
CONTRIBUTED ARTICLE 1

makeR: An R Package for Managing
Document Building and Versioning
by Jason M. Bryer

Abstract The idea of build automation is not
new. GNU Make and Java Ant are well es-
tablished and robust build automation systems
but require the use and installation of addi-
tional software. The makeR package provides
a simplified framework written entirely in R to
manage Sweave, LATEX and R scripted projects
where multiple versions are created from a sin-
gle source repository. For example, monthly re-
ports where each version is identical, with per-
haps the exception of easily extracted properties
(e.g. date ranges for data extraction, title, etc.).

R (R Development Core Team, 2011), LATEX (Mittel-
bach and Rowley, 1999), and Sweave (Leisch, 2002)
have proven to be incredibly useful for conducting
reproducible research. However, managing docu-
ment versions within R is limited. The makeR pack-
age attempts to provide the same ease-of-use for doc-
ument versioning that the devtools (Wickham, 2011)
and ProjectTemplate (White, 2011) packages have
provided for package development and data analy-
sis, respectively. This package attempts to solve the
problem where multiple versions of a document are
required but the underlying analysis and typesetting
code remains static or can be abstracted through the
use of variables or properties. For example, many
researchers conduct monthly, quarterly, or annual
reports where the only difference from version-to-
version, from an analysis and typesetting perspec-
tive, is the data input. Clearly R and LATEX are an
ideal solution to this problem. The makeR pack-
age provides a framework to automate the process
of generating new documents from a single source
repository.

Project framework

There are three attributes to a particular document
version: major (which can be numeric or character),
minor, and build. Each major version is explicitly
defined by the user. For example, if the goal of the
project is to generate monthly reports then it would
be appropriate to name each version using the month
and year. Within each major version are minor ver-
sions. The minor version is always numeric and is
incremented automatically upon each release. Lastly,
build is numerical and global to the project that is au-
tomatically incremented with each document build.
This index provides a unique identifier for each doc-
ument that is created separate from the major and

minor version identifiers.
From the perspective of the file system,

the makeR package maintains a project file,
‘PROJECT.xml’ (this will be discussed in further de-
tail below), and three directories, ‘source’, ‘build’,
and ‘release’. The ‘source’ directory should contain
all source files (typically a ‘.Rnw’ file) along with
any support files. The entire contents of this direc-
tory, including any subdirectories, will be copied
for each build. makeR will create a new subdi-
rectory in ‘builds’ for each unique major and minor
combination. Lastly, the ‘release’ directory will con-
tain “released" documents (e.g. final PDFs). The
releaseVersion function will rename build files to
include the major and minor versions.

Consider, for example, a new project that con-
tains a file ‘Example.Rnw’ in the ‘source’ directory.
Each call of the build function will copy all files
from the ‘source’ directory to the ‘builds/1.0’ direc-
tory, then call Stangle, Sweave, and texi2pdf to cre-
ate ‘builds/1.0/Example.pdf’. Calling release will copy
‘builds/1.0/Example.pdf’ to ‘release/Example-1.0.pdf’ and
then increment the minor version so that subsequent
calls to build will create the ‘builds/1.1’ directory.

Properties

Properties are what differentiate one version
from another and can be defined at the project
or version level. When makeR builds a doc-
ument project level properties will be assigned
before version level properties thereby giving
version level properties priority over project
level properties. The functions addProperty
and removeProperty for the objects of class type
Project or Version (e.g. myproject$addProperty,
myproject$Versions[1]$addProperty) provide an
interface for manipulating properties.

