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The markovchain Package: A Package for Easily

Handling Discrete Markov Chains in R

Giorgio Alfredo Spedicato Mirko Signorelli

Abstract

markovchain aims to fill a gap within R packages providing S4 classes and methods
to easily handling discrete markov chains, both homogeneous and inhomogeneous. The
S4 class structure will be presented as well implemented classes and methods. Applied
examples will follow

Keywords: markov chain, transition probabilities.

1. Introduction

Markov chains represent a class of stochastic processes of great interest for the wide spec-
trum of practical applications. In particular, discrete time Markov chains (DTMC) permit
to model the transition probabilities between discrete states by the aid of matrices. Various
R packages deals with models that are based on Markov chains: msm (Jackson 2011) han-
dle Multi-State Models for panel data, mcmcR (Geyer and Johnson 2013) is one among the
many package that implements Monte Carlo Markov Chain approach that is widely used to
estimate parameters of parametric statistical models. Hidden Markov models with covariates
are fit with package hmm, whilst mstate fits Multi-State Models based on Markov chains for
survival analysis (?). The R statistical environment (R Core Team 2013) nevertheless seems
to lack a simple package that coherently defines S4 classes for discrete Markov chains and that
allows to perform probabilistic analysis, statistical inferences and applications. For the sake
of completeness, markovchain is not the first package specifically dedicated to DTMC anal-
ysis, being DTMCPack the first one, Nicholson (2013). Nevertheless markovchain package
(Spedicato 2013) aims to offer greater flexibility in handling discrete time Markov chains than
existing solutions, providing S4 classes for both homogeneous and non-homogeneous Markov
chains as well as methods suited to perform statistical and probabilistic analysis. By the way,
other scientifical softwares provides functions specifically designed to analyze Markov chains,
as Mathematica 9 for example (Wolfram Research 2013).

The paper is structured as follows: Section 2 briefly reviews mathematic and definitions
regarding discrete Markov chains, Section 3 discusses on how to handle and manage Markov
chains objects within the package, Section 4 and Section 5 show how to perform probabilistic
and statistical modelling whilst Section 6 presents applied examples of discrete Markov chains
in various fields.

Finally, the markovchain package depends by following R packages: expm (Goulet, Dutang,
Maechler, Firth, Shapira, Stadelmann, and expm-developers@lists.R-forge.R-project.org 2013)
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to perform efficient matrices powers; igraph (Csardi and Nepusz 2006) to perform pretty plot-
ting of markovchain objects and matlab (Roebuck 2011) that contains functions for matrix
management and calculations that emulate those within Matlab environment.

2. Markov chains mathematic revies

2.1. General Definitions

A discrete-time Markow chain is a sequence of random variables X1, X2, X3, . . . characterized
by memorylessness property (also known as Markov property, see Equation 1), that is that
the distribution of forthcoming state (of Xn+1 ) depends only by the current state ( Xn ) and
not by previous ones Xn−1, Xn−2, . . . , X1.

Pr (Xn+1 = xn+1 |X1 = x1, X2 = x2,..., Xn = xn ) = Pr (Xn+1 = xn+1 |Xn = xn ) . (1)

The set of possible states S = {s1, s2, ..., sr} of Xj is named the state space of the chain. In
discrete-time Markov chain, S is finite or countable.

A Markow chain is time-homogeneous the property shown in Equation 2 holds. It implies no
change in the underlying transition probabilities as time goes on.

Pr (Xn+1 = x |Xn = y ) = Pr (Xn = x |Xn−1 = y ) , (2)

The chain successively moves from one state to another (this change is named either ’transi-
tion’ or ’step’) and the probability pij to move from state si to state sj is named transition
probability (see Equation 3).

pij = Pr (X1 = sj |X0 = si ) . (3)

The probability of going from state i to j in n steps is p
(n)
ij = Pr (Xn = sj |X0 = si ).

If the Markov chain is stationary pij = Pr (Xk+1 = sj |Xk = si ) and

p
(n)
ij = Pr (Xn+k = sj |Xk = si ), where k > 0.

The probability distributions of transitions from one state to another can be represented into
a transition matrix P , where each element of position (i, j) represents the probability pij . For
example, if r = 3 the transition matrix P is shown in Equation 4

P =

 p11 p12 p13
p21 p22 p23
p31 p32 p33

 . (4)

The distribution over the states can be written as a stocastic row vector x: if the current state
of x is s2, x = (0 1 0). As a consequence, the relation between x(1) and x(0) is x(1) = x(0)P
and, recursively, x(2) = x(0)P 2, x(n) = x(0)Pn, n > 0.
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Discrete Markov chains are explained in most stochastic processes theory books, see for ex-
ample Ching and Ng (2006). Valuable references freely available online are: ?, Snell (1999),
Wikipedia (2013) and Bard (2000).

2.2. Properties and classification of states

A state sj is said ”reacheable” from state si (written si → sj) if a system started in state si
has a positive probability of transitioning into state sj at a certain point. If both si → sj and
sj → si the states si and sj are said to communicate.

A communicating class is a set of states that communicate with each other. A Markov chain
is composed by one or more communicating classes. A communicating class is said to be
”closed” if no states outside of the class can be reached from any state inside it. If the
Markov chain is composed by only one communicating class (if all states in the chain com-
municate to each other), it is said ”irreducible”.

A state is said ”periodic” if it can only return to itself after a fixed number of transitions
greater than 1 (or multiple of a fixed number), else it is called ”aperiodic”. A state si is said
to be ”transient” if, given that we start in state si, there is a positive probability that we
will never return to si; instead, when pii = 1, si is defined an ”absorbing state”, i.e. a closed
communicating class composed by only one state. The Markov chain is absorbing if there is
at least one recurrent state; otherwise, the chain is said to be ergodic (or irreducible) and it
is possible to get to any state from any state.
A Markov chain is said in ”canonic form” if the transition matrix is shown in a block form
being the closed comminicating classes shown at the beginning of the matrix diagonal.

A state si has a period k if any return to state si must occur in multiplies of k steps, that is
k = gcd {n : Pr (Xn = si |X0 = si ) > 0} ,where ’gcd’ is the greatest common divisor. If k = 1
the state is said to be aperiodic, if k > 1 the state is periodic with period k.

Given a time homogeneous Markov chain with transition matrix P, a stationary vector v is a
vector satisfying 0 ≤ vj ≤ 1 ∀j,

∑
j∈S vj = 1 and vj =

∑
i∈S vipij .

