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Abstract

This paper describes a method for estimating the marginal likelihood or Bayes fac-
tors of Bayesian models using non-parametric importance sampling (“arrogance sam-
pling”). This method can also be used to compute the normalizing constant of probabil-
ity distributions. Because the required inputs are samples from the distribution to be
normalized and the scaled density at those samples, this method may be a convenient
replacement for the harmonic mean estimator. The method has been implemented in
the open source R package margLikArrogance.

1 Introduction

When a Bayesian evaluates two competing models or theories, T1 and T2, having observed
a vector of observations x, Bayes’ Theorem determines the posterior ratio of the models’
probabilities:

p(T1|x)

p(T2|x)
=
p(x|T1)
p(x|T2)

p(T1)

p(T2)
. (1)

The quantity p(x|T1)
p(x|T2)

is called a Bayes factor and the quantities p(x|T1) and p(x|T2) are called
the theories’ marginal likelihoods.

The types of Bayesian models considered in this paper have a fixed finite number of
parameters, each with their own probability function. If θ are parameters for a model T ,
then

p(x|T ) =

∫
p(x|θ, T )p(θ|T ) dθ =

∫
p(x ∧ θ|T ) dθ (2)

Unfortunately, this integral is difficult to compute in practice. The purpose of this paper is
to describe one method for estimating it.

Evaluating integral (2) is sometimes called the problem of computing normalizing con-
stants. The following formula shows how p(x|T ) is a normalizing constant.

p(θ|x, T ) =
p(θ ∧ x|T )

p(x|T )
(3)

Thus the marginal likelihood p(x|T ) is also the normalizing constant of the posterior pa-
rameter distribution p(θ|x, T ) assuming we are given the density p(θ ∧ x|T ) which is often
easy to compute in Bayesian models. Furthermore, Bayesian statisticians typically produce
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2 REVIEW OF LITERATURE

samples from the posterior parameter distribution p(θ|x, T ) even when not concerned with
theory choice. In these case, computing the marginal likelihood is equivalent to computing
the normalizing constant of a distribution from which samples and the scaled density at these
samples are available. The method described in this paper takes this approach.

2 Review of Literature

Given how basic (1) is, it is perhaps surprising that there is no easy and definitive way of
applying it, even for simple models. Furthermore, as the dimensionality and complexity
of probability distributions increase, the difficulty of approximation also increases. The
following three techniques for computing bayes factors or marginal likelihoods are important
but will not be mentioned further here.

1. Analytic asymptotic approximations such as Laplace’s method, see for instance Kass
and Raftery (1995),

2. Bridge sampling/path sampling/thermodynamic integration (Gelman and Meng, 1998),
and

3. Chib’s MCMC approximation (Chib, 1995; Chib and Jeliazkov, 2005).

Kass and Raftery (1995) is a popular overview of the earlier literature on Bayes factor
computation. All these methods can be very successful in the right circumstances, and can
often handle problems too complex for the method described here. However, the method of
this paper may still be useful due to its convenience.

The rest of section 2 describes three approaches that are relevant to this paper.

2.1 Importance Sampling

Importance sampling is a technique for reducing the variance of monte carlo integration.
This section will note some general facts; see Owen and Zhou (1998) for more information.

Suppose we are trying to compute the (possibly multidimensional) integral I of a well-
behaved function f(θ). Then

I =

∫
f(θ) dθ =

∫
f(θ)

g(θ)
g(θ) d(θ)

so if g(θ) is a probability density function and θi are independent samples from it, then

I = Eg[f(θ)/g(θ)] ≈ 1

n

n∑
i=1

f(θi)

g(θi)
= In. (4)
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2.2 Nonparametric Importance Sampling 2 REVIEW OF LITERATURE

In is an unbiased approximation to I and by the central limit theorem will tend to a normal
distribution. It has variance

Var[In] =
1

n

∫ (
f(θ)

g(θ)
− I
)2

g(θ) dθ =
1

n

∫
(f(θ)− Ig(θ))2

g(θ)
dθ (5)

Sometimes f is called the target and g is called the proposal distribution.
Assuming that f is non-negative, then minimum variance (of 0!) is achieved when g =

f/I—in other words when g is just the normalized version of f . This cannot be done in
practice because normalizing f requires knowing the quantity I that we wanted to approxi-
mate; however (5) is still important because it means that the more similar the proposal is
to the target, the better our estimator In becomes. In particular, f must go to 0 faster than
g or the estimator will have infinite variance.

