
Using the lsmeans Package

Russell V. Lenth
The University of Iowa

russell-lenth@uiowa.edu

August 27, 2012

1 Introduction

Least-squares means (or LS means), popularized by SAS, are predictions from a linear model at combina-
tions of specified factors. SAS’s documentation describes them as “predicted population margins—that is,
they estimate the marginal means over a balanced population” (SAS Institute 2012). Unspecified factors
and covariates are handled by summarizing the predictions over those factors and variables. This vignette
gives some examples of LS means and the lsmeans package. Some of the finer points of LS means are
explained in the context of these examples.

Like most statistical calculations, it is possible to use least-squares means inappropriately; however,
they are in fact simply predictions from the model. When used with due care, they can provide useful
summaries of a linear model that includes factors.

2 Analysis-of-covariance example

Oehlert (2000), p.456 gives a dataset concerning repetitive-motion pain due to typing on three types of er-
gonomic keyboards. Twelve subjects having repetitive-motion disorders were randomized to the keyboard
types, and reported the severity of their pain on a subjective scale of 0–100 after two weeks of using the
keyboard. We also recorded the time spent typing, in hours. Here are the data, and a plot.

R> typing = data.frame(

R> type = rep(c("A","B","C"), each=4),

R> hours = c(60,72,61,50, 54,68,66,59, 56,56,55,51),

R> pain = c(85,95,69,58, 41,74,71,52, 41,34,50,40))

R> library(lattice)

R> xyplot(pain ~ hours | type, data = typing, layout = c(3,1))

hours

pa
in

40

50

60

70

80

90

50 55 60 65 70

●

●

●

●

A

50 55 60 65 70

●

●

●

●

B

50 55 60 65 70

●

●

●

●

C

1

mailto:russell-lenth@uiowa.edu

It appears that hours and pain are linearly related (though it’s hard to know for type C keyboards), and
that the trend line for type A is higher than for the other two. To test this, consider a simple covariate model
that fits parallel lines to the three panels:

R> typing.lm = lm(pain ~ hours + type, data = typing)

The least-squares means resulting from this model are easily obtained by calling lsmeans with the fitted
model and a formula specifying the factor of interest:

R> library(lsmeans)

R> lsmeans(typing.lm, ~ type)

$‘type lsmeans‘

estimate SE t.ratio

A 73.56518 3.640583 20.20698

B 54.49529 3.722251 14.64041

C 49.43953 3.943413 12.53724

These results are the same as what are often called “adjusted means” in the analysis of covariance—
predicted values for each keyboard type, when the covariate is set to its overall average value, as we now
verify:

R> predict(typing.lm, newdata = data.frame(type = c("A","B","C"),

R> hours = mean(typing$hours)))

1 2 3

73.56518 54.49529 49.43953

The lsmeans function allows us to make predictions at other hours values. We may also obtain comparisons
or contrasts among the means by specifying a keyword in the left-hand side of the formula. For example,

R> lsmeans(typing.lm, pairwise ~ type, at = list(hours = 55))

$‘type lsmeans‘

estimate SE t.ratio

A 66.28560 4.154824 15.95389

B 47.21570 4.351192 10.85121

C 42.15995 3.588596 11.74831

$‘type pairwise differences‘

estimate SE t.ratio

A - B 19.069896 5.081620 3.752720

A - C 24.125650 5.559580 4.339474

B - C 5.055754 5.719515 0.883948

The resulting least-squares means are each about 7.3 less than the previous results, but their standard errors
don’t all change the same way: the first two SEs increase but the third decreases because the prediction is
closer to the data in that group.

The results for the pairwise differences are the same regardless of the hours value we specify, because
the hours effect cancels out when we take the differences. We confirm that the mean pain with keyboard A
is significantly greater than it is with either of the other keyboards.

There are other choices besides pairwise. The other built-in options are revpairwise (same as pairwise
but the subraction is done the other way; trt.vs.ctrl for comparing one factor level (say, a control) with
each of the others, and the related trt.vs.ctrl1, and trt.vs.ctrlk for convenience in specifying which
group is the control group; and poly for estimating orthogonal-polynomial contrasts, assuming equal spac-
ing. It is possible to provide custom contrasts as well—see the documentation.

2

3 Two-factor example

Now consider the R-provided dataset warpbreaks, relating to a weaving-process experiment. This dataset
(from Tukey 1977, p.82) has two factors: wool (two types of wool), and tension (low, medium, and high);
and the response variable is breaks, the nuumber of breaks in a fixed length of yarn. To make it more
interesting, we’ll delete some cases so that the design is unbalanced.