A Markov chain is said to be regular if some power of the transition matrix has positive
elements only. Regular Markov chains form a subset of ergodic chains.

An interesting property of regular Markov chains is that, if P is the k × k transition matrix
and z = (z1, ..., zk) is the eigenvector of P having

∑k
i=1 zi = 1 then Equation 5 holds.

lim
n→∞

Pn = Z, (5)

where Z is the matrix having all rows equal to z.

It is possible to analyze timing of a state being reached. The first passage time from state i
to state j is the number Tij of steps taken by the chain until it arrives for the first time at
state j given that X0 = i. Its probability distribution is defined by Equation 7

hij
(n) = P (Tij = n) = P (Xn = j,Xn−1 6= j, . . . , X1 6= j|X0 = i) (6)
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and it can be found recursively using Equation ??, knowing that hij
(n) = pij .

hij
(n) =

∑
k∈S−{j}

pikhkj
(n−1) (7)

2.3. A short example

Consider the following numerical example. Suppose we have a Markov chain with a set of 3
possible states s1, s2 and s3. Let the transition matrix be defined in Equation 8

P =

 0.5 0.2 0.3
0.15 0.45 0.4
0.25 0.35 0.4

 . (8)

In P , p11 = 0.5 is the probability that X1 = s1 given that we observed X0 = s1 is 0.5, and so
on. If the current state is X0 = s2, then Equation 9 and Equation 10 hold.

x(1) = (0 1 0)

 0.5 0.2 0.3
0.15 0.45 0.4
0.25 0.35 0.4

 = (0.15 0.45 0.4) , (9)

x(2) = x(n+1)P = (0.15 0.45 0.4)

 0.5 0.2 0.3
0.15 0.45 0.4
0.25 0.35 0.4

 = (0.2425 0.3725 0.385) (10)

and so on. The last result means that Pr (X2 = s1 |X0 = s2 ) = 0.2425, Pr (X2 = s2 |X0 = s2 ) =
0.3725 and Pr (X2 = s3 |X0 = s2 ) = 0.385.

3. The structure of the package

3.1. Creating markovchain objects

The package markovchain contains classes and methods that handle markov chain in a con-
venient manner.

The package is loaded within the R command line as follows:

R> #library(markovchain)

The markovchain and markovchainList S4 classes (Chambers 2008) is defined within the
markovchain package as displayed:

Class "markovchain" [in ".GlobalEnv"]

Slots:
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Name: states byrow transitionMatrix

Class: character logical matrix

Name: name

Class: character

Class "markovchainList" [in ".GlobalEnv"]

Slots:

Name: markovchains name

Class: list character

The first class has been designed to handle homogeneous Markov chain processes, whilst
the latter (that is itself a list of markovchain objects) has been designed to handle non-
homogeneous Markov chains processes.

Any element of markovchain class is comprised by following slots:

1. states: a character vector, listing the states for which transition probabilities are
defined.

2. byrow: a logical element, indicating whether transition probabilities are shown by row
or by column.

3. transitionMatrix: the probabilities of transition matrix.

4. name: optional character element to name the Markov chain.

markovchainList objects are defined by following slots:

1. markovchains: a list of markovchain objects.

2. name: optional optional character element to name the Markov chain.

markovchain objects can be created either in a long way, as the following code shows,

R> weatherStates<-c("sunny", "cloudy", "rain")

R> byRow<-TRUE

R> weatherMatrix<-matrix(data=c(0.70, 0.2,0.1,

+ 0.3,0.4, 0.3,

+ 0.2,0.45,0.35),byrow=byRow, nrow=3,

+ dimnames=list(weatherStates, weatherStates))

R> mcWeather<-new("markovchain",states=weatherStates, byrow=byRow,

+ transitionMatrix=weatherMatrix, name="Weather")

or in a shorter way, displayed below.
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R> mcWeather<-new("markovchain", states=c("sunny", "cloudy", "rain"),

+ transitionMatrix=matrix(data=c(0.70, 0.2,0.1,

+ 0.3,0.4, 0.3,

+ 0.2,0.45,0.35),byrow=byRow, nrow=3),

+ name="Weather")

When new("markovchain") is called alone a defaut Markov chain is created.

R> defaultMc<-new("markovchain")

The quicker form of object creation is made possible thanks to the implemented initialize

S4 method that assures:

� the transitionMatrix to be a transition matrix, i.e., all entries to be probabilities and
either all rows or all columns to sum up to one, according to the value of byrow slot.

� the columns and rows nams of transitionMatrix to be defined and to coincide with
states vector slot.

markovchain objects can be collected in a list within markovchainList S4 objects as following
example shows.

R> mcList<-new("markovchainList",markovchains=list(mcWeather, defaultMc),

+ name="A list of Markov chains")

3.2. Handling markovchain objects

markovchain contains two classes, markovchain and markovchainList. markovchain ob-
jects handle discrete Markov chains, whilst markovchainList objects consists in list of
markovchain that can be useful to model non - homogeneous Markov chain processess.

Table 1 lists which of implemented methods handle and manipulate markovchain objects.

Operations on the markovchains objects can be easily performed. Using the previously defined
matrix we can find what is the probability distribution of expected weather states two and
seven days after, given actual state to be cloudy.

R> initialState<-c(0,1,0)

R> after2Days<-initialState*(mcWeather*mcWeather)

R> after7Days<-initialState*(mcWeather^7)

R> after2Days

sunny cloudy rain

[1,] 0.39 0.355 0.255

R> after7Days
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Method Purpose

* Direct multiplication for transition matrices.
[ Direct access to the elements of the transition matrix.
== Equality operator between two transition matrices.
as Operator to convert from markovchain objects toward data.frame and table object.
dim Dimenion of the transition matrix.
plot plot method for markovchain objects.
print print method for markovchain objects.
show show method for markovchain objects.
states name of the transition states.
t Transposition operator (it switches byrow slot value and modifies the transition matrix coherently).

Table 1: markovchain methods: matrix handling.

sunny cloudy rain

[1,] 0.4622776 0.3188612 0.2188612

A similar answer could have been obtained if the probabilities were defined by column. A col-
umn - defined probability matrix could be set up either creating a new matrix or transposing
an existing markovchain object thanks to the t vector.