To summarize this section:

1. Importance sampling is a monte carlo integration technique which evaluates the target
using samples from a proposal distribution.

2. The estimator is unbiased, normally distributed, and its variance (if not 0 or infinity)
decreases as O(n−1) (using big-O notation).

3. The closer the proposal is to the target, the better the estimator. The proposal also
needs to have longer tails than the target.

2.2 Nonparametric Importance Sampling

A difficulty with importance sampling is that it is often difficult to choose a proposal dis-
tribution g. Not enough is known about f to choose an optimal distribution, and if a bad
distribution is chosen the result can have large or even infinite variance. One approach to
the selection of proposal g is to use non-parametric techniques to build g from samples of f .
I call this class of techniques self-importance sampling, or arrogance sampling for short,
because they attempt to sample f from itself without using any external information. (And
also isn’t it a bit arrogant to try to evaluate a complex, multidimensional integral using only
the values at a few points?) The method of this paper falls into this class and particularly
deserves the name because the target and proposal (when they are both non-zero) have
exactly the same values up to a multiplicative constant.

Two papers which apply nonparametric importance sampling to the problem of marginal
likelihood computation (or computation of normalizing constants) are Zhang (1996) and
Neddermeyer (2009). Although both authors apply their methods to more general situations,
here I will use the framework suggested by (3) and assume that we can compute p(θ∧x|T ) for
arbitrary θ and also that we can sample from the posterior parameter distribution p(θ|x, T ).
The goal is to estimate the normalizing constant, the marginal likelihood p(x|T ).
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2.3 Harmonic Mean Estimator 2 REVIEW OF LITERATURE

Zhang’s approach is to build the proposal g using traditional kernel density estimation.
m samples are first drawn from p(θ|x, T ) and used to construct g. Then n samples are drawn
from g and used to evaluate p(x|T ) as in traditional importance sampling. This approach
is quite intuitive because kernel estimation is a popular way of approximating an unknown

function. Zhang proves that the variance of his estimator decreases as O(m
−4
4+dn−1) where

d is the dimensionality of θ, compared to O(n−1) for standard (parametric) importance
sampling.

There were, however, a few issues with Zhang’s method:

1. A kernel density estimate is equal to 0 at points far from the points the kernel estimator
was built on. This is a problem because importance sampling requires the proposal
to have longer tails than the target. This fact forces Zhang to make the restrictive
assumption that p(θ|x, T ) has compact support.

2. It is hard to compute the optimal kernel bandwidth. Zhang recommends using a
plug-in estimator because the function p(θ ∧ x|T ) is available, which is unusual for
kernel estimation problems. Still, bandwidth selection appears to require significant
additional analysis.

3. Finally, although the variance may decrease as O(m
−4
4+dn−1) as m increases, the diffi-

culty of computing g(θ) also increases with m, because it requires searching through
the m basis points to find all the points close to θ. In multiple dimensions, this prob-

lem is not trivial and may outweigh the O(m
−4
4+d ) speedup (in the worst case, practical

evaluation of g(θ) at a single point may be O(m)). See Zlochin and Baram (2002) for
some discussion of these issues.

Neddermeyer (2009) uses a similar approach to Zhang and also achieves a variance of

O(m
−4
4+dn−1). It improves on Zhang’s approach in two ways relevant to this paper:

1. The support of p(θ|x, T ) is not required to be compact.

2. Instead of using kernel density estimators, linear blend frequency polynomials (LBFPs)
are used instead. LBFPs are basically histograms whose density is interpolated between
adjacent bins. As a result, the computation of g(θ) requires only finding which bin θ
is in, and looking up the histogram value at that and adjacent bins (2d bins in total).

As we will see in section 3, the arrogance sampling described in this paper is similar to
the methods of Zhang and Neddermeyer.