R> warp = warpbreaks[-c(1,2,3,5,8,13,21,34),]

R> with(warp, table(wool, tension))

tension

wool L M H

A 4 8 8

B 8 9 9

An interaction plot clearly indicates that we shouldn’t consider an additive model.

R> with(warp, interaction.plot(tension, wool, breaks, type="b"))

1

1 1

20
25

30
35

40
45

tension

m
ea

n
of

 b
re

ak
s

2
2

2

L M H

 wool

1
2

A
B

So let us fit a model with interaction

R> warp.lm = lm(breaks ~ wool * tension, data = warp)

R> anova(warp.lm)

Analysis of Variance Table

Response: breaks

Df Sum Sq Mean Sq F value Pr(>F)

wool 1 271.0 270.99 2.8537 0.098947 .

tension 2 1229.6 614.78 6.4739 0.003666 **

wool:tension 2 1108.8 554.40 5.8381 0.005962 **

Residuals 40 3798.5 94.96

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Now we can obtain the least-squares means for the wool×tension combinations. We could request pair-
wise comparisons as well by specifying pairwise ~ wool:tension, but this will yield quite a few com-
parisons (15 to be exact). Often, people are satisfied with a smaller number of comparisons (or contrasts)
obtained by restricting them to be at the same level of one of the factors. This can be done using the |

symbol for conditioning. In the code below, we request comparisons of the wools at each tension, and
polynomial contrasts for each wool.

R> lsmeans(warp.lm, list(pairwise ~ wool | tension, poly ~ tension | wool)) [-3]

3

$‘wool:tension lsmeans‘

estimate SE t.ratio

A, L 48.75000 4.872426 10.005282

B, L 26.62500 3.445326 7.727862

A, M 24.87500 3.445326 7.219927

B, M 28.77778 3.248284 8.859378

A, H 24.62500 3.445326 7.147365

B, H 18.77778 3.248284 5.780830

$‘wool:tension pairwise differences‘

estimate SE t.ratio

A - B | L 22.125000 5.967479 3.7075957

A - B | M -3.902778 4.735147 -0.8242147

A - B | H 5.847222 4.735147 1.2348554

$‘tension:wool polynomial contrasts‘

estimate SE t.ratio

linear | A -24.125000 5.967479 -4.042746

quadratic | A 23.625000 9.115475 2.591746

linear | B -7.847222 4.735147 -1.657229

quadratic | B -12.152778 8.039093 -1.511710

(We suppressed the third element of the results because it is the same as the first, with rows rearranged.)
With these data, the least-squares means are exactly equal to the cell means of the data. The main result
(visually clear in the interaction plot) is that the wools differ the most when the tension is low. The signs of
the polynomial contrasts indicate decrasing trends for both wools, but opposite concavities.

It is also possible to abuse lsmeans with a call like this:

R> lsmeans(warp.lm, ~ wool) ### NOT a good idea!

$‘wool lsmeans‘

estimate SE t.ratio

A 32.75000 2.296884 14.25845

B 24.72685 1.914070 12.91847

Warning message:

In lsmeans(warp.lm, ~wool) :

lsmeans of wool may be misleading due to interaction with other predictor(s)

Each lsmean is the average of the three tension lsmeans at the given wool. As the warning indicates, the
presence of the strong interaction indicates that these results are pretty meaningless. In another dataset
wher an additive model would explain the data, these marginal averages, and comparisons or contrasts
thereof, can nicely summarize the main effects in an interpretable way.

4 Split-plot example

The nlme package includes a famous dataset Oats that was used in Yates (1935) as an example of a split-plot
experiment. Here is a summary of the dataset.

R> library(nlme)

R> summary(Oats)

4

Block Variety nitro yield

VI :12 Golden Rain:24 Min. :0.00 Min. : 53.0

V :12 Marvellous :24 1st Qu.:0.15 1st Qu.: 86.0

III:12 Victory :24 Median :0.30 Median :102.5

IV :12 Mean :0.30 Mean :104.0

II :12 3rd Qu.:0.45 3rd Qu.:121.2

I :12 Max. :0.60 Max. :174.0

The experiment was conducted in six blocks, and each block was divided into three plots, which were
randomly assigned to varieties of oats. With just Variety as a factor, it is a randomized complete-block ex-
periment. However, each plot was subdivided into 4 subplots and the subplots were treated with different
amounts of nitrogen. Thus, Block is a blocking factor, Variety is the whole-plot factor, and nitro is the
split-plot factor. The response variable is yield, the yield of each subplot in bushels per acre. Here is an
interaction plot of the data

R> library(nlme)

R> with(Oats, interaction.plot(nitro, Variety, yield, type="b"))

1

1

1

1

70
80

90
10

0
11

0
12

0

nitro

m
ea

n
of

 y
ie

ld

2

2

2

2

3

3

3

3

0 0.2 0.4 0.6

 Variety

2
1
3

Marvellous
Golden Rain
Victory

There is not much evidence of an interaction. In this dataset, we have random factors Block and Block:Variety

(which identifies the plots). So we will fit a linear mixed-effects model that accounts for these. Another
technicality is that nitro is a numeric variable, and initially we will model it as a factor. Here we go.