R> initialState<-c(0,1,0)

R> mcWeatherTransposed<-t(mcWeather)

R> after2Days<-(mcWeatherTransposed*mcWeatherTransposed)*initialState

R> after7Days<-(mcWeather^7)*initialState

R> after2Days

[,1]

sunny 0.390

cloudy 0.355

rain 0.255

R> after7Days

[,1]

sunny 0.3172005

cloudy 0.3188612

rain 0.3192764

Basing informational methods have been defined for markovchain objects to quickly get states
and dimension.

R> states(mcWeather)

[1] "sunny" "cloudy" "rain"
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R> dim(mcWeather)

[1] 3

A direct access to transition probabilities is provided both by transitionProbability method
and ”[” method.

R> transitionProbability(mcWeather, "cloudy","rain")

[1] 0.3

R> mcWeather[2,3]

[1] 0.3

The markovchain object’s underlying transition Matrix can be displayed using print, show
methods (the latter being less laconic). Similarly, the underlying transition probability di-
agram can be plot by the use of plot method ( as shown in Figure 1 ) that was based on
igraph package (Csardi and Nepusz 2006) used to manage and analyze networks data. The
igraph package (Csardi and Nepusz 2006) is used for plotting, being plot method a wrap-
per of plot.igraph for igraph S4 objects defined within the igraph package. Additional
parameters can be passed by means of ... to control the network graph layout as shown.

R> print(mcWeather)

sunny cloudy rain

sunny 0.7 0.20 0.10

cloudy 0.3 0.40 0.30

rain 0.2 0.45 0.35

R> show(mcWeather)

Weather

A 3 - dimensional discrete Markov Chain with following states

sunny cloudy rain

The transition matrix (by rows) is defined as follows

sunny cloudy rain

sunny 0.7 0.20 0.10

cloudy 0.3 0.40 0.30

rain 0.2 0.45 0.35

Exporting to data.frame is possible and similarly it is possible to import from.

R> mcDf<-as(mcWeather, "data.frame")

R> mcNew<-as(mcDf, "markovchain")
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Figure 1: Weather example Markov chain plot
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Similarly it is possible to create a markovchain object from a suitable two-way contingency
table using as(table, "markovchain") code (see Section 6 for few examples).

Non-homogeneous markov chains can be created with the aid of markovchainList object.
The example that follows arises from Health Insurance, where the costs associated to pa-
tients in a Continuous Care Health Community (CCHC) are modelled by a non-homogeneous
Markov Chain, since the transition probabilities change by year. Methods explicitely written
for markovchainList objects are: print, show, dim and [.

Continuous Care Health Community list of Markov chain(s)

Markovchain 1

state t0

A 3 - dimensional discrete Markov Chain with following states

H I D

The transition matrix (by rows) is defined as follows

H I D

H 0.7 0.2 0.1

I 0.1 0.6 0.3

D 0.0 0.0 1.0

Markovchain 2

state t1

A 3 - dimensional discrete Markov Chain with following states

H I D

The transition matrix (by rows) is defined as follows

H I D

H 0.5 0.3 0.2

I 0.0 0.4 0.6

D 0.0 0.0 1.0

Markovchain 3

state t2

A 3 - dimensional discrete Markov Chain with following states

H I D

The transition matrix (by rows) is defined as follows

H I D

H 0.3 0.2 0.5

I 0.0 0.2 0.8

D 0.0 0.0 1.0

Markovchain 4

state t3

A 3 - dimensional discrete Markov Chain with following states

H I D

The transition matrix (by rows) is defined as follows

H I D

H 0 0 1
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I 0 0 1

D 0 0 1

It is possible to perform direct access to markovchainList elements as well as determining
the number of markovchain objects a markovchainList object is composed by.

R> mcCCRC[[1]]

state t0

A 3 - dimensional discrete Markov Chain with following states

H I D

The transition matrix (by rows) is defined as follows

H I D

H 0.7 0.2 0.1

I 0.1 0.6 0.3

D 0.0 0.0 1.0

R> dim(mcCCRC)

[1] 4

markovchain package contains some data found in literature on which discrete Markov chain
models have been applied (as briefly exemplified in Section 6) Table 2 lists data set and tables
bundled within the current release of the package.

Dataset Description

preproglucacon Preproglucacon gene DNA basis, Peter J. Avery and Daniel A. Henderson (1999).
rain Alofi Island rains, Peter J. Avery and Daniel A. Henderson (1999).
craigsendi CD4 cells count table at zero and six month, Bruce A. Craig and Arthur A. Sendi (2002).
blanden mobility across quartiles of income in UK for 1970 cohort, Jo Blanden and Machin (2005).

Table 2: markovchain data.frame and table.

Finally, Table 3 lists the demos bundled in the package’s demo directory and their description.

Dataset Description

examples.R Notable Markov chains, e.g. The Gambler Ruin chain.
quickStart.R Generic examples.
bard.R Structural analysis of Markov chains from Bard PPT.

Table 3: markovchain demos

4. Probability with markovchain objects

4.1. Structural proprieties of a Markov chain

markovchain contains functions to analyze discrete Markov chains from a probabilistic per-
spective. For example, methods are provided for finding stationary distributions, absorbing
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and transient states. In addition Matlab listings (Feres 2007) have been translated that pro-
vide methods to find communicating classes and transient states.

Table 4 shows methods appliable on markovchain objects to perform probabilistic analysis.

Method Purpose

conditionalDistribution it returns the conditional distribution of the subsequent state sj , given actual state si.
absorbingStates it returns the absorbing states of the transition matrix, if any.
steadyStates it returns the vector(s) of steady state(s) in matricial form.
transientStates it returns the transient states of the transition matrix, if any.
summary it summarizes the statistical probabilities of a Markov chain.

Table 4: markovchain methods: statistical operations.

The conditional distribution of the weather states, given current day’s weather is sunny, is
given by following code.

R> conditionalDistribution(mcWeather, "sunny")

sunny cloudy rain

0.7 0.2 0.1

The steady state(s), also known as stationary distribution(s), of the Markov chains are iden-
tified by the such described algorithm:

1. decompose the transition matrix in eigenvalues and eigenvectors.

2. consider only eigenvectors corresponding to eigenvalues equal to one.

3. normalize such eigenvalues so the sum of their components to total one.

The result is returned in matricial form.

R> steadyStates(mcWeather)

sunny cloudy rain

[1,] 0.4636364 0.3181818 0.2181818

It is possible a Markov chain to have more than one stationary distribuition, as the gambler
ruin example shows.

