
Changes in lsmeans, Version 2.00

Russell V. Lenth

July 30, 2014

1 Introduction

Versions of lsmeans up through version 1.10 were based on a lot of “spaghetti code” that worked but was
increasingly difficult to maintain. So starting with version 2.00, the package underwent a complete overhaul
where the code is much more modular and extensible. These changes help make the package better prepared
for future use.

Past users of lsmeans may use it in much the same ways as in the old version, but not entirely. And of
course, that’s the catch—especially when it comes to doing something later with an object created by the
lsmeans function. The purpose of this document is to explain the changes that are being made before the
package is released, so that users may be prepared for it.

1.1 Availability of old functionality

For a while, the lsmeans package will include a function .old.lsmeans which is the old version of lsmeans
from version 1.10-4. Users should adapt to the new lsmeans function as quickly as possible. However, in a
clutch, this old one may be used. We use it several tuimes in this diocument to illustrate the differences.

2 Changes that could break existing code that uses lsmeans

2.1 In a nutshell

If you have existing code that extracts or manipulates the result of lsmeans in its old manifestation (i.e.
treats it as a list of data.framess); or uses the arguments cov.reduce, fac.reduce, conf, glhargs, lf, or
mlf, your code will break as-is. Details follow.

2.2 Returned objects

Probably the most problematic change for past users is that lsmeans used to return a list of data.frames
(except sometimes a glht object was thrown in). But now it returns a single object of a new class lsmobj,
or a list thereof.

R> library(lsmeans)

R> ### OLD

R> warp.lm <- lm(breaks ~ wool * tension, data = warpbreaks)

R> warp.oldlsm <- .old.lsmeans(warp.lm, ~ tension | wool)

R> class(warp.oldlsm)

[1] "lsm" "list"

R> class(warp.oldlsm[[1]])

[1] "data.frame.lsm" "data.frame"

1

R> ### NEW

R> warp.lsmobj <- lsmeans(warp.lm, ~ tension | wool)

R> class(warp.lsmobj)

[1] "lsmobj"

Look at the results obtained the new way:

R> warp.lsmobj

wool = A:

tension lsmean SE df lower.CL upper.CL

L 44.55556 3.646761 48 37.22325 51.88786

M 24.00000 3.646761 48 16.66769 31.33231

H 24.55556 3.646761 48 17.22325 31.88786

wool = B:

tension lsmean SE df lower.CL upper.CL

L 28.22222 3.646761 48 20.88992 35.55453

M 28.77778 3.646761 48 21.44547 36.11008

H 18.77778 3.646761 48 11.44547 26.11008

Confidence level used: 0.95

Unlike the old display (not shown), this one pays attention to the | wool part of the specification.
In the old version, users could access/manipulate the results by taking advantage of the fact that they

inherited from data.frame:

R> ### OLD

R> warp.oldlsm[[1]]$lsmean

[1] 44.55556 24.00000 24.55556 28.22222 28.77778 18.77778

R> Try <- function(expr) tryCatch(expr, error = function(e) cat("Oops!\n"))

R> ### NEW

R> Try(warp.lsmobj$lsmean)

Oops!

The show method for an lsmobj is summary, which indeed does produce an object that inherits from
data.frame. So if you need to access values that you see, call summary first:

R> ### NEW

R> summary(warp.lsmobj)$lsmean

[1] 44.55556 24.00000 24.55556 28.22222 28.77778 18.77778

In casting to data.frame, note that the “by” variable (wool in this case) is included:

R> as.data.frame(summary(warp.lsmobj))

tension wool lsmean SE df lower.CL upper.CL

1 L A 44.55556 3.646761 48 37.22325 51.88786

2 M A 24.00000 3.646761 48 16.66769 31.33231

3 H A 24.55556 3.646761 48 17.22325 31.88786

4 L B 28.22222 3.646761 48 20.88992 35.55453

5 M B 28.77778 3.646761 48 21.44547 36.11008

6 H B 18.77778 3.646761 48 11.44547 26.11008

2

If there is also a contrast specification, then lsmeans does return a list (and not an extension thereof).
But each element is of class lsmobj, not data.frame.

