
Microbial pan-genomics in R - A case study

Lars Snipen and Kristian Hovde Liland

Contents

1 Introduction 2
1.1 Motivation . 2
1.2 This case study . 2
1.3 Organizing data and scripts . 2

2 Preparing data 2
2.1 Genome table . 2
2.2 The genome sequence data . 3
2.3 The protein sequence data . 4
2.4 Preparing protein sequence files 5

3 Comparing sequences 6
3.1 Direct comparison using BLAST 6
3.2 Indirect comparison using HMMER3 7

4 Clustering sequences 9
4.1 Clustering based on BLAST results 9

4.1.1 BLAST distances . 9
4.1.2 Hierarchical clustering . 10

4.2 Clustering based on Pfam domains 12
4.2.1 Domain sequences . 12
4.2.2 Clustering . 12

4.3 Direct or indirect comparison? 14

5 The pan-matrix 14

6 The pan-genome tree 15

7 Pan-genome size 18
7.1 Binomial mixture models . 19
7.2 Other analyses . 20

1

1 Introduction

1.1 Motivation

The best way of learning about a new R package is to use it. This case study
can serve as a template for later studies, or you can just step through parts of
it to see how we make use of some of the functions in the micropan package.
For more detailed explanation of the various functions, see the Help files. There
are also some external softwares we make use of here, see the package vignette
for how to install.

1.2 This case study

In this case study we have chosen data from the species Mycoplasma penumo-
niae. The only reasons we have chosen this species is that the genomes are small
and at the time of writing this there are a few (4) complete and a few (3) draft
genomes publicly available. Since we have only 7 genomes, and these are pretty
small, computations will be fast.

We will focus on the workflow which is necessary to compute the pan-matrix,
which is the central data structure in a pan-genome study. Then we show some
examples of analyses based on a pan-matrix. We start out with the preparation
of data, i.e. how to download genomes and predict genes, and then how to
prepare the files for further computations. You may have your own genomes
and protein sequence data, and only the last step is of any real interest. Next, we
consider two ways of comparing sequences, using BLAST or HMMER3. Then we
cluster the sequences based on either the BLAST- or the HMMER3-approach.
Then pan-matrices can be computed, and finally we show how this can be used
to create pan-genome trees and estimate core- and pan-genome sizes.

1.3 Organizing data and scripts

When working with microbial pan-genomics you need to handle quite large
amounts of data, and a minimum of dicipline with respect to organization will
usually pay dividends. We prefer to organize each study in a separate folder,
with a similar set of subfolders each time. We name the root folder for this
study Mpneumoniae.

2 Preparing data

Under the root folder we create a subfolder named data. In this folder we will
store the sequence data for every genome in the study.

2.1 Genome table

In the data subfolder we reccomend you to have a small textfile listing some
meta-data about each genome in the study. This file is typically created in R
directly or in some spreadsheet and saved as a (tab-separated) textfile. It is
read into R using the read.table() function (please remember to set
stringsAsFactors=FALSE). In Table 1 we show an example of such a table. It
may of course have less or more columns depending on what type of information

2

you may have about the various genomes. We will come back to the meta-data
in this table later. In this case study we assume this table has been saved as a
tab-separated textfile named Mpneumoniae.txt and put in the data subfolder.

Table 1: A small table listing the genomes in the study. We recommend that
for all pan-genome studies you prepare a textfile containing a tabular listing of
the genomes. The first column is the GID-tag, which is a unique tag identifying
each genome. The second column is a descriptive short name (strain) for each
genome. The Color column lists some colors for each genome. Here we have
’grouped’ them into two groups, the blue and the cyan3. The next two columns
list accession number, either for complete genomes (the first 4 rows) or for the
master-record entry of draft genomes (the last 3 rows). The last column lists
the name of the FASTA-file where the genomes will be stored.

GID.tag Strain Color Accession MasterRecord File

GID1 M129 cyan3 U00089.2 Mpneumoniae M129.fsa
GID2 309 blue AP012303.1 Mpneumoniae 309.fsa
GID3 FH blue CP002077.1 Mpneumoniae FH.fsa
GID4 M129-B7 cyan3 CP003913.1 Mpneumoniae M129-B7.fsa
GID5 PO1 blue ANAA00000000 Mpneumoniae PO1.fsa
GID6 PI 1428 blue ANAB00000000 Mpneumoniae PI 1428.fsa
GID7 19294 blue ANIQ00000000 Mpneumoniae 19294.fsa

We start R and set the Mpneumoniae as our working folder, and the table is
read into R by

library(micropan)

options(stringsAsFactors=FALSE)

genome.table <- read.table("data/Mpneumoniae.txt", sep="\t",
header=TRUE)

We will make use of this table later.

2.2 The genome sequence data

In the data folder we create a subfolder named genomes. Here we put the
FASTA-files containing the genome sequence data. If you have all the genome
or protein sequences you will need for your analysis you may skip the rest of
this subsection.

Whole-genome data can be collected from many public databases. In this
package we have a facility for downloading genomes from the National Centre
for Biotechnology Information [5]. The Genome database at NCBI is considered
one of the most comprehensive collections of public whole-genome data. At the
same time, NCBI also provides an interface for downloading, either manually
or by the use of the Entrez programming utilities (E-utilities, see http://www.

ncbi.nlm.nih.gov/books/NBK25501/). It is the latter we use here.
Let us start out with the 4 completed genomes listed first in Table 1. We have

a GenBank accession number for each genome, and have assigned a filename to
each of them. We can download them using the function entrezDownload:

3

for(i in 1:4){
out.file <- file.path("data/genomes", genome.table$File[i])

entrezDownload(genome.table$Accession[i], out.file)

}

The function entrezDownload will retrieve the data with the accession num-
ber given in the first input, and store the result as a FASTA formatted file named
by the second input. Obviously, both you and the servers at NCBI need to be
online for this to succeed; you may occasionally have to retry at a later time to
retrieve all the data.