R> gamblerRuinMarkovChain<-function(moneyMax, prob=0.5) {

+ require(matlab)

+ matr<-zeros(moneyMax+1)

+ states<-as.character(seq(from=0, to=moneyMax, by=1))

+ rownames(matr)=states; colnames(matr)=states

+ matr[1,1]=1;matr[moneyMax+1,moneyMax+1]=1

+ for(i in 2:moneyMax)

+ {



Ve
ry
dr
af
t

Giorgio Alfredo Spedicato, Mirko Signorelli 13

+ matr[i,i-1]=1-prob;matr[i,i+1]=prob

+ }

+ out<-new("markovchain",

+ transitionMatrix=matr,

+ name=paste("Gambler ruin",moneyMax,"dim",sep=" ")

+ )

+ return(out)

+ }

R> mcGR4<-gamblerRuinMarkovChain(moneyMax=4, prob=0.5)

R> steadyStates(mcGR4)

0 1 2 3 4

[1,] 1 0 0 0 0

[2,] 0 0 0 0 1

Any absorbing state is determined by the inspection of results returned by steadyStates

method.

R> absorbingStates(mcGR4)

[1] "0" "4"

R> absorbingStates(mcWeather)

character(0)

Code to perform many probabilistic analyses has been developed translating Matlab listings
found in Feres (2007) and ? on which the interested reader is remaineded for full descritption
of theory and algoritms.

The key function used within Feres (2007) (and markovchains derived functions) is .commclassKernel,
listed below.

.commclassKernel function gets a transition matrix of dimension n and return a list of two
items:

1. C an adjacency matrix showing for each state j (in the row) which states lie in the same
communicating class of j (flagged with 1).

2. v a vector indicating whether the state j is transient (0) or not (1).

These functions are used by two other internal functions on which the summary method for
markovchain objects works.

The example matrix used in the Feres (2007) paper well exemplifies the function purpose.
The adjacency matrix shows which class each
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R> P<-matlab::zeros(10)

R> P[1,c(1, 3)]=1/2;

R> P[2,2]=1/3; P[2,7]=2/3;

R> P[3,1]=1;

R> P[4,5]=1;

R> P[5,c(4, 5, 9)]=1/3;

R> P[6,6]=1;

R> P[7,7]=1/4; P[7,9]=3/4;

R> P[8,c(3, 4, 8, 10)]=1/4;

R> P[9,2]=1;

R> P[10,c(2, 5, 10)]=1/3;

R> rownames(P) <- letters[1:10]

R> colnames(P) <- letters[1:10]

R> probMc<-new("markovchain", transitionMatrix=P, name="Probability MC")

R> .commclassesKernel(P)

$C

a b c d e f g h i j

a TRUE FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

b FALSE TRUE FALSE FALSE FALSE FALSE TRUE FALSE TRUE FALSE

c TRUE FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

d FALSE FALSE FALSE TRUE TRUE FALSE FALSE FALSE FALSE FALSE

e FALSE FALSE FALSE TRUE TRUE FALSE FALSE FALSE FALSE FALSE

f FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE

g FALSE TRUE FALSE FALSE FALSE FALSE TRUE FALSE TRUE FALSE

h FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE

i FALSE TRUE FALSE FALSE FALSE FALSE TRUE FALSE TRUE FALSE

j FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE

$v

a b c d e f g h i j

TRUE TRUE TRUE FALSE FALSE TRUE TRUE FALSE TRUE FALSE

R> summary(probMc)

Probability MC Markov chain that is comprised by:

Closed classes:

a c

b g i

f

Transient classes:

d e

h

j

The Markov chain is not irreducible

The absorbing states are: f
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All states that pertain to a transient class are defined transient and a specific method has
been written to elicit them.

R> transientStates(probMc)

[1] "d" "e" "h" "j"

Listings from Feres (2007) have been adapted into canonicForm method that turns a Markov
chain into canonic form.

R> probMcCanonic<-canonicForm(probMc)

R> probMc

Probability MC

A 10 - dimensional discrete Markov Chain with following states

a b c d e f g h i j

The transition matrix (by rows) is defined as follows

a b c d e f g h i

a 0.5 0.0000000 0.50 0.0000000 0.0000000 0 0.0000000 0.00 0.0000000

b 0.0 0.3333333 0.00 0.0000000 0.0000000 0 0.6666667 0.00 0.0000000

c 1.0 0.0000000 0.00 0.0000000 0.0000000 0 0.0000000 0.00 0.0000000

d 0.0 0.0000000 0.00 0.0000000 1.0000000 0 0.0000000 0.00 0.0000000

e 0.0 0.0000000 0.00 0.3333333 0.3333333 0 0.0000000 0.00 0.3333333

f 0.0 0.0000000 0.00 0.0000000 0.0000000 1 0.0000000 0.00 0.0000000

g 0.0 0.0000000 0.00 0.0000000 0.0000000 0 0.2500000 0.00 0.7500000

h 0.0 0.0000000 0.25 0.2500000 0.0000000 0 0.0000000 0.25 0.0000000

i 0.0 1.0000000 0.00 0.0000000 0.0000000 0 0.0000000 0.00 0.0000000

j 0.0 0.3333333 0.00 0.0000000 0.3333333 0 0.0000000 0.00 0.0000000

j

a 0.0000000

b 0.0000000

c 0.0000000

d 0.0000000

e 0.0000000

f 0.0000000

g 0.0000000

h 0.2500000

i 0.0000000

j 0.3333333

R> probMcCanonic

Probability MC

A 10 - dimensional discrete Markov Chain with following states

a c b g i f d e h j

The transition matrix (by rows) is defined as follows
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a c b g i f d e h

a 0.5 0.50 0.0000000 0.0000000 0.0000000 0 0.0000000 0.0000000 0.00

c 1.0 0.00 0.0000000 0.0000000 0.0000000 0 0.0000000 0.0000000 0.00

b 0.0 0.00 0.3333333 0.6666667 0.0000000 0 0.0000000 0.0000000 0.00

g 0.0 0.00 0.0000000 0.2500000 0.7500000 0 0.0000000 0.0000000 0.00

i 0.0 0.00 1.0000000 0.0000000 0.0000000 0 0.0000000 0.0000000 0.00

f 0.0 0.00 0.0000000 0.0000000 0.0000000 1 0.0000000 0.0000000 0.00

d 0.0 0.00 0.0000000 0.0000000 0.0000000 0 0.0000000 1.0000000 0.00

e 0.0 0.00 0.0000000 0.0000000 0.3333333 0 0.3333333 0.3333333 0.00

h 0.0 0.25 0.0000000 0.0000000 0.0000000 0 0.2500000 0.0000000 0.25

j 0.0 0.00 0.3333333 0.0000000 0.0000000 0 0.0000000 0.3333333 0.00

j

a 0.0000000

c 0.0000000

b 0.0000000

g 0.0000000

i 0.0000000

f 0.0000000

d 0.0000000

e 0.0000000

h 0.2500000

j 0.3333333

The function is.accessible permits to investigate whether a state j is accessible from state
i, that is whether the probability to eventually reach j starting from i is greater than zero.