R> ### NEW

R> warp.l2 <- lsmeans(warp.lm, pairwise ~ tension)

R> class(warp.l2)

[1] "lsm.list" "list"

R> sapply(warp.l2, class)

lsmeans contrasts

"lsmobj" "lsmobj"

2.3 Changes to cov.reduce and fac.reduce

The cov.reduce and fac.reduce arguments to lsmeans required a second argument giving the name of the
variable. This is awkward and, in the case of fac.reduce, doesn’t even make sense if you think about it.
But if you have existing code that uses these functions, you will have to change it.

In the new version, cov.reduce may be a function or a named list of functions of a single numeric
variable. The default is mean. If it is a named list, then a covariate matching a name on the list is reduced
using that function, and any mismatched covariates are reduced using mean. As before, cov.reduce may
also be logical: TRUE is equivalent to mean, and FALSE is equivalent to function(x) sort(unique(x)).

fac.reduce must now be a function of one matrix argument. Its default is function(X) apply(X, 2, mean).
To override it (at least sensibly), you must provide a function that reduces the rows of the matrix into a
single vector of the same length.

2.4 Arguments no longer provided

The lsmeans arguments conf, glhargs, lf, and mlf are no longer supported. The needs they serve are
supported via lsmobj methods or slots.

Continuing with the warp.lm example and the returned object warp.lsmobj, the conf functionality is
replaced by the confint method:

R> confint(warp.lsmobj, level = .90)

wool = A:

tension lsmean SE df lower.CL upper.CL

L 44.55556 3.646761 48 38.43912 50.67199

M 24.00000 3.646761 48 17.88356 30.11644

H 24.55556 3.646761 48 18.43912 30.67199

wool = B:

tension lsmean SE df lower.CL upper.CL

L 28.22222 3.646761 48 22.10579 34.33866

M 28.77778 3.646761 48 22.66134 34.89421

H 18.77778 3.646761 48 12.66134 24.89421

Confidence level used: 0.9

The glhargs capability is replaced by an as.glht method to create a glht for use with the multcomp
package:

R> library(multcomp)

R> summary(as.glht(warp.lsmobj))

3

$`wool = A`

Simultaneous Tests for General Linear Hypotheses

Linear Hypotheses:

Estimate Std. Error t value Pr(>|t|)

L, 9 == 0 44.556 3.647 12.218 <1e-07

M, 9 == 0 24.000 3.647 6.581 <1e-07

H, 9 == 0 24.556 3.647 6.734 <1e-07

(Adjusted p values reported -- single-step method)

$`wool = B`

Simultaneous Tests for General Linear Hypotheses

Linear Hypotheses:

Estimate Std. Error t value Pr(>|t|)

L, 9 == 0 28.222 3.647 7.739 < 1e-05

M, 9 == 0 28.778 3.647 7.891 < 1e-05

H, 9 == 0 18.778 3.647 5.149 1.71e-05

(Adjusted p values reported -- single-step method)

In lieu of lf, simply access the linfct slot:

R> warp.lsmobj@linfct

(Intercept) woolB tensionM tensionH woolB:tensionM woolB:tensionH

[1,] 1 0 0 0 0 0

[2,] 1 0 1 0 0 0

[3,] 1 0 0 1 0 0

[4,] 1 1 0 0 0 0

[5,] 1 1 1 0 1 0

[6,] 1 1 0 1 0 1

The mlm argument was new and gave only rudementary support for multivariate responses. Now multivariate
predictors cause lsmeans to create one or more additional factors that can be specified in the lsmeans specs.
More on this later.

3 Corrections

A few bugs turned up in the course of disciovering that new results did not match old ones—and the new
ones were right! Of cours, there could well be undiscovered new bugs.

3.1 Degrees of freedom

lsmeans uses the pbkrtest package to obtain degrees of freedom for models fitted using the lme4 package.
These depend on both the adjusted and unadjusted covariance matrices, but it turns out that the old
lsmeans supplied the adjusted one for both. This does not always make a difference:

R> library(lme4)

R> data(Oats, package = "nlme")

R> Oats.lmer <- lmer(yield ~ factor(nitro) + Variety + (1|Block/Variety),

data = Oats, subset = -c(1,2,3,5,8,13,21,34,55))

R> ### OLD

R> .old.lsmeans(Oats.lmer, pairwise ~ Variety)