Draft genomes are stored as a set of (many) contigs, each having its own
accession number. If you have the accession number of the WGS master record,
the function getAccessions can be used to retrieve the list of accession numbers
for all contigs. In our table genome.table the three last genomes are draft
genomes, and each of them has a master record accession number. We download
them as follows:

for(i in 5:7){
contig.acc <- getAccessions(genome.table$MasterRecord[i])

out.file <- file.path("data/genomes", genome.table$File[i])

entrezDownload(contig.acc,out.file)

}

The master record accessions will these days typically consist of 4 uppercase
letters and then 8 zeros. If you scan the NCBI Genome table of prokaryotic
projects, you will find accessions like ANAA01. Then, just replace the last 1 with
0 and add 6 more 0’s. This system will not last forever, they never do.

If you inspect the variable contig.acc after you run the code above you will
see it is a text containing many accession numbers separated by commas. In
some cases the completed genomes also have more than one accession number,
e.g. there are plasmids or more than one chromosome. In all cases you list
multiple accession numbers as a single text where the accessions are separated
by commas. There is, however, one exception. The Entrez programming utility
at NCBI dislikes a query containing a huge number of accessions. For some draft
genomes there are sometimes thousands of contigs. We have found that splitting
these into chunks of 500 accession numbers is a solution, and the getAccessions
function will automatically do this.

2.3 The protein sequence data

In pan-genomics we focus on the protein coding genes. In the data folder we
create another subfolder named proteins. If you have all the protein sequences
you will need for your analysis you may skip the rest of this subsection.

For completed genomes there are always some protein sequences available
for download somewhere. For draft genomes this is far from always the case.
Anyway, even if annotations are available they have been made by different
people at different labs at different times and using different types of software.
For these reasons it may be preferable to predict genes from scratch in all
genomes using the same approach in all cases.

4

There are several tools for prokaryotic gene prediction, and we have chosen
the Prodigal software [3] as an option here. We are not suggesting this is perfect
or universally best, but it gives fairly good results compared to all other tools we
know of and is extremely fast and easy to use. The function prodigalPredict

will invoke the Prodigal software directly from R. You need to provide as input
the (full) name of the FASTA-file containing the genome sequence(s) and the
(full) name of the file where you want the predicted proteins to be stored. You
may also supply a third filename, and prodigalPredict will fill this file with
the DNA-version of every coding gene. All output files are FASTA-files.

For each file in the genomes/ subfolder we want to predict proteins and store
these in a file with identical name, but in the proteins/ subfolder:

for(i in 1:dim(genome.table)[1]){
cat("Predicting genes in", genome.table$File[i], "...\n")
in.file <- file.path("data/genomes", genome.table$File[i])

out.file <- file.path("data/proteins", genome.table$File[i])

prodigalPredict(in.file, out.file)

}

It is nice to have a short print-out inside the loop to monitor the progress,
hence the cat statement. Upon completeion of this code we should now have
7 FASTA-files in the proteins/ subfolder, all containing valid amino acid se-
quences. Notice that we use the exact same filenames for the genome-files and
for the protein-files, just keep them in separate folders.

2.4 Preparing protein sequence files

This subsection is important, and should not be skipped!
Before we start to compare protein sequences we should make certain the

sequence data files contain all the relevant information, and nothing more. The
function panPrep will check all sequences in a FASTA-file to

• Convert all symbol to upper-case

• Discard protein sequences shorter than 10 amino acids long

• Replace any alien symbol (not among the 20 single-letter amino acid al-
phabet symbols) by X

We may also filter out sequences having a specified text/regular expression in
their header, see ?panPrep for details.

However, the most important job done by panPrep is to mark every sequence
and every file with the GID-tag. In Table 1 there is a column named GID.tag.
GID is short for Genome IDentifier, and is meant to be unique for each genome
in the study. The GID-tag must always consist of the three uppercase letters
GID followed by some unique positive integer (e.g. GID1, GID123, GID0101

etc). You choose the integers as you like, just make certain they are unique for
each genome in the study, and that the GID-tag always matches the regular
expression "GID[0-9]+" in R. This GID-tag must be present in the header of
every sequence from the respective genome, and also in the name of the files
associated with the genome. Whenever we start to compare sequences, it is

5

imperative that each sequence has a tag that immediately and without any
redundancy links it to its genome.

In the data folder we create another subfolder named prepped. We want to
read each file in the proteins subfolder, prepare them, and write the results to
a file with identical name in the prepped subfolder:

for(i in 1:dim(genome.table)[1]){
cat("Preparing", genome.table$File[i], "...\n")
in.file <- file.path("data/proteins", genome.table$File[i])

gid <- genome.table$GID.tag[i]

out.file <- file.path("data/prepped", genome.table$File[i])

panPrep(in.file, gid, out.file)

}

The prepped subfolder should now have files with identical names to those
of the proteins subfolder, except for the added GID-tag. We can read one of
these FASTA-files into R using the readFasta function, and look at the header
of the first three sequences:

> fdta <- readFasta("data/prepped/Mpneumoniae_M129_GID1.fsa")

> fdta$Header[1:3]

[1] "GID1_seq1 gi|26117688|gb|U00089.2|_1 ..."

[2] "GID1_seq2 gi|26117688|gb|U00089.2|_2 ..."