R> is.accessible(object=probMc, from="a",to="c")

[1] TRUE

R> is.accessible(object=probMc, from="g",to="c")

[1] FALSE

The example Markov chain found in mathematica web site Wolfram Research has been used,
that Figure 2 plots.

R> require(matlab)

R> mathematicaMatr<-zeros(5)

R> mathematicaMatr[1,]<-c(0, 1/3, 0, 2/3, 0)

R> mathematicaMatr[2,]<-c(1/2, 0, 0, 0, 1/2)

R> mathematicaMatr[3,]<-c(0, 0, 1/2, 1/2, 0)

R> mathematicaMatr[4,]<-c(0, 0, 1/2, 1/2, 0)

R> mathematicaMatr[5,]<-c(0, 0, 0, 0, 1)

R> statesNames<-letters[1:5]

R> mathematicaMc<-new("markovchain",transitionMatrix=mathematicaMatr,name="Mathematica MC",states=statesNames)
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Figure 2: Mathematica 9 Markov chain illustrative example
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Mathematica MC Markov chain that is comprised by:

Closed classes:

c d

e

Transient classes:

a b

The Markov chain is not irreducible

The absorbing states are: e

4.2. First passage time

Feres (2007) provides code to compute first passage time (within 1, 2, . . . , n steps) given the
initial state to be i. The Matlab listings as ported in R on which the firstPassage function
is based are

R> .firstpassageKernel<-function(P,i,n){

+ G<-P

+ H<-P[i,]

+ E<-1-diag(size(P)[2])

+ for (m in 2:n) {

+ G<-P%*%(G*E)

+ H<-rbind(H,G[i,])

+ }

+ return(H)

+ }

It is therefore easy to compute the probability that the first rainy day to be the third, given
that the current state is sunny.

R> firstPassagePdF<-firstPassage(object=mcWeather,state="sunny",n=10)

R> firstPassagePdF[3,3]

[1] 0.121

5. Statistical analysis

Table 5 lists functions and methods as implemented within the package that helps to fit,
simulate and predict Markov chains in the discrete time.

5.1. Simulation

Simulating a random sequence from an underlying Markov chain is quite easy thanks to the
function rmarkovchain. The following code generates a ”year” of weather states according
to ? underlying markovian stochastic process.
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Function Purpose

markovchainFit function to return fitten markov chain for a given sequence.
rmarkovchain function to sample from markovchain or markovchainList objects.
predict method to calculate predictions from markovchain or markovchainList objects

Table 5: markovchain statistical functions.

R> weathersOfDays<-rmarkovchain(n=365,object=mcWeather,t0="sunny")

R> weathersOfDays[1:30]

[1] "sunny" "sunny" "sunny" "rain" "sunny" "sunny" "sunny"

[8] "rain" "rain" "rain" "rain" "rain" "cloudy" "cloudy"

[15] "sunny" "rain" "rain" "rain" "cloudy" "rain" "rain"

[22] "cloudy" "cloudy" "cloudy" "cloudy" "rain" "cloudy" "cloudy"

[29] "cloudy" "cloudy"

Similarly, it is possible to simulate one o more sequence from a non-homogeneous Markov
chain, as the following code (applied on CCHC example) exemplifies.

R> patientStates<-rmarkovchain(n=5, object=mcCCRC,t0="H",include.t0=TRUE)

R> patientStates[1:10,]

iteration values

1 1 H

2 1 I

3 1 D

4 1 D

5 1 D

6 2 H

7 2 D

8 2 D

9 2 D

10 2 D

5.2. Estimation

A time homogeneous Markov chain can be fit can be fit from given data. Three methods
have been implemented within current version of markovchain package: maximum likelihood,
maximum likelihood with Laplace smoothing, Bootstrap approach.

Equation 11 shows the maximum likelihood estimate (MLE) of the pij entry, where the nij
element consists in the number sequences (Xt = i,Xt+1 = j) found in the sample

p̂MLE
ij =

nij
k∑

u=1
niu

(11)
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R> weatherFittedMLE<-markovchainFit(data=weathersOfDays, method="mle",name="Weather MLE")

R> weatherFittedMLE$estimate

Weather MLE

A 3 - dimensional discrete Markov Chain with following states

cloudy rain sunny

The transition matrix (by rows) is defined as follows

cloudy rain sunny

cloudy 0.4736842 0.3007519 0.2255639

rain 0.4791667 0.3645833 0.1562500

sunny 0.1777778 0.1555556 0.6666667

The Laplace smoothing approach is a variation of the MLE one where the nij is substituted by
nij +α as Equation 12 shows, being α a positive stabilizing parameter judgmentally selected.

p̂LSij =
nij + α

k∑
u=1

(niu + α)

(12)

R> weatherFittedLAPLACE<-markovchainFit(data=weathersOfDays, method="laplace",laplacian=0.01,name="Weather LAPLACE")

R> weatherFittedLAPLACE$estimate

Weather LAPLACE

A 3 - dimensional discrete Markov Chain with following states

cloudy rain sunny

The transition matrix (by rows) is defined as follows

cloudy rain sunny

cloudy 0.4736526 0.3007592 0.2255882

rain 0.4791211 0.3645736 0.1563053

sunny 0.1778123 0.1555951 0.6665926

Both MLE and Laplace approach are based on the createSequenceMatrix functions that
converts a data (character) sequence into a contingency table showing the (Xt = i,Xt+1 = j)
distribution within the sample, as code below shows.