2.3 Harmonic Mean Estimator

The harmonic mean estimator is a simple and notorious method for calculating marginal
likelihoods. It is a kind of importance sampling, except the proposal g is actually the
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3 DESCRIPTION OF TECHNIQUE

distribution p(θ|x, T ) = p(θ ∧ x|T )/p(x|T ) to be normalized and the target f is the known
distribution p(θ|T ). Then if θi are samples from p(θ|x, T ), we apparently have

1 ≈ 1

n

n∑
i=1

p(θi|T )

p(θi|x, T )
=

1

n

n∑
i=1

p(θi|T )

p(x|θi, T )p(θi|T )/p(x|T )
=

1

n

n∑
i=1

1

p(x|θi, T )/p(x|T )

hence

p(x|T )
?
≈

(
1

n

n∑
i=1

1

p(x|θi, T )

)−1
(6)

Two advantages of the harmonic mean estimator are that it is simple to compute and
only depends on samples from p(θ|x, T ) and the likelihood p(x|θ, T ) at those samples. The
main drawback of the harmonic mean estimator is that it doesn’t work—as mentioned earlier
the importance sampling proposal distribution needs to have longer tails than the target. In
this case the target p(θ|T ) typically has longer tails than the proposal p(θ|x, T ) and thus
(6) has infinite variance. Despite not working, the harmonic mean estimator continues to be
popular (Neal, 2008).

3 Description of Technique

This paper’s arrogance sampling technique is a simple method that applies the nonparametric
importance techniques of Zhang and Neddermeyer in an attempt to develop a method almost
as convenient as the harmonic mean estimator.

The only required inputs are samples θi from p(θ|x, T ) and the values p(θi ∧ x|T ) =
p(x|θi, T )p(θi|T ). This is similar to the harmonic mean estimator, but perhaps slightly less
convenient because p(θi ∧ x|T ) is required instead of p(x|θi, T ).

There are two basic steps:

1. Take m samples from p(θ|x, T ) and using modified histogram density estimation, con-
struct probability density function f(θ).

2. With n more samples from p(θ|x, T ), estimate 1/p(x|T ) via importance sampling with
target f and proposal p(θ|x, T ).

These steps are described in more detail below.

3.1 Construction of the Histogram

Of the N total samples θi from p(θ|x, T ), the first m will be used to make a histogram. The
optimal choice of m will be discussed below, but in practice this seems difficult to determine.
An arbitrary rule of min(0.2N, 2

√
N) can be used in practice.

5



3.2 Importance Sampling 3 DESCRIPTION OF TECHNIQUE

With a traditional histogram, the only available information is the location of the sampled
points. In this case we also know the (scaled) heights p(θ ∧x|T ) at each sampled point. We
can use this extra information to improve the fit.

Our“arrogant”histogram f is constructed the same as a regular histogram, except the bin
heights are not determined by the number of points in each bin, but rather by the minimum
density over all points in the bin. If a bin contains no sampled points, then f(θ) = 0 for θ
in that bin. Then f is normalized so that

∫
f(θ) dθ = 1.

To determine our bin width, we can simply and somewhat arbitrarily set our bin width
h so that the histogram is positive for 50% of the sampled points from the distribution
p(θ|x, T ). To approximate h, we can use a small number of samples (say, 40) from p(θ|x, T )
and set h so that f(θ) > 0 for exactly half of these samples.

Figure 1 compares the traditional and new histograms for a one dimensional normal
distribution based on 50 samples. The green rug lines indicate the 50 sampled points which
are the same for all. The arrogant histogram’s bin width is chosen as above. The traditional
histogram’s optimal bin width was determined by Scott’s rule to minimize mean squared
error. As the figure shows, the modified histogram is much smoother for a given bin width,
so a smaller bin width can be used. On the other hand, f will either equal 0 or have
about twice the original density at each point, while the traditional histogram’s density is
numerically close to the original density.

3.2 Importance Sampling

The remaining n = N −m− 40 sampled points can be used for importance sampling. Using
equation (4) with histogram f as our target and p(θ|x, T ) as the proposal, we have

1 ≈ In =
1

n

n∑
i=1

f(θi)

p(θi|x, T )
=

1

n

n∑
i=1

f(θi)

p(θi ∧ x|T )/p(x|T )

hence

p(x|T ) ≈ p(x|T )/In =

(
1

n

n∑
i=1

f(θi)

p(θi ∧ x|T )

)−1
= An (7)

To underscore the self-important/arrogant nature of this approximation An, we can rewrite
(7) as

p(x|T ) ≈ H

(
1

n

n∑
i=1

min{p(θj ∧ x|T ) : θj and θj are in the same bin}
p(θi ∧ x|T )

)−1
where H is the histogram normalizing constant. This equation shows that all the values in the
numerator and the denominator of our importance sampling are from the same distribution
p(θ ∧ x|T ).
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3.2 Importance Sampling 3 DESCRIPTION OF TECHNIQUE
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Figure 1: Histogram Comparison
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4 VALIDITY OF METHOD

Note that the histogram f is the target of the importance sampling and p(θ∧x|T ) is the
proposal. This is backwards from the usual scheme where the unknown distribution is the
target and the known distribution is the proposal. Instead here the unknown distribution is
the proposal, as in the harmonic mean estimator (see Robert and Wraith (2009) for another
example of this.)