4

$`Variety lsmeans`

Variety lsmean SE df lower.CL upper.CL

Golden Rain 105.24081 7.531717 8.458134 88.03504 122.4466

Marvellous 108.46951 7.482632 8.277316 91.31464 125.6244

Victory 96.93446 7.641645 8.793756 79.58586 114.2831

$`Variety pairwise differences`

estimate SE df t.ratio p.value

Golden Rain - Marvellous -3.228698 6.553848 9.509343 -0.49264 0.87645

Golden Rain - Victory 8.306351 6.707936 9.617588 1.23829 0.46004

Marvellous - Victory 11.535049 6.670488 9.637889 1.72927 0.24383

p values are adjusted using the tukey method for 3 means

R> ### NEW

R> lsmeans(Oats.lmer, pairwise ~ Variety)

$lsmeans

Variety lsmean SE df lower.CL upper.CL

Golden Rain 105.24081 7.531717 8.46 88.03704 122.4446

Marvellous 108.46951 7.482632 8.28 91.31571 125.6233

Victory 96.93446 7.641645 8.81 79.59011 114.2788

Results are averaged over the levels of: nitro

Confidence level used: 0.95

$contrasts

contrast estimate SE df t.ratio p.value

Golden Rain - Marvellous -3.228698 6.553848 9.56 -0.493 0.8764

Golden Rain - Victory 8.306351 6.707936 9.80 1.238 0.4595

Marvellous - Victory 11.535049 6.670488 9.80 1.729 0.2431

Results are averaged over the levels of: nitro

P value adjustment: tukey method for a family of 3 means

The discrepancies are not huge, but they are there. Without the subset that created unbalanced data, the
results essentially agree.

3.2 Processing at

In models containing factor or ordered (like Oats.lmer), any at specification was ignored. The new version
handles this correctly, including omitting inappropriate levels.

R> ### OLD

R> .old.lsmeans(Oats.lmer, ~ nitro, at = list(nitro = c(.1,.2,.3)))

$`nitro lsmeans`

nitro lsmean SE df lower.CL upper.CL

0.0 78.89207 7.294378 7.775291 61.98621 95.79793

0.2 97.03425 7.136270 7.182133 80.24602 113.82249

0.4 114.19816 7.136186 7.183591 97.41080 130.98553

0.6 124.06857 7.070234 6.953145 107.32726 140.80988

R> ### NEW

R> lsmeans(Oats.lmer, ~ nitro, at = list(nitro = c(.1,.2,.3)))

5

nitro lsmean SE df lower.CL upper.CL

0.2 97.03425 7.13627 7.19 80.25029 113.8182

Results are averaged over the levels of: Variety

Confidence level used: 0.95

4 New object structure

The more recent vignettes for lsmeans have explained least-squares means as predictions on a“reference grid,”
or marginal averages thereof. By default, the reference grid consists of all combinations of factor levels, along
with the averages of numeric predictors. But this can be changed by at or cov.reduce. The new design of
lsmeans uses a reference-grid object explicitly. For example:

R> (Oats.rg <- ref.grid(Oats.lmer))

'ref.grid' object with variables:

nitro = 0.0, 0.2, 0.4, 0.6

Variety = Golden Rain, Marvellous, Victory

R> Oats.quad <- update(Oats.lmer, yield ~ Variety + poly(nitro,2) + (1|Block/Variety))

R> ref.grid(Oats.quad)

'ref.grid' object with variables:

Variety = Golden Rain, Marvellous, Victory

nitro = 0.31429

R> ref.grid(Oats.quad, at = list(nitro = c(.1,.2,.3)))

'ref.grid' object with variables:

Variety = Golden Rain, Marvellous, Victory

nitro = 0.1, 0.2, 0.3

The ref.grid function calls two other functions, recover.data (to reproduce the dataset) and lsm.basis

(to get the model matrix, coefficients, etc.), each of which has S3 methods for popular model objects like
lm, mlm, gls, lmer, etc. This allows ref.grid’s capabilities to be easily extended to other model objects
not yet supported. ref.grid serves as a constructor for an S4 object of class ref.grid, which encapsulates
all the information needed to compute—and make inferences on—least-squares means, independently of the
model object itself.