R> createSequenceMatrix(stringchar = weathersOfDays)

cloudy rain sunny

cloudy 63 40 30

rain 46 35 15

sunny 24 21 90

An issue occurs when the sample cointain only one realization of a state (say Xβ) that is
located at the end of the data sequence (thanks Michael Cole for having noticed it), since it
yields to a row of zero (no sample to estimate the conditional distribution of the transition).
In this case the estimated transition matrix is ”sanitized” assuming pβ,j = 1/k being k the
possible states.
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A bootstrap estimation approach has been developed within the package in order to provide
an indication of the variability of p̂ij estimates. The bootstrap approach implemented within
the markovchain package follows these steps:

1. bootstrap the data sequences following the conditional distributions of states estimated
from the original one. The default bootstrap samples is 10, as specified in nboot pa-
rameter of markovchainFit function.

2. apply MLE estimation on bootstrapped data sequences that are saved in bootStrapSamples

slot of the returned list.

3. the pBOOTSTRAP ij is the average of all pMLE
ij across the bootStrapSamples list, row

normalized. A standardError of ˆpMLE
ij estimate is provided as well.

R> weatherFittedBOOT<-markovchainFit(data=weathersOfDays, method="bootstrap",nboot=100)

R> weatherFittedBOOT$estimate

BootStrap Estimate

A 3 - dimensional discrete Markov Chain with following states

1 2 3

The transition matrix (by rows) is defined as follows

1 2 3

1 0.4743254 0.2987720 0.2269026

2 0.4897790 0.3650753 0.1451457

3 0.1780357 0.1566469 0.6653174

R> weatherFittedBOOT$standardError

[,1] [,2] [,3]

[1,] 0.04138949 0.04098283 0.03968799

[2,] 0.05036841 0.04419844 0.03778620

[3,] 0.03629605 0.03132365 0.04545000

5.3. Prediction

n-step predictions can be obtained using the predict methods explicitely written for markovchain
and markovchainList objects. The prediction is the mode of the conditional distribution of
Xt+1 given Xt = s, where s is the last realization of the Markov chains (homogeneous or
non-homogeneous).

Predicting from a markovchain object

3-days forward predictions from markovchain object can be generated as it follows, assuming
last two days were respectively ”cloudy” and ”sunny”.

R> predict(object=weatherFittedMLE$estimate,newdata=c("cloudy","sunny"),n.ahead=3)
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[1] "sunny" "sunny" "sunny"

Predicting from a markovchainList object

Given an initial two year (H)ealty status, the 5-year ahead prediction of any CCRC guest is

R> predict(mcCCRC,newdata=c("H","H"),n.ahead=5)

[1] "H" "D" "D"

The prediction has been stopped at time sequence since the underlying non-homogeneous
Markov chain has a length of four. In order to continue five years ahead, a small change to
the code has to be set.

R> predict(mcCCRC,newdata=c("H","H"),n.ahead=5, continue=TRUE)

[1] "H" "D" "D" "D" "D"

6. Applications

6.1. Actuarial examples

Markov chains are widely applied in the fields of actuarial science. Two classical applications
are: bonus-malus class distribution in a Motor Third Party Liability (MTPL) portfolio (see
Section ??) and Health Insurance pricing and reserving (see Section 6.1.2)

MPTL Bonus Malus

Bonus Malus (BM) contracts grant the policyholder a discount (enworsen) as a function of the
number of claims in the experience period. The discount (enworsen) is applied on a premium
that already allows for known (a priori) policyholder characteristics (?). It tipically depends
by vehicle, territory, the demographic profile of the policyholder, and policy coverages dept
(deductible and policy limits).
Since the proposed BM level depends by the claim on the previous period, it can be modelled
by a discrete Markov chain. A very simplified example follows. Assumed a BM scale from 1
to 5, being 4 the starting level. The evolution rules are shown by Equation 13.

bmt+1 = max (1, bmt − 1) ∗
(
Ñ = 0

)
+ min

(
5, bmt + 2 ∗ Ñ

)
∗
(
Ñ ≥ 1

)
(13)

Clearly Ñ , the number of claim, is a random - variable that is assumed to be Poisson dis-
tributed.

R> getBonusMalusMarkovChain<-function(lambda)

+ {
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+ bmMatr<-zeros(5)

+ bmMatr[1,1]<-dpois(x=0,lambda)

+ bmMatr[1,3]<-dpois(x=1,lambda)

+ bmMatr[1,5]<-1-ppois(q=1,lambda)

+

+ bmMatr[2,1]<-dpois(x=0,lambda)

+ bmMatr[2,4]<-dpois(x=1,lambda)

+ bmMatr[2,5]<-1-ppois(q=1,lambda)

+

+ bmMatr[3,2]<-dpois(x=0,lambda)

+ bmMatr[3,5]<-1-dpois(x=0,lambda)

+

+ bmMatr[4,3]<-dpois(x=0,lambda)

+ bmMatr[4,5]<-1-dpois(x=0,lambda)

+ bmMatr[5,4]<-dpois(x=0,lambda)

+ bmMatr[5,5]<-1-dpois(x=0,lambda)

+ stateNames<-as.character(1:5)

+ out<-new("markovchain",transitionMatrix=bmMatr, states=stateNames, name="BM Matrix")

+ return(out)

+ }

R>

Assuming that the a-priori claim frequency per car-year to be 0.05 in the class (being the
class the group of policyholders that share the same common characteristics) the underlying
BM transition matrix and its underlying steady state

R> bmMc<-getBonusMalusMarkovChain(0.05)

R> as.numeric(steadyStates(bmMc))

[1] 0.895836079 0.045930498 0.048285405 0.005969247 0.003978772

If the underlying BM coefficient of the class are 0.5, 0.7, 0.9,1.0,1.25 this means the average
BM coefficient applied on the long run to the class to be.

R> sum(as.numeric(steadyStates(bmMc))*c(0.5,0.7,0.9,1,1.25))

[1] 0.534469

This means that the average premium almost halves in the long run.