[3] "GID1_seq3 gi|26117688|gb|U00089.2|_3 ..."

Here we have replaced long descriptive text in the headers by All
sequence headers starts with a tag containing the GID-tag that links it to the
genome, and the following seq part ensures it is also unique for each sequence
in the genome.

In this case study we now have 3 subfolders under Mpneumoniae/data,
(genomes, proteins and prepped), all containing 7 FASTA-files. In all down-
stream analyses we will use the files in the prepped folder, and the other two
can now be archived or deleted.

3 Comparing sequences

Pan-genomics involves the grouping of sequences into clusters, often referred to
as gene families. We will prefer the term clusters here, since a gene family may
have more specific interpretations (group of orthologs).

3.1 Direct comparison using BLAST

One way of comparing sequences is to look at pariwise alignments between all
possible sequence pairs. This may sound like a daunting exercise, and cannot
in general be pursued for a larger data set. However, for a small to medium set
of genomes it is a useful approach.

The BLAST software (http://blast.ncbi.nlm.nih.gov) is a standard tool
for computing pairwise local alignments. Due to its heuristics it runs extremely
fast. The main reason for this speed is that BLAST does not compute alignment

6

between all pairs, only between those with a minimum similarity. However, this
is good enough for our purpose, since we are only interested in the cases where
sequences are fairly similar (the distinction between ”very poor” and ”extremely
poor” similarity is without interest).

We prefer to take all proteins from one genome and turn it into a BLAST
database. Then we scan all proteins from each genome against this database and
store the results on a file. Next, another genome is converted to a database, and
the scanning is repeated until all genomes have been scanned against all. From
each result file we collect the largest score involving each listed pair of sequences.
Those sequence pairs who are not listed in the results are too dissimilar to have
a BLAST alignment. These will implicitly get the score 0.0. It should be noted
that we need to scan both genome A versus genome B and then genome B versus
genome A since the heuristics of BLAST may give slightly different results for
these two cases. We also need to scan genome A versus genome A, since different
proteins within the same genome may also belong to the same cluster (paralogs).
Thus, if we have G genomes, we will have to make G2 BLAST-scans.

Before we start the heavy computations we create a subfolder blast under
the Mpneumoniae root folder. This is where we will store the results of the
BLAST-scans.

The function blastAllAll will perform the all-against-all BLAST-scans of
the genomes. Its first input must be a vector of filenames listing the (full) name
of all the prepped protein files to consider. The second input must be the (full)
path to the folder where we want the results to end up. It looks like this in our
case:

in.files <- file.path("data/prepped", dir("data/prepped"))

out.folder <- "blast"

blastAllAll(in.files, out.folder)

From each protein file a BLAST database is constructed, and then all protein
files are scanned against this database. The function gives a small output to
monitor the progress. Depending on the number of proteins in the genomes, each
scan takes from some seconds to some minutes on an average laptop computer.

The result files are plain text files. The names of these files have the format
GIDx vs GIDy.txt, where x and y are integers. In our case study, having 7
genomes, there are 49 result files when blastAllAll is done. You can read a
result file into R using the readBlastTable function.

If you have a look at the Help-file for blastAllAll you will see how you can
speed up the computations by running several scans in parallel on a computer
with multiple cores/processors. To accomplish this blastAllAll will never over-
write an existing result file in the out.folder. Thus, if you want to re-compute
all results you must always remember to first delete the existing result files, or
simply choose another out.folder.

3.2 Indirect comparison using HMMER3

Instead of comparing sequences directly by pairwise alignment, we can compare
the sequences to a common set of references, and then compute their similarity
based on how they match this reference. The advantages of this approach can

7

be several, but an obvious one is that the workload scales linearily in the number
of genomes, not quadratically as for the direct comparisons.

The reference we focus on here is a set of profile Hidden Markov Mod-
els (pHMM) each describing a family of sequences. We will use the Pfam-A
database (http://pfam.janelia.org/) as reference, and each pHMM describes
a conserved and functional part of a protein. We will call them domains, even
if this is not strictly correct in all cases.

It is worth mentioning that the reference set could in principle be any col-
lection of sequences or sequence models. For the comparisons to be of good
value, we need to choose a reference set which is comprehensive and relevant
for the proteins we are investigating. The Pfam-A database is relevant for all
types of proteins, since it is a collection of protein domains found in all branches
of the tree of life. At present it contains around 13 000 pHMMs. You should,
however, be aware that not all proteins listed for a genome will contain domains
listed in Pfam-A (or any other domain database). There are several reasons for
this. First, not all domains have been discovered, or they have been described
too badly to be recognized in a given sequence. Second, a predicted protein
in your genome may be a false positive and not a real protein at all. In the
cases where a protein in your genome has no similarity to any of the reference
sequences/models, this sequence must be discarded from the downstream anal-
ysis since it will be incomparable to any other sequence. Whether this is a
problem or an advantage depends on the reason for the lack of similarity as
listed above. If your protein is actually a false positive, it should be discarded.

The scanning of sequences against a pHMM is done by the HMMER3 soft-
ware (http://hmmer.janelia.org/). Even if this software has been opti-
mized for speed, it still takes quite some time to scan all proteins in a genome
against the full Pfam-A database. Reducing the size of the reference, e.g. us-
ing a selection of pHMMs from Pfam-A, will speed up the scan, but for this
study we will scan against the full Pfam-A database. In order to repeat the
steps below on your computer you need to install the Pfam-A database, see
http://pfam.xfam.org/ for how to do this. (In the micropan package we have
enclosed a miniature version of Pfam-A, see ?hmmerScan for details).