Package framework

Figure 2 represents the internal structure of a makeR
project. All interaction with a project will occur
through the Project class object. By convention, all
attributes of classes begin with a capital letter and
are represented in the boxes with dashed lined bor-
ders. Functions (or methods) begin with a lowercase
letter and are represented in shaded boxes. Class ob-
jects and lists are represented by rounded squares.
Project, Version, and Build are special classes for
makeR whereas Versions and Builds are simply R
lists. All manipulation of a project should be done

The R Journal Vol. X/Y, Month, Year ISSN 2073-4859

http://www.gnu.org/s/make/
http://ant.apache.org

CONTRIBUTED ARTICLE 2

Project

$ProjectDir
$ProjectFile
$CurrentBuild
$ProjectName
$BuildDir
$SourceDir
$ReleaseDir

$Versions $Builds

$newVersion

$save

$release

$build

$addProperty

$removeProperty

$getProperties

Version Build

$Major
$Minor
$Name

$addProperty

$removeProperty

$getProperties

$Build
$Major
$Minor
$Name
$Timestamp
$R
$Platform
$User
$Nodename
$File

$assignProperties

Figure 1: makeR structure

through the appropriate methods. Although the at-
tributes (i.e. elements of a list or class) are accessible
given R’s programming framework, doing so could
result in unexpected results. The following two sec-
tions list the available attributes and methods.

Project attributes

• BuildDir - the directory where builds will oc-
cur.

• Builds - list of completed builds. Each element
in the list has a class type of Build.

• CurrentBuild - an integer of the last build.

• ProjectDir - the base directory where the
project is located.

• ProjectFile - the name of the source file to be
built.

• ProjectName - the name of the project.

• ReleaseDir - the directory where released files
will be located.

• SourceDir - the directory containing the source
files.

• Versions - a list of the project versions. Each
element in the list has a class type of Version.

Project methods

• build Builds the project.

– version - (optional) the version to build.

– saveEnv - if TRUE, the build environment
(.rda) will be saved in the build directory.

– builder - the builder function.

– clean - if TRUE, a clean build will be per-
formed (i.e. all files in the build directory
will be deleted).

• rebuild Rebuilds the project without first
copying the files.

– version - (optional) the version to rebuild.
– saveEnv - if TRUE, the build environment

(.rda) will be saved in the build directory.
– builder - the bulder function.

• save Saves the PROJECT.xml file.

• newVersion Creates a new versions of the
project.

– name - (optional) the version name.
– properties - version specific properties.

• release Releases a version (i.e. copies the built
file to the releases directory)

– version - (optional) the version to release.
If omitted the latest version will be re-
leased.

• getProperties Returns the project properties.

• addProperty Adds a project property.

– name - The property name.
– value - The property value.

• removeProperty Removes the given project
property.

– name - The property name.

• getReleases Returns a list of released files.

• openRelease Opens the given released file with
the system’s default application.

– file - The released file to open.

The R Journal Vol. X/Y, Month, Year ISSN 2073-4859

CONTRIBUTED ARTICLE 3

The project file format

The ‘PROJECT.xml’ file provides an XML format-
ted file corresponding to a project allowing for a
project to persist across R sessions. The file is cre-
ated and edited using the XML (Lang, 2011) pack-
age. Although the makeR package provides func-
tions to manage projects, using XML allows for other
R programmers to interact with the makeR project
framework. Figure 2 represents the contents of
‘PROJECT.xml’ after running demo(’stocks’).

Example

The R-Bloggers site provides a wealth of informa-
tion about R and the R community, aggregated from
many different R bloggers. Like many continuously
changing data sources, we wish to periodically re-
port on recent activity on the R-Bloggers site. The
base source file, ‘rbloggers.Rnw’, is included in the
package (in the ‘inst/doc/robloggers’ directory) as well
as being hosted on Github. This example can also be
run using demo(’rbloggers’).

Create new project

The Project function will either create a new project
or load a project if one already exists in the given
project directory (the current working directory if not
specified). Note that if a project already exists in
the given directory, all other parameters (e.g. name,
properties, etc.) will be ignored.

myProject = Project(name="RBloggers",
projectDir="~/rbloggers",
properties=list(email=email, passwd=passwd))

Create initial version

The Project$newVersion method will create a new
version for the project. Version names are optional
but is recommended. makeR will ensure there are
no two versions with the same name but if the name
is not provided a new version will be created with
the next numerical value equal to the number of ver-
sions plus one.

myProject$newVersion(name='2011-12',
properties=list(startDate='2011-12-01',
endDate='2011-12-31'))

