The micropan package vignette

Lars Snipen and Kristian Hovde Liland

1 Introduction

As a result of ever-improved sequencing technologies over several years it is now
possible to sequence prokaryote genomes in very little time at a small cost. This
has made it possible to re-sequence many strains within the same species, to
investigate the diversity, to look for a core set of genes common to all strains
or to be able to distinguish pathogenic and non-pathogenic strains etc. It has
since long been recognized that the diversity between prokaryote strains is much
greater than between, say, individuals in a human subpopulation. All humans
share the same genes, and the differences between individuals are usually found
in tiny mutations like single nucleotide polymorphisms or in the regulatory parts
of the genome. In contrast, two different strains of E. coli may be many times
more diverse than humans and chimpanzees, with perhaps 20% of the genes in
one strain lacking in the other. For this reason, the set of genes found in the
entire E. coli species is many times larger than what we observe in a single
genome, and this collection of all genes utilized by a species is denoted its pan-
genome.

In this R package we provide a set of tools to analyze microbial pan-genomes.
We find R suitable as a 'workbench’ since it is easy to make small scripts per-
forming analyses and visualize the results. R is also used a lot in bioinformatics,
and it is quite likely you will have used R for other purposes already. However,
the comparison of genomes involves heavy computations, and for this job there
are other tools already optimized for this purpose. Instead of trying to re-
implement some of this in R (most likely with huge effort and poor results), we
have instead made use of external software where appropriate. Thus, some of
the functions in this package only make a call to an external software, and to
obtain full functionality you need to have these external softwares installed on
your system, see below.

This vignette is not a users guide. Instead, we have prepared the document
casestudy.pdf which will take you through some standard analyses of a small
pan-genome. We reccomend you take a look at that document after reading
this.

2 The genome-table

A pan-genome study may involve many genomes, and corresponding many files.
We strongly reccomend that you create a table of meta-data for each pan-genome
study. We will refer to this as the genome-table. This table can be created
as a data.frame in R or in some spreadsheet. In the latter case you save
it as a text file and read it into R using e.g. read.table (remember to set
stringsAsFactors=FALSE). The genome-table will typically have one row for
each genome in the study, and the columns contain your meta-data about each
genome.

The very first column you create in this table is the column named GID.tag!
A central concept in the micropan package is the GID.tag, which is a unique
Genome IDentifier for every genome in the study. This is a short text of the
format "GIDx”, where x is some integer which is unique for each genome. This
tag is attached to all sequences and files of a genome using the function panPrep.
You can read the Help-file (?panPrep) or the casestudy document for more
details on panPrep. Enter your desired GID.tag texts for each genome, just
make certain they are all unique.

Another useful column contains a short and meaningful name for each genome
(strain name). The GID.tag is the default label used when plotting and display-
ing results in the micropan functions, but they are cryptic and in most cases a
meaningful short name is better. Supplying the GID.tag column and the name
column enable plotting functions to replace the tags by 'real’ names.

Colors can be used to display a priori genome grouping information when
plotting. Genomes that somehow ’belong together’ should have identical colors.
You may have several alternative color columns in your genome-table, and sup-
plying one of them together with the GID.tag column enable plotting functions
to color genomes the way you want.

Each genome should also have an associated filename. In case you have
several sequence files for each genome (e.g. genome sequences, protein sequences,
etc.) use the same name for all files, but store them in separate subdirectories
(e.g. the genome directory, protein directory etc.)

We like to point out that a genome-table is never required by any functions
in the micropan package. This is just something we reccomend from our own
experience.

3 External software

pan-genomics will involve the comparison of (many) biological sequences. There
are some 'workhorse’ tools of bioinformatics that we also make use of here.
R is an excellent workbench environment, with easy access to graphics and
statistical analyses, but for heavy sequence comparisons it is slow, and these
types of jobs should be exported to the prupose-built softwares used by the
bioinformatics community. Thus, before you start with pan-genomics using the
micropan package you should install on your system the following free softwares:

e The Prodigal gene finder from Oak Ridge National Laboratory
(http://compbio.ornl.gov/)

e The BLAST+ executables from NCBI (http://www.ncbi.nlm.nih.gov/)
e The HMMERS3 from Janelia farm (http://hmmer. janelia.org/)

3.1 Prodigal

We take it for granted that many pan-genome analyses will involve draft genomes
where no gene predictions have been made. The Prodigal gene finder can be
used to predict genes in a genome sequence. It is one of several alternative tools
for this job, but the one we have chosen as an option in our R package. As with
all gene predictions, no results are perfect and we do not suggest that Prodigal
is always the best tool. It is, however, always easy to use and in our experience
the predictions made by Prodigal are at least as accurate as the other standard
gene finders available.