Health insurance example

Actuaries quantify the risk inherent in insurance contracts evaluating the premium of insur-
ance contract to be sold (therefore covering future risk) and evaluating the actuarial reseves of
existing portfolios (the liabilities in terms of benefits or claims payments due to policyholder
arising from previously sold contracts).
Key quantities of actuarial interest are: the expected present value of future benefits, PV FB,



Ve
ry
dr
af
t

24 The markovchain package

the (periodic) benefit premium, P , and the present value of future premium PV FP . A level
benefit premium could be set equating at the beginning of the contract PV FB = PV FP .
After the beginning of the contract the benefit reserve is the differenbe between PV FB and
PV FP . The first example shows the pricing and reserving of a (simple) health insurance
contract. The second example analyze the evolution of a MTPL portfolio characterized by
Bonus Malus experience rating feature. The example comes from Deshmukh (2012). The
interest rate is 5%, benefits are payable upon death (1000) and disability (500). Premiums
are payable at the beginning of period only if policyholder is active. The contract term is
three years

R> mcHI=new("markovchain", states=c("active", "disable", "withdrawn", "death"),

+ transitionMatrix=matrix(c(0.5,.25,.15,.1,

+ 0.4,0.4,0.0,.2,

+ 0,0,1,0,

+ 0,0,0,1), byrow=TRUE, nrow=4))

R> benefitVector=as.matrix(c(0,0,500,1000))

R>

The policyholders is active at T0. Therefore the expected states at T1, . . . T3 are calculated as
shown.

R> T0=t(as.matrix(c(1,0,0,0)))

R> T1=T0*mcHI

R> T2=T1*mcHI

R> T3=T2*mcHI

Therefore the present value of future benefit at T0 is

R> PVFB=T0%*%benefitVector*1.05^-0+T1%*%benefitVector*1.05^-1+

+ T2%*%benefitVector*1.05^-2+T3%*%benefitVector*1.05^-3

and the yearly premium payable whether the insured is alive is

R> P=PVFB/(T0[1]*1.05^-0+T1[1]*1.05^-1+T2[1]*1.05^-2)

The reserve at the beginning of year two, in case of the insured being alive, is

R> PVFB=(T2%*%benefitVector*1.05^-1+T3%*%benefitVector*1.05^-2)

R> PVFP=P*(T1[1]*1.05^-0+T2[1]*1.05^-1)

R> V=PVFB-PVFP

R> V

[,1]

[1,] 300.2528
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6.2. Weather forecasting

A traditional application of Markov chains lies in weather forecasting. Markov chains provide
a simple model to predict the nexth day’s weather given the current meteorological condition.
Two example will be shown: the ”Land of Oz”
The first application herewith shown is the ”Land of Oz” in Section 6.2.1, taken from J. G.
Kemeny, J. L.Snell, and G. L. Thompson (1974) and ”Alofi Island Rainfall” in Section 6.2.2,
taken from Peter J. Avery and Daniel A. Henderson (1999).

Land of Oz

According to the example, the Land of Oz is acknowledged not to have ideal weather con-
ditions at all: the weather is snowy or rainy very often and, once more, there are never two
nice days in a row. Consider three weather states: rainy, nice and snowy. Let the transition
matrix be

R> mcWP=new("markovchain", states=c("rainy", "nice", "snowy"),

+ transitionMatrix=matrix(c(0.5, 0.25, 0.25,

+ 0.5, 0, 0.5,

+ 0.25,0.25,0.5), byrow=TRUE, nrow=3))

Given that today it’s a nice day, the corresponding stochastic row vector is w0 = (0 1 0) and
the forecast after 1, 2 and 3 days are

R> W0=t(as.matrix(c(0,1,0)))

R> W1=W0*mcWP

R> W1

rainy nice snowy

[1,] 0.5 0 0.5

R> W2=W0*(mcWP^2)

R> W2

rainy nice snowy

[1,] 0.375 0.25 0.375

R> W3=W0*(mcWP^3)

R> W3

rainy nice snowy

[1,] 0.40625 0.1875 0.40625

As can be seen from w1, in the Land of Oz if today is a nice day tomorrow it will rain or
snow. One week later, furtherly, the prediction is

R> W7<-W0*(mcWP^7)

R> W7
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rainy nice snowy

[1,] 0.4000244 0.1999512 0.4000244

The steady state of the chain can be computed as

R> q<-steadyStates(mcWP)

R> q

rainy nice snowy

[1,] 0.4 0.2 0.4

Note that from the seventh day on, the predicted probabilities are substantially equals to the
steady state of the chain and don’t depend from the starting point. In fact, if we start from
a rainy or a snowy day we equally get

R> R0<-t(as.matrix(c(1,0,0)))

R> R7<-W0*(mcWP^7)

R> R7

rainy nice snowy

[1,] 0.4000244 0.1999512 0.4000244

R> S0<-t(as.matrix(c(0,0,1)))

R> R7<-W0*(mcWP^7)

R> R7

rainy nice snowy

[1,] 0.4000244 0.1999512 0.4000244

Alofi Island Rainfall

The example is taken from Peter J. Avery and Daniel A. Henderson (1999). Alofi Island daily
rainfall data were recorded from January 1st, 1987 until December 31st, 1989 and classified
into three states: ”0”, no rain, ”1-5”, from non zero until 5 mm, ”6+” over than 5mm.
Corresponding dataset is provided within the markovchain package.

R> data(rain, package="markovchain")

R> table(rain$rain)

0 1-5 6+

548 295 253

The underlying transition matrix is estimated as it follows

R> mcAlofi<-markovchainFit(data=rain$rain, name="Alofi MC")$estimate

R> mcAlofi
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Alofi MC

A 3 - dimensional discrete Markov Chain with following states

0 1-5 6+

The transition matrix (by rows) is defined as follows

0 1-5 6+

0 0.6605839 0.2299270 0.1094891

1-5 0.4625850 0.3061224 0.2312925

6+ 0.1976285 0.3122530 0.4901186

from which the long term daily rainfall distribution can be obtained

R> steadyStates(mcAlofi)

0 1-5 6+

[1,] 0.5008871 0.2693656 0.2297473

6.3. Finance, Economics and Social Science

6.4. Finance

Credit ratings transitions have been successfully modelled with discrete time Markov chains.
Some rating agencies publish transition matrices that show the empirical transition probabil-
ities across credit ratings. The example that follows is taken from CreditMetrics R package
(?), carring a & Poors published data.