The lsmeans function now consists of S4 methods for a variety of signatures, one of which corresponds
to the old version where object is a model object and specs is a formula. So, for example, we may call
lsmeans with an existing ref.grid, and provide specifications in place of the old formula interface:

R> (Oats.lsm <- lsmeans(Oats.rg, "nitro", by = "Variety"))

Variety = Golden Rain:

nitro lsmean SE df lower.CL upper.CL

0.0 80.58462 8.194795 11.70 62.67911 98.49013

0.2 98.72680 8.020133 10.87 81.04784 116.40577

0.4 115.89071 8.098890 11.27 98.11673 133.66470

0.6 125.76112 8.099472 11.21 107.97573 143.54651

Variety = Marvellous:

nitro lsmean SE df lower.CL upper.CL

0.0 83.81332 8.152095 11.54 65.97327 101.65337

0.2 101.95550 8.083549 11.19 84.20108 119.70993

0.4 119.11941 8.005089 10.80 101.45964 136.77918

6

0.6 128.98982 7.990048 10.71 111.34503 146.63461

Variety = Victory:

nitro lsmean SE df lower.CL upper.CL

0.0 72.27827 8.376203 12.49 54.10747 90.44907

0.2 90.42045 8.201281 11.58 72.47879 108.36212

0.4 107.58436 8.200622 11.57 89.64370 125.52503

0.6 117.45477 8.041801 10.91 99.73629 135.17325

Confidence level used: 0.95

Moreover, lsmobj is in fact an extension of ref.grid, and we can use it as such:

R> str(Oats.lsm)

'lsmobj' object with variables:

nitro = 0.0, 0.2, 0.4, 0.6

Variety = Golden Rain, Marvellous, Victory

R> (Oats.n <- lsmeans(Oats.lsm, "nitro"))

nitro lsmean SE df lower.CL upper.CL

0.0 78.89207 7.294378 7.78 61.98930 95.79484

0.2 97.03425 7.136270 7.19 80.25029 113.81822

0.4 114.19816 7.136186 7.19 97.41454 130.98179

0.6 124.06857 7.070234 6.95 107.32795 140.80919

Results are averaged over the levels of: Variety

Confidence level used: 0.95

4.1 Slots

The classes ref.grid and lsmobj are essentially identical in structure, with lsmobj being a minor extension
with the same slots.

R> slotNames(Oats.lsm)

[1] "model.info" "roles" "grid" "levels" "matlevs"

[6] "linfct" "bhat" "nbasis" "V" "dffun"

[11] "dfargs" "misc"

model.info has the call and terms. roles lists the names of predictors and responses. grid is a data.frame

consisting of all combinations of the variables in the list levels. The rows of grid go in one-to-one cor-
respondence with those of linfct, which contains the linear coefficients associated with each LS mean (or
reference-grid combination). matlevs has summary information for any matrices in the dataset. bhat holds
the regression coefficients. nbasis holds information for determining non-estimability in rank-deficient situ-
ations. V is the covariance matrix for bhat. ddfm is a function to return the degrees of freedom for a linear
function of bhat. It is passed the contents of the list misc, thus allowing for additional parameters. misc

also is used for bookkeeping tasks such as remembering by variables, labels, adjust settings, etc.

5 New functions and methods

There are numerous methods for lsmobj objects. The summary method produces what you see in a listing,
and is an extension of data.frame but it is printed with different formatting and with added messages about
adjustments, confidence levels, etc. You can also display the results differently. For example:

7

R> summary(Oats.lsm, by = "nitro")

(results not shown) will group the Variety means for each nitro rather than the way it is displayed above.
There is also and infer argument for flagging whether confidence intervals and/or tests are displayed:

R> summary(Oats.n, infer = c(TRUE,TRUE))

nitro lsmean SE df lower.CL upper.CL t.ratio p.value

0.0 78.89207 7.294378 7.78 61.98930 95.79484 10.815 <.0001

0.2 97.03425 7.136270 7.19 80.25029 113.81822 13.597 <.0001

0.4 114.19816 7.136186 7.19 97.41454 130.98179 16.003 <.0001

0.6 124.06857 7.070234 6.95 107.32795 140.80919 17.548 <.0001

Results are averaged over the levels of: Variety

Confidence level used: 0.95

Most other methods are S3 ones, as those are suitable to our needs and often extend existing S3 methods.
The as.glht method is illustrated earlier in this document. The confint and test methods are really
courtesy methods for summary with argument infer set to c(TRUE,FALSE) and c(FALSE,TRUE) respectively.