Building the document

The Project$build function will build the newest
version. The version parameter will allow for build-
ing of older versions. Values of class type character
will build a version with a matching name, values of
class type numeric will build the version correspond-
ing the order in which it was created.

myProject$build()

Releasing the document

Lastly, the Project$release method will release the
last built file(s). From a file system perspective, this
method will copy the last built file to the release di-
rectory (as specified by the Project$ReleaseDir at-
tribute). Internally, the minor version number will
be incremented so that any subsequent builds for this
version will be done in a new directory. Similarly to
the Project$build method, a version parameter can
be specified to release an older version.

myProject$release()

Recent Activity on the R-Bloggers Site

Jason M. Bryer

December 2011

Abstract

This article provides an analysis of recent activity on the R-bloggers website

R-Bloggers is a blog that aggregates other blogs about R. It provides a wealth of good information
about R and is an great way of keeping up on the happenings in the R community. This document
provides a summary of the latest posts on R-Bloggers. Figure 1 is a calendar heat map summarizing
the number of posts per day. Figure 2 is a word cloud summarizing the categories recent posts used.
A list of posts from December 2011 is provided below.

Calendar Heat Map of Number of Posts on R−Bloggers.com

Sunday
Monday
Tuesday

Wednesday
Thursday

Friday
Saturday

2010

Sunday
Monday
Tuesday

Wednesday
Thursday

Friday
Saturday

2011

Sunday
Monday
Tuesday

Wednesday
Thursday

Friday
Saturday

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

2012 0
2
4
6
8
10
12
14
16
18

Figure 1: Calendar Heat Map of Recent Posts on R-Bloggers

1

Figure 3: Output from the R-Bloggers demo.

Builders

The makeR package includes a number of builders
for various document types. The default builder
is builder.rnw but can be overwritten for your
environment using the setDefaultBuilder func-
tion or by specifying the builder parameter to the
Project$build method. The included builders are:

• builder.rnw used for building Sweave (.rnw)
files.

• builder.tex used for building LATEX (.tex) files.

• builder.cacheSweave is similar to Sweave ex-
pect will support the cacheSweave (Peng and
with contributions from Tobias Abenius, 2011)
package and the caching of R code chunks.

The R Journal Vol. X/Y, Month, Year ISSN 2073-4859

http://www.r-bloggers.com
https://github.com/jbryer/makeR/blob/master/inst/rbloggers/rbloggers.Rnw

CONTRIBUTED ARTICLE 4

<?xml version="1.0"?>
<project name="stocks" buildDir="build" releaseDir="release" sourceDir="source">
<property name="src" type="character">

<value>yahoo</value>
</property>
<property name="stocks" type="character">

<value>GOOG</value>
<value>AAPL</value>
<value>AMZN</value>
<value>MSFT</value>

</property>
<versions>

<version name="2011-12" major="1" minor="1">
<property name="month" type="character">

<value>2011-12</value>
</property>

</version>
</versions>
<builds>

<build major="1" minor="0" build="1" name="2011-12" timestamp="Thu Jan 26 20:55:10 2012"
R="R version 2.14.0 (2011-10-31)" platform="x86_64-apple-darwin9.8.0"
nodename="Jason-Bryers-MacBook-Air-2.local" user="jbryer">
<file>2011-12.png</file>

</build>
</builds>

</project>

Figure 2: ‘PROJECT.xml’ for the stocks demo.

• builder.knitr Uses the knitr (Xie, 2012) pack-
age for building. This new package provides
options for many other output types in ad-
dition to PDFs using LATEX including HTML
and markdown. The default behavior for this
builder is to look for Sweave (.rnw) files and
process them using the knit function. To use
other file types it is important to specify the
Project$SourceFile attribute and the output
parameter to the Project$build method. Oth-
erwise the builder will not be able to locate the
appropriate files to build.