As in section 2.1, our approximation of p(x|T )−1 tends to a normal distribution as n→∞
by the central limit theorem. This fact can be used to estimate a confidence interval around
p(x|T ).

4 Validity of Method

This section will investigate the performance of the method. First, note that this method is
just an implementation of importance sampling, so A−1n should converge to p(x|T )−1 with
finite variance as long as the proposal density p(θ|x, T ) exists and is finite and positive on
the compact region where the target histogram density is positive.

To calculate the speed of convergence we will use equation (5) where f is the histogram,
g(θ) = p(θ|x, T ), and I = 1 because the histogram has been normalized. Unless otherwise
noted, we will assume below that g : Rd → R is finite, twice differentiable and positive, and

that
∫ ‖∇·g(θ)‖2

g(θ)
dθ is finite.

4.1 Histogram Bin Width

One important issue will be how quickly the d-dimensional histogram’s selected bin width
h goes to 0 as the number of samples m → ∞. This section will only offer an intuitive
argument. For any m, the histogram will enclose about the same probability (1

2
) and will

have about the same average density in a fixed region. Each bin has volume hd, so if l is the
number of bins then lhd = O(1) and h ∝ l−d.

Furthermore, the distribution of the sampled points converges to the actual distribution
g(θ). If m > O(l), an unbounded number of sampled points would end up in each bin. If
m < O(l), then some bins would have no points in them. Neither of these is possible because
exactly one sampled point is necessary to establish each bin. Thus m ∝ l and h ∝ m−d.

4.2 Conditional Variance

Before estimating the convergence rate of An we will prove something about the conditional
variance of importance sampling. Let A = {θ : f(θ) > 0}, 1A be the characteristic function
of A, and q =

∫
A
g(θ) dθ. Define

gA(θ) =

{
g(θ)/q if θ ∈ A

0 otherwise
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4.3 Importance Sampling Convergence 4 VALIDITY OF METHOD

Then gA is the density of g conditional on f > 0. Define VarA and EA to mean the variance
and expectation conditional on f(θ) > 0. Thus

Var(f(θ)/g(θ)) = Var(E(f(θ)/g(θ)|1A)) + E(Var(f(θ)/g(θ)|1A))

= Var

(
EA(f(θ)/g(θ)) if θ ∈ A

0 otherwise

)
+ E

(
VarA(f(θ)/g(θ)) if θ ∈ A

0 otherwise

)
= Var

(
1/q if θ ∈ A
0 otherwise

)
+ qVarA(f(θ)/g(θ))

= (1/q)2q(1− q) +
1

q
VarA(f(θ)/qg(θ))

=
1− q
q

+
1

q
VarA(f(θ)/gA(θ))

We will assume below that q = 1
2
, so that

Var(f(θ)/g(θ)) = 1 + 2VarA(f(θ)/gA(θ)) (8)

4.3 Importance Sampling Convergence

With f , g, and A as defined above, f and gA have the same domain. Assuming errors in
estimating q and normalization errors are of a lesser order of magnitude, we can treat the
histogram heights as being sampled from gA. Suppose the histogram has l bins {Bj}, each
with width h and based around the points gA(θj). Then by equation (5),

VarA(f(θ)/gA(θ)) =
l∑

j=1

∫
Bj

(f(θ)− gA(θ))2

gA(θ)
dθ

=
l∑

j=1

∫
Bj

(gA(θ) +∇gA(θ) · (θj − θ) +O((θj − θ)2)− gA(θ))2

gA(θ)
dθ

=
l∑

j=1

∫
Bj

(∇gA(θ) · (θj − θ))2 +O((θj − θ)3)

gA(θ)
dθ

≤
l∑

j=1

∫
Bj

‖∇ · gA(θ)‖2h2

gA(θ)
dθ

= h2
∫
‖∇ · gA(θ)‖2

gA(θ)
dθ
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5 IMPLEMENTATION ISSUES

Because h ∝ m−d where d is the number of dimensions, and m is the number of samples
used to make the histogram,