An important method is contrast:

R> (warp.con <- contrast(warp.lsmobj, method = "poly"))

wool = A:

contrast estimate SE df t.ratio p.value

linear -20.000000 5.157299 48 -3.878 0.0003

quadratic 21.111111 8.932705 48 2.363 0.0222

wool = B:

contrast estimate SE df t.ratio p.value

linear -9.444444 5.157299 48 -1.831 0.0733

quadratic -10.555556 8.932705 48 -1.182 0.2432

These methods all return new objects of class lsmobj. Hence they may be further analyzed or reanalyzed.
For example, suppose we now want to compare the two linear and the two quadratic contrasts in the above:

R> contrast(warp.con, "revpairwise", by = "contrast")

contrast = linear:

contrast1 estimate SE df t.ratio p.value

B - A 10.55556 7.293523 48 1.447 0.1543

contrast = quadratic:

contrast1 estimate SE df t.ratio p.value

B - A -31.66667 12.632752 48 -2.507 0.0156

The pairs method is equivalent to contrast with method = "pairwise". Closely related is the new
cld method which produces a compact letter display for which pairwise comparisons are nonsignificant:

R> cld(Oats.n, sort = FALSE)

nitro lsmean SE df lower.CL upper.CL .group

0.0 78.89207 7.294378 7.78 61.98930 95.79484 1

0.2 97.03425 7.136270 7.19 80.25029 113.81822 2

0.4 114.19816 7.136186 7.19 97.41454 130.98179 3

0.6 124.06857 7.070234 6.95 107.32795 140.80919 3

8

Results are averaged over the levels of: Variety

Confidence level used: 0.95

P value adjustment: tukey method for a family of 4 means

significance level used: alpha = 0.05

Finally, there is the lstrends function for estimating fitted trends of a covariate that interacts with a
factor. Like the other methods, it returns an lsmobj object, subject to further analysis. To illustrate, the
R-provided dataset ChickWeight has data on growth of chicks given different diets. We will fit a random-
slopes model and compare the mean slope for each diet. In addition, we’ll chose symbols for the display that
mimic the grouping lines that some people use.

R> chick.lmer <- lmer(weight ~ Time * Diet + (0 + Time | Chick), data = ChickWeight)

R> chick.lst <- lstrends(chick.lmer, ~ Diet, var = "Time")

R> cld(chick.lst, Letters = "|||||")

Diet Time.trend SE df lower.CL upper.CL .group

1 6.338556 0.6104878 49.86 5.112266 7.564845 |

2 8.609136 0.8380027 48.28 6.924473 10.293800 ||

4 9.555825 0.8392450 48.56 7.868917 11.242734 |

3 11.422871 0.8380027 48.28 9.738208 13.107534 |

Confidence level used: 0.95

P value adjustment: tukey method for a family of 4 means

significance level used: alpha = 0.05

Chicks fed with Diet 3 seem to grow faster than chicks with the other diets, and Diet 1 is the worst.
lstrends uses a difference quotient to do its work, and there is an optional argument delta that can

be used to change its increment. It requires a model object—there is no ref.grid method for it. The var

argument may imply a function call, i.e. var=sqrt(Time), in which case the chain rule is applied.

6 Support for multivariate models

lsmeans now provides for models with multivariate responses, by way of defining factor levels that index the
responses. Thus, linear functions of the multivariate response are available for inference. As an example,
consider the package-provided dataset MOats, which is the same as Oats except that each observation is a
whole plot with the yields for the four nitro levels as responses.

R> head(MOats)

Variety Block yield.0 yield.0.2 yield.0.4 yield.0.6

1 Victory I 111 130 157 174

2 Golden Rain I 117 114 161 141

3 Marvellous I 105 140 118 156

4 Victory II 61 91 97 100

5 Golden Rain II 70 108 126 149

6 Marvellous II 96 124 121 144

Let’s fit a model and obtain the reference grid:

R> MOats.mlm <- lm(yield ~ Block + Variety, data = MOats)

R> (MOats.rg <- ref.grid(MOats.mlm, mult.levs = list(nitro = c(0,.2,.4,.6))))

'ref.grid' object with variables:

Block = VI, V, III, IV, II, I

Variety = Golden Rain, Marvellous, Victory

nitro = multivariate response levels: 0.0, 0.2, 0.4, 0.6

9

(The mult.levs argument gives a name and levels for later use; if it had been absent, the multivariate
response would have been named rep.meas, with levels 1,2,3,4.)