Under the Mpneumoniae folder we create the subfolder pfam, where we will
put the results of the HMMER3-scan. The function hmmerScan will take as first
input a vector of (full) filenames of the protein files to scan. The second input
is the (full) name of the database and the third input is the (full) name of the
folder where the results should be stored:

in.files <- file.path("data/prepped", dir("data/prepped"))

db <- "/usr/share/pfam/Pfam-A.hmm" # edit this to match your system

out.folder <- "pfam"

hmmerScan(in.files, db, out.folder)

where the exact name and location (/usr/share/pfam/Pfam-A.hmm) of the
Pfam-A database will of course vary from system to system. The function
hmmerScan gives a small output to monitor the progress. When running this
example on a laptop it took around 5 minutes per genome.

The result files are plain text files, and they are stored in the pfam folder.
The names of these files have the format GIDx vs Pfam-A.hmm.txt, where x is
an integer. In our case study, having 7 genomes, there are 7 result files when

8

hmmerScan is done. You can read a result file into R using the readHmmer

function.
If you have a look at the Help-file for hmmerScan you will see how you can

speed up the computations by running several scans in parallel on a computer
with multiple cores/processors. To accomplish this hmmerScan will never over-
write an existing result file in the out.folder. Thus, if you want to re-compute
all results you must always remember to first delete the existing result files, or
simply choose another out.folder.

4 Clustering sequences

Depending on how the sequences have been compared, we can now cluster them.

4.1 Clustering based on BLAST results

4.1.1 BLAST distances

Based on the results from the all-versus-all BLASTing, we can compute dis-
tances between sequences. Let S(i; j) be the score of the alignment between
sequence i and j, where j was the database sequence. If there is no BLAST hit
between these two sequences, this score is 0.0. The maximum value this score
can take is S(j; j), i.e. the alignment between sequence j and itself. The ratio
S(i; j)/S(j; j) must always be a number between 0.0 and 1.0. Due to the heuris-
tics of BLAST we also made the reciprocal scan, and can compute S(j; i)/S(i; i)
as well. The distance between sequence i and j we define as

D(i, j) =
1

2
[2− S(i; j)/S(j; j)− S(j; i)/S(i; i)] (1)

This distance is 0.0 if and only if sequence i and j are identical. The maximum
possible distance is 1.0 indicating the sequences have no detectable similarity.

The function bDist will take as input a vector of filenames listing all the
result files from the BLAST-scan (see above), read these files and compute dis-
tances according to (1). It will return a data.frame where each row corresponds
to a sequence pair. The two first columns contain the sequence tags and the
third column is the distance between them. Only sequence pairs having BLAST
alignments are listed, i.e. all those pairs not listed in this data.frame have dis-
tance 1.0 between them. This is how we use this function in our case study:

blast.files <- file.path("blast", dir("blast"))

blast.distances <- bDist(blast.files)

save(blast.distances, file="res/blast_distances.RData")

Notice that all BLAST result files (in the blast subfolder) must be given as
input to bDist. Notice also that we save the results in a subfolder named res.
In cases where we have many genomes, and thus many result files, the reading
of results takes some time, and it is convenient to store the results instead of
repeating the whole procedure in a later session.

The variable blast.distances is now a data.frame with 3 columns and
139543 rows. The third column contains the distances, and it is always a good
idea to make a histogram of these distances to verify that it looks reasonable:

9

BLAST distance

N
um

be
r

of
 d

is
ta

nc
es

0.0 0.2 0.4 0.6 0.8 1.0

0
10

00
0

25
00

0

Figure 1: The histogram shows the BLAST distances computed for this case
study.

hist(blast.distances[,3], breaks=50, col="tan4",

xlab="BLAST distance", ylab="Number of distances")

The resulting histogram is shown in Figure 1. Notice there is a large number
of sequence pairs having distance close to 0.0. Actually, even more pairs have
distance 1.0 but these are never listed in this data.frame. The shape of this
histogram will vary somewhat from study to study, but there should always be a
large number of very small distances. If not, it means all proteins in all genomes
are quite different, which is really strange for a pan-genome.

4.1.2 Hierarchical clustering

The function bClust will cluster the sequences based on the data.frame pro-
duced above by bDist. It performs a hierarchical clustering of the sequences,
assuming all pairs not listed have distance 1.0 between them. Central to any
hierarchical clustering is the linkage function and the threshold we choose for
grouping the sequences. The linkage specifies how to compute the distance
between clusters, the threshold specifies the maximum distances we tolerate in-
side the cluster. Notice that the threshold is here a BLAST distance, always a
number between 0.0 and 1.0.

The default linkage is the single linkage. In this case the distance between

10

group A and B is the shortest distance between any member from A to any
member in B. The threshold T means that sequence s can belong to group A if
there is at least one member in A with distance smaller than T to s. The single
linkage grouping is the fastest to compute, but has a tendency of producing
large and heterogenous clusters. Two very different sequence can belong to the
same cluster simply because one of them looks like something, that looks like
something,...,that looks like something, thats looks like the other. If no distance
in this chain is above T it could create a cluster. The default input to bClust

is to use single linkage and a threshold at 1.0, which will produce the largest
(and fewest) clusters possible for the given data.

The average linkage means that the distance between group A and B is
the distance between the center of each group. Also, a sequence s can belong
to group A if its distance to the center of A is less than the threshold T . In
some sense, the threshold now specifies the ’radius’ of the group, and there is
a limit to how dissimilar two sequences of the same group can be. A potential
problem with this linkage can occur if some of the genomes in the study are
extremely closely related. Then the members (proteins) from these genomes are
very similar, and will make the center of every group be biased towards their
’corner’ of the pan-genome. Then some proteins who should have been member
of a group may fall outside.