In the micropan package Prodigal is used by the function prodigalPredict.

At the time of writing Prodigal is available as a binary executable file from
http://code.google.com/p/prodigal/downloads/list. There is no installa-
tion program, but you simply download the executable and put it where you
like on your system.

For prodigalPredict to work, you must change the name of this binary to
prodigal, no more and no less (delete all version numbers etc.). Also, you have
to manually edit the PATH environment variable on your system, and add to this
the path to where you have the prodigal binary. As an example, on my Ubuntu
linux system the prodigal binary resides in /home/larssn/bin/Prodigal/,
and the command

export PATH="/home/larssn/bin/Prodigal":$PATH

updates the PATH variable. Add this to the .bashrc file or something similar to
make it permanent. On my Windows systems the PATH variable is edited in the
Control Panel.

If you are using the RStudio IDE software you may find it necessary to also
create an .Renviron file on your system, and add the PATH information in this.
On my Ubuntu linux system it looks something like this:

PATH = "/home/larssn/bin/Prodigal:/home/larssn/bin/HMMER3:
/home/larssn/bin/BLAST"

Notice that each path is separated by a colon, and you may add as many paths
as you like. Here I have also included the paths to HMMER3 and BLAST (see
below). On my Windows 8 system I do not need the .Renviron file at all,
RStudio works fine without!

To verify that you have prodigal properly installed, start R and run the
line

> system("prodigal -h")

in the command window. You should get a listing of the available options in
prodigal.

3.2 BLAST

The Basic Local Alignment Search Tool is known to most people by its web-
interface where you can search huge databases for sequences similar to your
query sequence. It is, however, also a stand-alone tool you can install on
your local computer. At the time of writing the BLAST+ executables can be
downloaded from ftp://ftp.ncbi.nlm.nih.gov/blast/executables/blast+
/LATEST/.

Executables are available for all platforms, and installing it is quite straight-
forward on all systems. You may need to manually edit your environment vari-
able PATH again in order to make it executable from all folders on your system.
As mentioned above, if you use the RStudio software you may need to add the
path to BLAST to the .Renviron file as well (see Prodigal above). A successful
installation means you can write in the R command window

> system("blastp -help")

and you should get a listing of how to use the command blastp.
In the micropan package BLAST is used by the function blastA11A11.

3.3 HMMERS3 and Pfam

The HMMERS software is used to build profile Hidden Markov Models (pHMM)
and to search with sequences against a database of such models. A pHMM is
a sequence model describing a position specific pattern. It is typically used to
describe conserved parts of proteins. The Pfam database is the best known
collection of pHMMs, and HMMERS is the tool associated with Pfam.

HMMERS3 can be downloaded from http://hmmer.janelia.org/. It has
always been a tool developed under UNIX type of systems, but a Windows
binary is also available from Janelia farm. We have used both the Linux and
the Windows version, and found they both work fine with the micropan package.
Again, if you are using RStudio you may need to add the path to HMMER3 to
the .Renviron file. Verify that HMMERS3 works properly by running

> system("hmmscan -h")

in the R command window. You should get a listing of available options for
hmmscan.

In the micropan package HMMERS is used by the function hmmerScan.

In order to use the hmmerScan function you also need to have a pHMM
database on your system. The Pfam-A database is the natural choice. At the
time of writing this can be downloaded from
ftp://ftp.sanger.ac.uk/pub/databases/Pfam/current_release/. You will
typically need the file named Pfam-A.hmm.gz. Uncompress this file, and then

run hmmpress on it (see the HMMERS3 user manual). NB! This is done only
once, and should not be done from the R command window, but directly in a
system command window.