R> Oats.lme = lme(yield ~ Variety + factor(nitro), random = ~1 | Block/Variety, data=Oats)

R> lsmeans(Oats.lme, list(revpairwise ~ Variety, poly ~ nitro, ~ Variety:nitro))

$‘Variety lsmeans‘

estimate SE t.ratio

Golden Rain 104.5000 7.797492 13.40174

Marvellous 109.7917 7.797492 14.08038

Victory 97.6250 7.797492 12.52005

$‘Variety pairwise differences‘

estimate SE t.ratio

Marvellous - Golden Rain 5.291667 7.07891 0.7475256

Victory - Golden Rain -6.875000 7.07891 -0.9711947

Victory - Marvellous -12.166667 7.07891 -1.7187204

$‘nitro lsmeans‘

estimate SE t.ratio

0 79.38889 7.132357 11.13081

0.2 98.88889 7.132357 13.86483

0.4 114.22222 7.132357 16.01465

0.6 123.38889 7.132357 17.29987

5

$‘nitro polynomial contrasts‘

estimate SE t.ratio

linear 147.33333 13.439537 10.9626791

quadratic -10.33333 6.010344 -1.7192583

cubic -2.00000 13.439537 -0.1488146

$‘Variety:nitro lsmeans‘

estimate SE t.ratio

Golden Rain, 0 79.91667 8.220351 9.721807

Marvellous, 0 85.20833 8.220351 10.365534

Victory, 0 73.04167 8.220351 8.885468

Golden Rain, 0.2 99.41667 8.220351 12.093968

Marvellous, 0.2 104.70833 8.220351 12.737695

Victory, 0.2 92.54167 8.220351 11.257629

Golden Rain, 0.4 114.75000 8.220351 13.959257

Marvellous, 0.4 120.04167 8.220351 14.602985

Victory, 0.4 107.87500 8.220351 13.122918

Golden Rain, 0.6 123.91667 8.220351 15.074376

Marvellous, 0.6 129.20833 8.220351 15.718103

Victory, 0.6 117.04167 8.220351 14.238037

Unlike the warpbreaks example, the additive model makes it reasonable to look at the marginal lsmeans,
which are equally-weighted marginal averages of the cell predictions in the fifth table of the output.1

While the default for obtaining marginal lsmeans is to weight the predictions equally, we may override
this via the fac.reduce argument. For example, suppose that we want the Variety predictions when nitro

is 0.25. We can obtain these by interpolation as follows:

R> lsmeans(Oats.lme, ~ Variety, fac.reduce = function(X, lev) .75 * X[2,] + .25 * X[3,])

$‘Variety lsmeans‘

estimate SE t.ratio

Golden Rain 103.2500 8.011712 12.88738

Marvellous 108.5417 8.011712 13.54787

Victory 96.3750 8.011712 12.02926

(There is also a cov.reduce argument to change the default handling of covariates.) The polynomial con-
trasts for nitro suggest that we could substitute a quadratic trend for nitro; and if we do that, then there
is another (probably better) way to make the above predictions:

R> OatsPoly.lme = lme(yield ~ Variety + poly(nitro, 2), random = ~1 | Block/Variety, data=Oats)

R> lsmeans(OatsPoly.lme, ~ Variety, at = list(nitro = .25))

$‘Variety lsmeans‘

estimate SE t.ratio

Golden Rain 103.88438 8.002227 12.98193

Marvellous 109.17604 8.002227 13.64321

Victory 97.00938 8.002227 12.12280

These predictions are slightly higher than the interpolations mostly because they account for the downward
concavity of the fitted quadratics.

1Interestingly, SAS’s implementation of least-squares means will refuse to output these cell predictions unless the interaction term
is in the model.

6

5 Empty cells

When a design is unbalanced, lsmeans are unambiguously defined in terms of predictions at the factor
combinations in the model. However, if one or more combinations is actually missing, that adds some
complications. Consider the following subset of the first three blocks of the Oats data. We will fit a model
with interaction and obtain the lsmeans for the cells.