R> rc <- c("AAA", "AA", "A", "BBB", "BB", "B", "CCC", "D")

R> creditMatrix <- matrix(c(90.81, 8.33, 0.68, 0.06, 0.08, 0.02, 0.01, 0.01,

+ 0.70, 90.65, 7.79, 0.64, 0.06, 0.13, 0.02, 0.01,

+ 0.09, 2.27, 91.05, 5.52, 0.74, 0.26, 0.01, 0.06,

+ 0.02, 0.33, 5.95, 85.93, 5.30, 1.17, 1.12, 0.18,

+ 0.03, 0.14, 0.67, 7.73, 80.53, 8.84, 1.00, 1.06,

+ 0.01, 0.11, 0.24, 0.43, 6.48, 83.46, 4.07, 5.20,

+ 0.21, 0, 0.22, 1.30, 2.38, 11.24, 64.86, 19.79,

+ 0, 0, 0, 0, 0, 0, 0, 100

+ )/100, 8, 8, dimnames = list(rc, rc), byrow = TRUE)

It is therefore easy to convert such matrices in markovchain objects and to perform some
analyses

R> creditMc<-new("markovchain",transitionMatrix=creditMatrix, name="S&P Matrix")

R> absorbingStates(creditMc)

[1] "D"

Economics

A dynamic system generates two kinds of economic effects (Bard 2000):
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1. those incurred when the system is in a specified state, and

2. those incurred when the system makes a transition from one state to another.

Let the monetary amount of being in a particular state to be represented as a m-dimensional
column vector cs, whilst let the monetary amount of a transition to be embodied in a CR

matrix where each component specifies the monetary amount of going from state i to state j
in a single step. Henceforth Equation 14 represents the monetary of being in state i.

ci = cSi +

m∑
j=1

CR
ijpij (14)

Let C̄ = [ci] and let ei the vector valued 1 in the initial state and 0 in all other, then, if fn is
the random variable representing the economic return associated with the stochastic process
at time n is expressed by Equation 15.

E [fn (Xn) |X0 = i] = eiP
nc̄ (15)

The following example assumes a telephone company to model transition probabilities between
customer / non customer status by matrix P and the cost associated to states to be modelled
by matrix M

If the average revenue for existing customer is +100, the cost per state is:

For an existing customer, the expected gain (loss) at the fifth year is:

R> as.numeric((c(1,0)*mcP^5)%*%(as.vector(c(c1,c2))))

[1] 48.96009

Social Science

Markov chains have been actively used to model progression and regressions between social
classes. The first study is Glass and Hall (1954), whilst a more recent application can be
found in Jo Blanden and Machin (2005). The table that follows shows the income quartile of
the father when the son was 16 (in 1984) and the income quartile of the son when aged 30
(in 2000), for the 1970 cohort.

R> data(blanden)

R> mobilityMc<-as(blanden, "markovchain")

R> mobilityMc

Unnamed Markov chain

A 4 - dimensional discrete Markov Chain with following states

Bottom 2nd 3rd Top

The transition matrix (by rows) is defined as follows

2nd 3rd Bottom Top

Bottom 0.2900000 0.2200000 0.3800000 0.1100000
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1970 mobility
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Figure 3: 1970 UK cohort mobility data

2nd 0.2772277 0.2574257 0.2475248 0.2178218

3rd 0.2626263 0.2828283 0.2121212 0.2424242

Top 0.1700000 0.2500000 0.1600000 0.4200000

The underlying transition graph is plot in Figure 3.

The steady state distribution is computed as follows. Since transition across quartiles are
represented, the probability function is evenly 0.25.

R> round(steadyStates(mobilityMc),2)

Bottom 2nd 3rd Top

[1,] 0.25 0.25 0.25 0.25

6.5. Genetics and Medicine
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This section contains two examples: the first shows the use of Markov chain models in genet-
ics (Section 6.5.1), the second shows an application of Markov chains in modelling diseases
dynamics (Section 6.5.2)

Genetics

Peter J. Avery and Daniel A. Henderson (1999) discusses the use of Markov chains in model
Preprogucacon gene protein bases sequence. preproglucacon dataset in markovchain con-
tains the dataset shown in the package.

R> data(preproglucacon, package="markovchain")

Therefore it is possible to model the transition probabilities between bases

R> mcProtein<-markovchainFit(preproglucacon$preproglucacon, name="Preproglucacon MC")$estimate

Medicine

Discrete-time Markov chains are also employed to study the progression of chronic diseases.
The following example is taken from Bruce A. Craig and Arthur A. Sendi (2002), in which
the estimation of the monthly transition matrix is obtained in order to describe the monthly
progression of CD4-cell counts of HIV infected subjects starting from six month follow-up
data.
Code below shows the original data taken from the Bruce A. Craig and Arthur A. Sendi
(2002) paper, from which the computation of the maximum likelihood estimate of the six
month transition matrix M6 is performed:

R> craigSendiMatr<-matrix(c(682,33,25,

+ 154,64,47,

+ 19,19,43), byrow=T,nrow=3)

R> hivStates<-c("0-49", "50-74", "75-UP")

R> rownames(craigSendiMatr)<-hivStates

R> colnames(craigSendiMatr)<-hivStates

R> craigSendiTable<-as.table(craigSendiMatr)

R> mcM6<-as(craigSendiTable,"markovchain")

R> mcM6@name="Zero-Six month CD4 cells transition"

R> mcM6

Zero-Six month CD4 cells transition

A 3 - dimensional discrete Markov Chain with following states

0-49 50-74 75-UP

The transition matrix (by rows) is defined as follows

0-49 50-74 75-UP

0-49 0.9216216 0.04459459 0.03378378

50-74 0.5811321 0.24150943 0.17735849

75-UP 0.2345679 0.23456790 0.53086420
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As shown in the paper, the second passage consists in the decomposition of M6 = V ∗D∗V −1
and to obtain M1 as M1 = V ∗D1/6 ∗ V −1

R> autov=eigen(mcM6@transitionMatrix)

R> D=diag(autov$values)

R> P=autov$vectors

R> P%*%D%*%solve(P)

[,1] [,2] [,3]

[1,] 0.9216216 0.04459459 0.03378378

[2,] 0.5811321 0.24150943 0.17735849

[3,] 0.2345679 0.23456790 0.53086420

R> d=D^(1/6)

R> M=P%*%d%*%solve(P)

R> mcM1<-new("markovchain",transitionMatrix=M,states=hivStates)

7. Discussion, Issues and Future Plans

The markovchain has been designed in order to provide easily handling of DTMC and to be
enough flexible to communicate with other packages that implement models based on DTMC.

Future versions of the package are expected to improve the code by terms of numerical ac-
curacy and rapidity. More deep internal function profiling and integration of C++ code by
means of Rcpp package (?) will be explored.
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