmData(mathmark)

> math1 <- mim("*", data = gmd.math)

> math2 <- stepwise(math1)

> math2

6

Formula: //mechanics:vectors:algebra+algebra:analysis:statistics

likelihood: 3391.021 DF: 4

The model math2 is shown in Figure 1.

Mechanics

Vectors

Algebra

Analysis

Statistics

Figure 1: The “butterfly” model selected for the mathmarks data.

Next we consider a latent variable model: We suppose that there is a latent
binary variable L such that the manifest variables are all conditionally independent
given L. We fit such a model by:

> math <- mathmark

> math$L <- factor(NA, levels = 1:2)

> gmd.math <- as.gmData(math)

> latent(gmd.math) <- "L"

With the specification above, L is a binary variable consisting of NA values. The
command latent(gmd.math)<- "L" makes it explicit in the gmData object, that L
is indeed a latent variable. One consequence is, that the model can not be fitted
using the fit function. Instead, the emfit function which uses the EM algorithm,
Dempster, Laird, and Rubin (1977), must be used:

> m1 <- mim("*", data = gmd.math)

> m2 <- editmim(m1, del = paste(names(math)[1:5], ":", collapse = ""))

> m2f <- emfit(m2, plot = TRUE)

> d.imp <- retrieveData(impute = TRUE)

The argument plot=TRUE in emfit() creates the plot in Figure 2.

5 10 15

3
4

6
0

3
5

6
0

result$cycle

re
s
u

lt
$

m
2

lo
g

L

−2 log Likelihood

5 10 15

−
6

0
−

2
0

result$cycle

re
s
u

lt
$

c
h

a
n

g
e

Change in log Likelihood

Figure 2: Convergence of the EM algorithm.

We plot the predicted value of L against the observation number:

> plot(d.imp$L)

7

The plot is shown in Figure 3. The grouping of the values of L suggests that
data have been processed somehow prior to presentation. Edwards (2000), p. 181,
conclude: “Certainly they (the data) have been mistreated in some way, doubtless
by a statistician.”

0 20 40 60 80

1.
0

1.
6

Index

m
m

$A

Figure 3: An index plot of the discrete latent variables.

The EM algorithm needs a set of initial values for the unobserved values to start
from when calculating the first parameter estimates. It is well known, that the final
estimate of the EM algorithm may depend on the initial values and that (especially
in the case of latent variables) the likelihood may have multiple maxima. Default in
the call of emfit is that MIM substitutes random values for the missing values. It
is, however, possible to control the starting values of the EM algorithm as follows:
The user can specify the values of L and subsequently declare L to be latent. In the
call of emfit, the argument S causes the EM algorithm to take the specified values
as starting point for the EM algorithm:

> math[, "L"] <- factor(1:2, levels = 1:2)

> gmd.math <- as.gmData(math)

> latent(gmd.math) <- "L"

> m1 <- mim("*", data = gmd.math)

> m2 <- editmim(m1, del = paste(names(math)[1:5], ":", collapse = ""))

> m2f <- emfit(m2, arg = "S", plot = TRUE)

For this specific case, it turns out that the result is very insensitive to the intial
values.

An alternative analysis is to regard L as a continuous variable. To speed up the
convergence of the EM algorithm, one can do a factor analysis to get good starting
values:

> fa <- factanal(mathmark, factors = 1, scores = "regression")

> math[, "L"] <- fa$scores

> gmd.math <- as.gmData(math)

> latent(gmd.math) <- "L"

> m1 <- mim("*", data = gmd.math)

> m2 <- editmim(m1, del = paste(names(math)[1:5], ":", collapse = ""))

> m2f <- emfit(m2, arg = "S", plot = TRUE)

> d.imp <- retrieveData(impute = TRUE)

> plot(d.imp$L)

The plot of the imputed values for the latent variables are shown in Figure 4
and this also suggests that the data do not emerge in random order.

8

0 20 40 60 80

−3
−1

1

Index

d.im
p$

L

Figure 4: Plot of predicted value of L against index.