VarA(f(θ)/gA(θ)) ≤ Cm−2/d

where C ∝
∫ ‖∇·gA(θ)‖2

gA(θ)
dθ. Putting this together with (8), we get

Var(In) = Var(p(x|T )/An) = n−1(1 +O(Cm−2/d)) (9)

5 Implementation Issues

5.1 Speed of Convergence

The variance of n−1(1 + O(Cm−2/d)) given by (9) is asymptotically equal to n−1, which is
the typical importance sampling rate. In practice however, the asymptotic results cannot
distinguish useful from impractical estimators. If Cm−2/d is small and Var(p(x|T )/An) ≈
n−1, then p(x|T ) can be approximated in only 1000 samples to about 6% = 1.96√

1000
with 95%

confidence. For many theory choice purposes, this is quite sufficient. Thus in typical problem
cases the factor of Cm−2/d will be very significant. If Cm−2/d � 1, then the convergence
rate may in practice be similar to n−1m−2/d. Compare this to the rate of n−1m−4/(4+d) for
the methods proposed by Zhang and Neddermeyer.

This method also uses simple histograms, instead of a more sophisticated density es-
timation method (Zhang uses kernel estimation, Neddermeyer uses linear blend frequency
polynomials). Although simple histograms converge slower for large d as shown above, they
are much faster to compute for large d.

Neddermeyer’s LBFP algorithm is quite efficient compared to Zhang’s, but its running

time is O(2dd2n
d+5
d+4 ). d is a constant for any fixed problem, but if, say, d = 10, then the

dimensionality constant multiplies the running time by 210102 ≈ 105.
By contrast, this paper’s method takes only O(dmlog(m)) time to construct the initial

histogram, and an additional O(dnlog(m)) time to do the importance sampling. The main
reason for the difference is that querying a simple histogram can be done in log(m) time by
computing the bin coordinates and looking up the bin’s height in a tree structure. However,
querying a LBFP requires blending all nearby bins and is thus exponential in d.

5.2 When g = 0

Our discussion assumed that g(θ) = p(θ|x, T ) was always positive. If g goes to 0 where the
histogram is positive, the variance of A−1n will be infinite. However, this paper’s method can
still be used if g(θ) is 0 over some well-defined area.
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5.3 Bin Shape 7 REFERENCES

For instance, suppose one dimension θk of p(θ|T ) is defined by a gamma distribution, so
that p(θk|T ) = 0 if and only if θk ≤ 0. Then we can ensure the variance is not infinite by
checking that the histogram is only defined where θk > ε > 0 for some fixed ε.

The margLikArrogance package contains a simple mechanism to do this. The user may
specify a range along each dimension of θ where it is known that g > 0. If the histogram is
non-zero outside of this range, the method aborts with an error.

Note that the variance of the estimator increases with
∫ ‖∇·gA(θ)‖2

gA(θ)
dθ. In practice the

estimator will work well only when g doesn’t go to 0 too quickly where the histogram is
positive. In these cases the histogram will be defined well away from any region where g = 0
and infinite variance won’t be an issue even if g = 0 somewhere.

5.3 Bin Shape

Cubic histogram bins were used above—their widths were fixed at h in each dimension. Al-
though the asymptotic results aren’t affected by the shape of each bin, for usable convergence
rates the bins’ dimensions need to compatible with the shape of the high probability region
of p(θ|x, T ). Unfortunately, it is difficult to determine the best bin shapes.

The margLikArrogance package contains a simple workaround: by default the distribu-
tion is first scaled so that the sampled standard deviation along each dimension is constant.
This is equivalent to setting each bin’s width by dimension in proportion to that dimension’s
standard deviation. If this simple rule of thumb is insufficient, the user can scale the sampled
values of p(θ|x, T ) manually (and make the corresponding adjustment to the estimate An).

6 Conclusion

This paper has described an “arrogance sampling” technique for computing the marginal
likelihood or Bayes factor of a Bayesian model. It involves using samples from the model’s
posterior parameter distribution along with the scaled values of the distribution’s density at
those points. These samples are divided into two main groups: m samples are used to build
a histogram; n are used to importance sample the histogram using the posterior parameter
distribution as the proposal.

This method is simple to implement and runs quickly in O(d(m + n)log(m)) time. Its
asymptotic convergence rate, n−1(1 + O(Cm−2/d)), is not remarkable, but in practice con-
vergence is fast for many problems. Because the required inputs are similar to those of the
harmonic mean estimator, it may be a convenient replacement for it.
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