The complete linkage means that the distance between group A and B is the
largest possible distance between a member from A and a member from B. A
sequence s can belong to group A if and only if its distance to all other members
of the group is below T . This means the threshold T directly specifies the
maximum ’diameter’ of the groups. It also means all groups will be homogenous,
no sequence in a cluster is very different from any other. The problem with this
strict regime is of course that some sequences always fall outside all clusters, and
we get a larger number of ORFan (singleton) clusters. Choosing the complete
linkage with a strict (small) threshold is the oppsite strategy of the default, and
produces many small clusters instead of a few large.

Here we have chosen to use a complete linkage and the rather liberal thresh-
old of T = 0.75 to cluster the sequences:

cluster.blast <- bClust(blast.distances, linkage="complete",

threshold=0.75)

The output, named cluster.blast here, is simply a vector of integers,
with one element for each sequence in the data set. The name of each element
identifies the sequence, and two sequences having the same integer belongs to
the same cluster. In this case study cluster.blast has 9573 elements since
this is the total number of protein sequences in the seven genomes. We can
quickly see how many clusters we got:

> length(unique(cluster.blast))

[1] 1210

If we look at the first seven elements they are

11

> cluster.blast[1:7]

GID1_seq1 GID2_seq1 GID3_seq1 GID4_seq1 GID5_seq407

2000 2000 2000 2000 2000

GID6_seq1164 GID7_seq1174

2000 2000

All have the value 2000 indicating they belong to the same cluster. From
the names we see there is exactly one member from each of the seven genomes
(GID1 to GID7), i.e. this is a perfect example of a core cluster with one ortholog
from each genome. Notice it is sequence number 1 in the first four (completed)
genomes, indicating it is just downstream of the replication start. In the draft
genomes the contigs are un-ordered and the sequence number is pretty random.
The actual number that indicates the clustering (the value 2000 above) has no
meaning at all, it is just a marker.

4.2 Clustering based on Pfam domains

An alternative to the clusters produced by the direct comparison BLASTing
approach, is a clustering based on the Pfam-A domains. This approach has
been used for pan-genomics by [8], and we describe a similar procedure here.

4.2.1 Domain sequences

In the previous section we scanned all proteins of every genome against the
Pfam-A database using the HMMER3 software and the hmmerScan function.
Every protein with at least one hit in the Pfam-A database can be described
by the sequence of domains occurring along its length. We can think of this
as a high-level alternative to the amino acid sequence. Instead of listing the
sequential occurrence of amino acids, we list the sequential occurrence of Pfam-
A domains. We call this the domain sequence of the protein. Many proteins will
have only one single domain, but still we call it a domain sequence. In the cases
where we have multiple domains in a protein, we only list those who are non-
overlapping, and their order of appearance is essential. A number of proteins
will have no Pfam-A hits. These sequences are discarded from this analysis.
This may sound like a loss of information, but on the other hand, some of these
sequences are likely to be false positive gene predictions anyway.

4.2.2 Clustering

We cluster the proteins by their domain sequence, i.e. only proteins having
identical domain sequence belong to the same cluster. This may seem like a
strict rule, but in fact it is not. The reason is that the pHMMs describing
the domains allow a considerable degree of variation in the protein sequence
matching the model, and two amino acid sequences may appear quite different
and still share the same domains.

To compute the domain sequence clusters we first have to read the results
of the HMMER3 scan against the Pfam-A database:

12

pfam.files <- file.path("pfam", dir("pfam"))

pfam.table <- NULL

for(i in 1:length(pfam.files)){
tab <- readHmmer(pfam.files[i])

tab <- hmmerCleanOverlap(tab)

pfam.table <- rbind(pfam.table, tab)

}
save(pfam.table, file="res/pfam_table.RData")

The function readHmmer reads the result file and returns it as a data.frame.
The function hmmerCleanOverlap is used here to filter out overlapping hits from
this table. If two hits overlap on the same protein, the poorest hit (smallest
score) is discarded. You may omit this step, but we prefer to include it. Notice
that we read the results for each genome and store everything in one large
data.frame named pfam.table here. This is finally saved in the res subfolder,
just like we did for the BLAST distances. If we want to add more genomes to
this analysis, we scan their proteins against Pfam-A, read the results, and just
add these to the existing pfam.table without repeating any of the previous
work.

Once we have the table of results, the clustering is straightforward:

cluster.pfam <- dClust(pfam.table)

where the dClust function produces the domain sequence clustering. The
result cluster.pfam is a vector of integers similar to the one we get from
bClust. Each integer corresponds to a sequence identified by its name, and those
sequences having the same integer belong to the same cluster. The number of
clusters is

> length(unique(cluster.pfam))

[1] 445

which is down to almost one third of what we got with the BLAST approach.
Again we can look at the first entries:

> cluster.pfam[1:7]

GID1_seq1126 GID2_seq1108 GID3_seq1110 GID4_seq1119

1 1 1 1

GID5_seq110 GID6_seq526 GID7_seq934

1 1 1

and we notice this cluster, with 7 members, has one member from each
genome, i.e. it is a core cluster.

The clustering vector returned bu dClust also contains an attribute named
"cluster.info". This holds the actual Pfam-A domains behind each group.
The cluster above has the marker value 1. If we look at element number 1 in
this vector we get:

13

> attr(cluster.pfam, "cluster.info")[1]

[1] "PF00004.24"

Only one Pfam-A accession number is listed. This means that the core
cluster above contains the 7 proteins all sharing one single domain. If the
domain sequence contains several domains, they are listed in their order of
appearence separated by comma. If we look up the Pfam-A accession number
PF00004.24, it is described as ATPase family associated with various cellular
activities. In this way we can get some kind of description of each cluster, not
only its content.