15 Discussion

In this paper we have 1) illustrated some aspects of mimR package for graphical
modelling in R, and 2) presented preliminary ideas regarding an object structure
for graphical modelling in R. It is the hope that mimR will be obsolete in a not
too distant future – not because of lack of relevance of being able to work with
graphical models in R. Rather, it is the hope that a more proper package with
this functionality will be implemented as an integrated part of R. That is one of
the aims of the gR–project. Until that happens we will continue to develop mimR.
mimR is currently at level of development where it is likely that significant changes
(e.g. of names of functions and/or object classes) will occur.

16 Acknowledgements

David Edwards (the creator of MIM) is greatly acknowledged for his support in
the creation of mimR. Also the members of the gR project are acknowledged for
their inspiration.

References

A. P. Dempster, N. Laird, and D. B. Rubin. Maximum likelihood from incomplete
data via the EM algorithm (with discussion). Journal of the Royal Statistical

Society, Series B, 39:1–38, 1977.

David Edwards. Hierarchical interaction models. Journal of the Royal Statistical

Society, Series B, 52(1):3–20, 1990.

David Edwards. Introduction to Graphical Modelling. Springer Verlag, New York,
2nd edition edition, 2000.

S. L. Lauritzen and N. Wermuth. Graphical models for associations between vari-
ables, some of which are qualitative and some quantitative. Annals of Statistics,
17:31–57, 1989.

Steffen L. Lauritzen. Graphical Models. Oxford University Press, 1996.

K. V. Mardia, J. T. Kent, and J. M. Bibby. Multivariate Analysis. Academic Press,
1979.

9

A Miscellaneous

mimR Availability: mimR is available only on Windows platforms because MIM

only runs on Windows platforms.

mimR and Splus: The current version of mimR does not run under Splus. If
sufficient interest appears, it may be considered to remedy this situation.

B Using the appropriate version of MIM and R

To use mimR, the MIM program must be installed on your computer (Windows
only). MIM is available from http://www.hypergraph.dk. Upgrades of MIM are
frequently released.

It is IMPORTANT to make sure that your version of MIM and R is in ac-
cordance with what mimR expects. When loading the mimR package using li-

brary(mimR) a message appears telling 1) which version of MIM that is expected
and 2) with which version of R the current version of mimR has been checked.

C Low level access to MIM from R

C.1 Primitive use of MIM from R – the mim.cmd() function

The core of mimR is the mim.cmd function. The arguments to mim.cmd are simply
MIM commands (given as strings). For example:

>mim.cmd("fact a2 b2; statread ab; 25 2 17 8 !")

>mim.cmd("mod a,b; fit; print; print f")

The mim.cmd function returns the result of the commands submitted to MIM.
The result of the last call of mim.cmd above is:

Deviance: 5.3111 DF: 1

The current model is: a,b.

Fitted counts, means and covariances.

a b Count

1 1 21.808

1 2 5.192

2 1 20.192

2 2 4.808

C.2 Using MIM directly from mimR– the mcm() function

The mcm function (short for “MIM command mode”) provides a direct interface to
MIM, i.e. the possibility to write MIM commands directly. The mcm function re-
turns no value to R, and is intended only as an easy way to submit MIM commands
without the overhead of wrapping them into the mim.cmd function (or submitting
the commands directly to MIM). Hence, using mcm, the session above would be:

> mcm()

Enter MIM commands here. Type quit to return to R

MIM->fact a2 b2; statread ab

MIM->25 2 17 8 !

Reading completed.

MIM->mod a,b; fit

Deviance: 5.3111 DF: 1

10

MIM->print; print f

The current model is: a,b.

Fitted counts, means and covariances.

a b Count

1 1 21.808

1 2 5.192

2 1 20.192

2 2 4.808

MIM->quit

>

To return to R from the mcm function type ’quit’, ’exit’, ’end’, ’q’ or ’e’ (i.e. the
commands one would use to terminate MIM). These commands, however, do not
terminate MIM – they only return control to R.

11