We may now use nitro just like we would in the univariate case:

R> lsmeans(MOats.rg, ~ nitro)

nitro lsmean SE df lower.CL upper.CL

0.0 79.38889 3.198862 10 72.26138 86.5164

0.2 98.88889 3.811694 10 90.39591 107.3819

0.4 114.22222 5.020268 10 103.03637 125.4081

0.6 123.38889 4.216517 10 113.99390 132.7839

Results are averaged over the levels of: Block, Variety

Confidence level used: 0.95

R> lsmeans(MOats.rg, ~ Variety)

Variety lsmean SE df lower.CL upper.CL

Golden Rain 104.5000 5.005541 10 93.34696 115.6530

Marvellous 109.7917 5.005541 10 98.63863 120.9447

Victory 97.6250 5.005541 10 86.47196 108.7780

Results are averaged over the levels of: Block, nitro

Confidence level used: 0.95

We can verify that the latter is exactly the same as if we had averaged the responses:

R> MOats <- transform(MOats, avg.yield = apply(yield, 1, mean))

R> lsmeans(lm(avg.yield ~ Block + Variety, data = MOats), ~ Variety)

Variety lsmean SE df lower.CL upper.CL

Golden Rain 104.5000 5.005541 10 93.34696 115.6530

Marvellous 109.7917 5.005541 10 98.63863 120.9447

Victory 97.6250 5.005541 10 86.47196 108.7780

Results are averaged over the levels of: Block

Confidence level used: 0.95

7 Support for more models

Several more model types are supported, including survreg, coxph, coxme, and polr models. Here’s an
example for a Cox proportional-hazards model for the cgd dataset in the survival package:

R> library(survival)

R> cgd.ph <- coxph(Surv(tstart, tstop, status) ~ treat * inherit +

sex + age + cluster(id), data = cgd)

R> (cgd.lsm <- lsmeans(cgd.ph, ~ treat | inherit))

inherit = X-linked:

treat lsmean SE df asymp.LCL asymp.UCL

placebo 0.1247488 0.3704204 NA -0.6013498 0.8508474

rIFN-g -1.1074031 0.3874101 NA -1.8668049 -0.3480014

inherit = autosomal:

treat lsmean SE df asymp.LCL asymp.UCL

placebo 0.5882164 0.2455766 NA 0.1068368 1.0695959

10

rIFN-g -0.2210687 0.3808731 NA -0.9676565 0.5255192

Results are averaged over the levels of: sex

Confidence level used: 0.95

8 Transformations

lsmeans tries to discover response transformations and link functions, and provides a type argument in
summary, lsmip, and predict that allows inverting the transformation. For example, consider the Cox
model just fitted.

R> summary(cgd.lsm, type = "response")

inherit = X-linked:

treat hazard SE df asymp.LCL asymp.UCL

placebo 1.1328638 0.4196359 NA 0.5480713 2.3416302

rIFN-g 0.3304159 0.1280065 NA 0.1546169 0.7060979

inherit = autosomal:

treat hazard SE df asymp.LCL asymp.UCL

placebo 1.8007736 0.4422279 NA 1.1127527 2.9142017

rIFN-g 0.8016616 0.3053313 NA 0.3799725 1.6913367

Results are averaged over the levels of: sex

Confidence level used: 0.95

As another example, suppose we transform the response in warp.lm:

R> logwarp.rg <- ref.grid(update(warp.lm, log(breaks) ~ .))

R> summary(logwarp.rg)

wool tension prediction SE df

A L 3.717945 0.1246647 48

B L 3.282378 0.1246647 48

A M 3.116750 0.1246647 48

B M 3.309327 0.1246647 48

A H 3.117623 0.1246647 48

B H 2.904152 0.1246647 48

R> summary(logwarp.rg, type = "response")

wool tension lsresponse SE df

A L 41.17969 5.133656 48

B L 26.63906 3.320951 48

A M 22.57289 2.814043 48

B M 27.36669 3.411661 48

A H 22.59260 2.816501 48

B H 18.24975 2.275101 48

11