4.3 Direct or indirect comparison?

We have seen two ways of clustering sequences. Which one is better? There are
pros and cons of both.

The direct approach tend to give smaller clusters, but this depends on the
choice of linkage and threshold. With a complete linkage and a reasonable
threshold many of the groups will be very close to a gene family in the sense
that it contains a group of orthologs. Based on the output from bDist (distance
table) and bClust (clusters) you can find the orthologs and paralogs in every
cluster by the function isOrtholog in this package. The problem is to choose
the proper clustering threshold. The same threshold is used for all clusters.
We can easily imagine that some gene families are more divergent than others,
and that different thresholds should ideally be used. Also, all false positive
gene predictions will tend to produce many small clusters, usually singletons
(ORFans). A problem with the direct comparison is that it scales quadratically.
It is suitable for 50 genomes, possibly for 100, but horrible for 1000 genomes.

The indirect approach using the Pfam-A database produces fewer and larger
groups. Many of these groups are much larger than just a group of orthologs.
In this case study the largest group contains 167 proteins, i.e. on average more
than 20 in each genome! These proteins share a single domain described only as
Lipoprotein in the Pfam-A database. Still, with this in mind this clustering says
something important about the functional diversity of the pan-genome. Each
domain sequence is associated with some potential function, and the number
of such groups and their sizes has biological interest. Another point is that
each pHMM in Pfam-A describes a tolerated variation around the consensus
pattern. This means that different clusters actually have different ’spread’ and
in many ways the problem of different divergence in different protein families
is solved by this approach. The indirect comparison also scales linearily, and
adding a genome to the analysis will take the same computational effort each
time, regardless of how many you have collected before.

5 The pan-matrix

Having the clustering (in one way or another) we can construct the pan-matrix,
which is the central data structure in a pan-genome study.

The pan-matrix is a matrix with one row for each genome and one column for
each cluster. Cell (i, j) in this matrix contains an integer indicating the number
of members that cluster j has in genome i. The function panMatrix computes

14

the pan-matrix from a clustering vector. We compute two pan-matrices, based
on both clustering procedures described above:

pm.blast <- panMatrix(cluster.blast)

pm.pfam <- panMatrix(cluster.pfam)

Both will have 7 rows, but pm.blast has 1210 columns while pm.pfam has
445.

The panMatrix function returns a Panmat object, which is a small extension
to a matrix. It has a generic plotting function. This will produce a bar-plot of
how many clusters are found present in 1,2,...,all genomes in the data set. The
code:

par(mfrow=c(2,1))

plot(pm.blast)

plot(pm.pfam)

produces a figure like the one shown in Figure 2. We observe that in both
cases the core clusters dominate, i.e. those who have members in all 7 genomes.
These 7 genomes must be very similar, and only a small number of clusters have
an ability to separate the genomes. The actual numbers behind the barplots
are given by the generic summary function:

> summary(pm.blast)

33 clusters found in 1 genomes

10 clusters found in 2 genomes

13 clusters found in 3 genomes

16 clusters found in 4 genomes

22 clusters found in 5 genomes

16 clusters found in 6 genomes

1100 clusters found in 7 genomes

> summary(pm.pfam)

5 clusters found in 1 genomes

0 clusters found in 2 genomes

2 clusters found in 3 genomes

1 clusters found in 4 genomes

2 clusters found in 5 genomes

5 clusters found in 6 genomes

430 clusters found in 7 genomes

6 The pan-genome tree

Based on the pan-matrix we can make a pan-genome tree as described in [7].
The construction of the tree also require the computation of distances be-

tween genomes. In the micropan package there are two functions, distManhattan
and distJaccard, that takes a pan-matrix as input and computes a dist ob-
ject. You may of course also make your own distance functions, as long as they
take a pan-matrix as input and returns a dist object, see ?dist for details.

15

1 2 3 4 5 6 7

Number of genomes

N
um

be
r

of
 c

lu
st

er
s

0
60

0

1 2 3 4 5 6 7

Number of genomes

N
um

be
r

of
 c

lu
st

er
s

0
30

0

Figure 2: The pan-matrices plotted by their generic plotting function. The
upper panel shows pm.blast and the lower panel pm.pfam. The sum of bar-
heights is 1210 in the upper panel and 445 in the lower panel.

A pan-genome tree is constructed by the panTree function:

blast.tree <- panTree(pm.blast, dist.FUN=distManhattan)

pfam.tree <- panTree(pm.pfam)

The first tree is created using the distManhattan, and so is also the second
since this is the default choice. Use the dist.FUN option to specify alternative
distances. The panTree function will perform an average linkage hierarchi-
cal clustering of the genomes based on the computed distances, and return a
Pantree object. This we can plot:

par(mfrow=c(1,2))

plot(blast.tree)

plot(pfam.tree)

16

50 40 30 20 10 0

GID1

GID4

GID3

GID2

GID5

GID6

GID7

8 6 4 2 0

GID6

GID3

GID7

GID5

GID2

GID1

GID4

Figure 3: The pan-genome trees based on the pan-matrices. The left panel shows
the tree based on pm.blast and in the right panel it is based on pm.pfam. The
horizontal axes are the Manhattan distances between (groups of) genomes.

The plot function for Pantree objects will draw a simple dendrogram tree.
In Figure 3 we show the result of this code. The horizontal axes is a Manhattan
distance (since we used distManhattan). In this case it is simply the number of
clusters in which the genomes differ in present/absent status, i.e. if a distance
between two genomes is 0 it means they contain the exact same clusters. Note
that the distance between groups (clades) is an average linkage distance, i.e.
distance to the ’average’ member of the branch.