Though the makeR package includes builders for for
the most common document types, it has been de-
signed to be extensible. A builder function requires
two parameters, project and theenv. The former
is simply the Project that is currently being built.
The latter is an R environment with all the appropri-
ate properties set. Any other parameters are passed
from the Project$build function to the builder. The
following function builds projects where the input is
an arbitrary R script file and the output are PNG im-
age files.

builder.png <- function(project, theenv, ...) {
sourceFile = ifelse(

is.null(project$SourceFile),
'.r$', project$SourceFile)

wd = eval(getwd(), envir=theenv)
files = list.files(path=wd,

pattern=sourceFile,
ignore.case=TRUE)

for(i in seq_len(length(files))) {
sys.source(files[i], envir=theenv)

}
return(list.files(path=wd, pattern=".png$",
ignore.case=TRUE))

}

Debugging

The makeR package provides a number of facilities
to help debug errors in the build process. First, all
output is redirected to a log file in the build direc-
tory. Secondly, the build process is done in a new R
environment. This environment is also saved to the
build directory regardless if the builder method re-
turns successfully or not. Lastly, each Version class
has a method assignProperties that will assign the
project and version properties to the global environ-
ment so the the user’s global environment matches
the environment passed to the builder function.

The R Journal Vol. X/Y, Month, Year ISSN 2073-4859

CONTRIBUTED ARTICLE 5

Package development

The latest stable version of makeR can be installed
from your local CRAN server. Development versions
are hosted on Github. The latest development ver-
sion can be installed using the devtools (Wickham,
2011) package:

install_github('makeR', 'jbryer')

Bibliography

D. T. Lang. XML: Tools for parsing and generating
XML within R and S-Plus., 2011. URL http://CRAN.
R-project.org/package=XML. R package version
3.4-3.

F. Leisch. Sweave: Dynamic generation of statistical
reports using literate data analysis. In W. Härdle
and B. Rönz, editors, Compstat 2002 — Proceedings
in Computational Statistics, pages 575–580. Physika
Verlag, Heidelberg, Germany, 2002. ISBN 3-7908-
1517-9.

F. Mittelbach and C. Rowley. The LATEX3 project,
1999. URL http://www.latex-project.org/
guides/ltx3info.pdf.

R. D. Peng and with contributions from Tobias Abe-
nius. cacheSweave: Tools for caching Sweave compu-
tations, 2011. URL http://CRAN.R-project.org/
package=cacheSweave. R package version 0.6.

R Development Core Team. R: A Language and Envi-
ronment for Statistical Computing. R Foundation for
Statistical Computing, Vienna, Austria, 2011. URL
http://www.R-project.org/. ISBN 3-900051-07-0.

J. M. White. ProjectTemplate: Automates the creation of
new statistical analysis projects., 2011. URL http://
CRAN.R-project.org/package=ProjectTemplate.
R package version 0.3-5.

H. Wickham. devtools: Tools to make developing R code
easier, 2011. URL http://CRAN.R-project.org/
package=devtools. R package version 0.4.

Y. Xie. knitr: A general-purpose package for dynamic
report generation in R, 2012. URL http://yihui.
name/knitr/. R package version 0.2.5.

Jason M. Bryer
Excelsior College
7 Columbia Circle
Albany, NY 12203
USA
jason@bryer.org

The R Journal Vol. X/Y, Month, Year ISSN 2073-4859

http://github.com/jbryer/ProjectVersion
http://CRAN.R-project.org/package=XML
http://CRAN.R-project.org/package=XML
http://www.latex-project.org/guides/ltx3info.pdf
http://www.latex-project.org/guides/ltx3info.pdf
http://CRAN.R-project.org/package=cacheSweave
http://CRAN.R-project.org/package=cacheSweave
http://www.R-project.org/
http://CRAN.R-project.org/package=ProjectTemplate
http://CRAN.R-project.org/package=ProjectTemplate
http://CRAN.R-project.org/package=devtools
http://CRAN.R-project.org/package=devtools
http://yihui.name/knitr/
http://yihui.name/knitr/
mailto:jason@bryer.org

	makeR: An R Package for Managing Document Building and Versioning
	Project framework
	Properties
	Package framework
	Project attributes
	Project methods

	The project file format
	Example
	Create new project
	Create initial version
	Building the document
	Releasing the document

	Builders
	Debugging
	Package development