From these trees we see that genomes GID1 and GID4 are very similar, for
the domain sequence tree in the right panel they are actually identical. Also,
GID6 is the genome which is most different from the rest.

The GID-tag is not a very informative label to have in the tree, and we
may also want to add some coloring of the genomes depending on our prior
knowledge of them. In the genome.table that we created in the very beginning
of this case study, we have such information linked to the GID-tags. Here is
some code that produces a nicer version of the BLAST-based pan-genome tree
from above, and also adds bootstrap-values to the tree:

17

50 40 30 20 10 0

Pangenome tree for Mycoplasma pneumoniae

Manhattan distances

M129

M129−B7

FH

309

PO1

PI_1428

19294

0.86

0.7

0.75

Figure 4: The BLAST-based pan-genome tree with more informative labels and
colors. Bootstrap values, ranging from 0.0 to 1.0, are displayed at each branch.

blast.tree <- panTree(pm.blast, nboot=100) # tree with bootstrapping

my.lab <- genome.table$Strain

names(my.lab) <- genome.table$GID.tag

my.col <- genome.table$Color

names(my.col) <- genome.table$GID.tag

plot(blast.tree, leaf.lab=my.lab, col=my.col,

xlab="Manhattan distances",

main="Pan-genome tree for Mycoplasma pneumoniae")

The result is shown in Figure 4. Notice that the supplied labels and colors
must be vectors named with the GID-tags. The genomes are listed in a specific
order in the pan-matrix. We can never expect this ordering to be identical
to that in the genome.table! Thus, for each label/color we must supply the
corresponding GID-tag (as the name) to avoid any mixup.

7 Pan-genome size

The pan-genome size is the number of clusters to be found in the population if
all strains were sequenced. This number will never be observed, and we have to
try to estimate it from the present data. With only 7 genomes as in this case
study, this estimate is bound to be highly uncertain, but we can still show the

18

procedure. The core size is the number of core clusters in the population, i.e.
the number of clusters found in every single strain, and must also be estimated.

7.1 Binomial mixture models

Both quantities can be estimated by a probabilistic approach using binomial
mixture models as described in [2, 6]:

binomix <- binomixEstimate(pm.blast, K.range=2:7)

The binomixEstimate function takes as input a pan-matrix and a vector of
integers, K.range, specifying the number of components to try out. A binomial
mixture model is fitted for each number in K.range. For each model the BIC
criterion is also computed, and the model producing the smallest BIC-value is
in theory the one that describes the data best without overfitting. The function
returns a Binomix object, which is a small extension to a list of two elements.
First we only focus on the one called BIC.table:

> binomix$BIC.table

Core.size Pan.size BIC

2 components 1099 1211 1227.697

3 components 1096 1267 1151.008

4 components 1092 1281 1164.656

5 components 1094 1340 1178.482

6 components 1020 1339 1192.698

7 components 1090 1303 1206.967

This table lists some results for each fitted model. The last column is the
BIC-value, and we notice that the 3-component model in the second row is
optimal, having the smallest BIC-value (1151.008). Thus, we focus only on this
row. The Core.size column gives us the estimate of the core size as 1096 and
the Pan.size estimate is 1267. We used the BLAST-based pan-matrix as input,
and this contained 1210 clusters already observed. The estimate of pan-genome
size indicates that only a small number of additional clusters (57) is expected
to be found if more genomes of this population is sequenced.

We can get a summary of the Binomix object:

> summary(binomix)

Minimum BIC model at 3 components

For this model:

Estimated core size: 1096 clusters

Estimated pan-genome size: 1267 clusters

We notice that the summary function outputs the results in the row of the
BIC.table where we have the optimal model.

An alternative estimate of pan-genome size is obtained by the Chao lower
bound [1] estimator:

19

> pan.size <- chao(pm.blast)

> pan.size

[1] 1264

In this case it is very similar to the estimate of the binomial mixture model
(1267). Both these methods produce conservative or ’modest’ estimates, and it
is more likely that the true size is larger rather than smaller than their suggested
values.

The optimal mixture model has 3 components, i.e. it describes the observed
data as a combination of 3 binomial densities each having a distinct detection
probability. Plotting the Binomix object reveals this:

plot(binomix)

The result is shown in Figure 5.
The detection probability of a gene cluster is the probability that it occurs

in a genome. Gene clusters having detection probability 1.0 will always occur
in all genomes. These are the core gene clusters. In Figure 5 we see these are
domionating this pan-genome (blue sector). In addition to the core there is a
smaller fraction of gene clusters occurring frequently, but not always, having a
medium probability of being observed. This is what we typically denote shell
genes (greenish sector). Finally, there is also percentage of gene clusters with
a very small detection probability, usually denoted cloud genes (pink sector).
These are the clusters that are more or less unique to each genome, and the
majority of the new clusters we expect to see in the future will be of this type.
Since the pink ’cloud’ sector is small, we do not expect to see many new gene
clusters in new genomes.

7.2 Other analyses

It is not uncommon to plot the number of gene clusters as a rarefaction curve,
i.e. the cumulative number of unique clusters as we consider more and more
genomes. The function rarefaction will produce a corresponding object, and
the generic summary and plot functions for these objects produce text and
graphical output. Here we make a plot:

> r <- rarefaction(pm.blast, n.perm=100)

> plot(r)

and the result is shown in Figure 6. Notice that we specified n.perm=100

above. The shape of the curve in Figure 6 depends on the ordering of the
genomes, and here we average over 100 random permutations. If you specify
n.perm=1 the ordering will be as in the pan-matrix (row 1 to row N).

It was suggested by [9] that a pan-genome can be classified as open or closed
depending on the shape of the rarefaction curve. They used a heaps-law type
of model that we can fit to the data. One of the parameters in this model,
named alpha, is the indicator we look at. If its value is below 1.0 the pan-
genome is classified as open. This means regardless of how many new genomes
we sequence, there will always be new unique gene clusters, i.e. the rarefaction
curve will never level out. If alpha is larger than 1.0 the pan-genome is closed

20

0.074

0.665

1

0
0.

1
0.

2
0.

3
0.

4
0.

5
0.

6
0.

7
0.

8
0.

9
1

Figure 5: A fitted binomial mixture model can be displayed as a pie chart.
Each sector corresponds to a binomial density. Its color indicates its detection
probability. Its size indicates how large fraction of the pan-genome will have
this detection probability. The colors have been been chosen to illustrate core
genes (dark blue), shell genes (greenish) and cloud genes (orange/pink).

and the shape of the rarefaction curve indicates it will reach a plateau. The
function heaps fits a heaps-law model to the data:

> h <- heaps(pm.blast, n.perm=100)

> h

Intercept alpha

64.323844 1.479499

Only alpha is of interest here, and as we can see this is well above 1.0
indicating a closed pan-genome. Notice that we again used 100 permutations
of the genome-ordering. This is a minimum, to obtain stable estimates use as
many as possible, limited by a reasonable computing time.

If we turn the focus away from the gene clusters and to the genomes, a
pan-genome tree as displayed in Figure 3 is an illustration of the relations. In
[4] it was suggested that genomic fluidity is a quantity that characterizes the
population. This can be computed as:

> f <- fluidity(pm.blast, n.sim=100)

> f

$Mean

[1] 0.0183972

$Std

[1] 0.00680975

21

●

●

●

●

●

●

●

1 2 3 4 5 6 7

11
60

11
80

12
00

Genomes

N
um

be
r

of
 u

ni
qu

e
ge

ne
 c

lu
st

er
s

Figure 6: A rarefaction curve for the seven genomes in this case study.

where both the mean value and its standard deviation is computed. The
fluidity is always a value between 0.0 and 1.0. A large fluidity means a larger
diversity between the genomes. This measure only looks at presence/absence
of unique gene clusters. It is computed from many random pairs of genomes,
and n.sim is the number of pairs to consider. A smallish number suffice, and
n.sim=100 is enough in most cases.

For genomes A and B, let A and B symbolize the sets of gene clusters in the
two genomes, respectively. Then genomic fluidity between A and B is defined
as

F (A,B) =
|A

⋃
B| − |A

⋂
B|

|A|+ |B|
(2)

where the numerator is the number of gene clusters found in A but not in B
plus those found in B but not in A. The denominator is simply the sum of the
size of each set. The classical Jaccard distance is defined as

J(A,B) = 1− |A
⋂
B|

|A
⋃
B|

=
|A

⋃
B| − |A

⋂
B|

|A
⋃

B|
(3)

which means the only difference to the fluidity is the slightly different denomi-
nator. Hence, computing Jaccard distances and investigating their distribution
may be a good alternative to the genomic fluidity:

22

Histogram of J

J

F
re

qu
en

cy

0.01 0.02 0.03 0.04 0.05 0.06

0
1

2
3

4
5

Figure 7: A histogram of the Jaccard distances between the genomes.

> J <- distJaccard(pm.blast)

> mean(J)

[1] 0.03896226

A mean Jaccard distance of around 4% means that two genomes on average
share 96% of the gene clusters found in either one or both. A histogram of these
distances:

> hist(J, breaks=10, col="tan")

tells us that the variation in distances is fairly small, and even the largest
pairwise distance is not very different from the average, see Figure 7.

References

[1] Chao, A. (1987). Estimating the population size for capture-recapture data
with unequal catchability, Biometrics, 43, pp783-791.

[2] Hogg, J.S., Hu, F.Z., Janto, B., Boissy, R., Hayes, J., Keefe, R., Post,
J.C., Erlich, G.D. (2007). Characterization and modelling of the Haemophilus
influenzae core- and supra-genomes based on the complete genomic sequences
of Rd and 12 clinical nontypeable strains. Genome Biology, 8.

[3] Hyatt, D., Chen, G., LoCascio, P.F., Land, M.L., Larimer, F.W., Hauser,
L.J. (2009). Prodigal: prokaryotic gene recognition and translation initiation
site identification. BMC Bioinformatics, 11:119.

23

[4] Kislyuk, A.O., Haegeman, B., Bergman, N.H., Weitz, J.S. (2011). Genomic
fluidity: an integrative view of gene diversity within microbial populations.
BMC Genomics, 12:32.

[5] http://www.ncbi.nlm.nih.gov/genome

[6] Snipen, L., Almœy, T., Ussery, D.W. (2009). Microbial comparative pan-
genomics using binomial mixture models. BMC Genomics, 10:385.

[7] Snipen, L., Ussery, D.W. (2010). Standard operating procedure for comput-
ing pangenome trees. Standards in Genomic Sciences, 2, pp135-141.

[8] Snipen, L. Ussery, D.W. (2012). A domain sequence approach to pange-
nomics: Applications to Escherichia coli. F1000 Research, 1:19.

[9] Tettelin, H., Riley, D., Cattuto, C., Medini, D. (2008). Comparative ge-
nomics: the bacterial pan-genome. Current Opinions in Microbiology, 12,
pp472-477.

24