R> wildOats = Oats[c(2,6,8,10,15,18,19,20,21,25,26,27,31,32,33,34,35,36),]

R> wildOats.lm = lm(yield ~ Variety*factor(nitro) + Block + Block:Variety, data=wildOats)

R> lsmeans(wildOats.lm, ~Variety:nitro)

$‘Variety:nitro lsmeans‘

estimate SE t.ratio

Golden Rain, 0 NA NA NA

Marvellous, 0 95.00000 5.937951 15.99879

Victory, 0 85.00000 8.092063 10.50412

Golden Rain, 0.2 96.33333 5.215362 18.47107

Marvellous, 0.2 135.00000 5.937951 22.73512

Victory, 0.2 81.00000 5.937951 13.64107

Golden Rain, 0.4 115.00000 5.215362 22.05024

Marvellous, 0.4 138.00000 8.092063 17.05375

Victory, 0.4 129.00000 5.937951 21.72467

Golden Rain, 0.6 128.66667 3.887301 33.09923

Marvellous, 0.6 130.00000 8.092063 16.06512

Victory, 0.6 NA NA NA

The results indicate NAs for the first and last cells. This is the default behavior of lsmeans, and it happens
because there are special provisions in the code to identify empty cells. To see why this is necessary, consider
a different parameterization of the same model, and let’s compare the lsmeans for the two models with
check.cells=FALSE, i.e., we don’t take pains to check for empty cells.

R> wildOats.lm2 = lm(yield ~ Variety*ordered(nitro) + Block + Block:Variety, data=wildOats)

R> lsmeans(wildOats.lm, ~Variety:nitro,

R> check.cells = FALSE)

$‘Variety:nitro lsmeans‘

estimate SE t.ratio

Golden Rain, 0 93.66667 10.284832 9.107262

Marvellous, 0 95.00000 5.937951 15.998785

Victory, 0 85.00000 8.092063 10.504120

Golden Rain, 0.2 96.33333 5.215362 18.471073

Marvellous, 0.2 135.00000 5.937951 22.735116

Victory, 0.2 81.00000 5.937951 13.641070

Golden Rain, 0.4 115.00000 5.215362 22.050243

Marvellous, 0.4 138.00000 8.092063 17.053748

Victory, 0.4 129.00000 5.937951 21.724666

Golden Rain, 0.6 128.66667 3.887301 33.099227

Marvellous, 0.6 130.00000 8.092063 16.065125

Victory, 0.6 120.00000 12.495925 9.603130

R> lsmeans(wildOats.lm2, ~Variety:nitro,

R> check.cells = FALSE)

$‘Variety:nitro lsmeans‘

estimate SE t.ratio

Golden Rain, 0 46.66667 38.285477 1.218913

Marvellous, 0 95.00000 5.937951 15.998785

Victory, 0 85.00000 8.092063 10.504120

Golden Rain, 0.2 96.33333 5.215362 18.471073

Marvellous, 0.2 135.00000 5.937951 22.735116

Victory, 0.2 81.00000 5.937951 13.641070

Golden Rain, 0.4 115.00000 5.215362 22.050243

Marvellous, 0.4 138.00000 8.092063 17.053748

Victory, 0.4 129.00000 5.937951 21.724666

Golden Rain, 0.6 128.66667 3.887301 33.099227

Marvellous, 0.6 130.00000 8.092063 16.065125

Victory, 0.6 255.00000 42.286501 6.030293

Note that the lsmeans are identical for the cells that contain data, but they are drastically different for the
two cells that are empty. Leaving check.cells=TRUE is definitely a good idea!2

Finally, notice that if an additive model is used, the empty cells do not create a rank deficiency and are
therefore not problematic:

R> wildOats.lma = update(wildOats.lm, . ~ . - Variety:factor(nitro))

R> wildOats.lma2 = update(wildOats.lm2, . ~ . - Variety:ordered(nitro))

R> lsmeans(wildOats.lma, ~Variety:nitro)[[1]] [c(1,2,12),]

R> lsmeans(wildOats.lma2, ~Variety:nitro)[[1]] [c(1,2,12),]

2This is an important distinction between SAS and R. SAS parameterizes factors using complete sets of indicators and checks for
estimability. R uses a full-rank parameterization so that, by construction, everything is estimable, including inappropriate combina-
tions.

7

estimate SE t.ratio

Golden Rain, 0 81.55647 12.756235 6.39346

Marvellous, 0 104.59111 9.651565 10.83670

Victory, 0.6 121.12672 11.129134 10.88375

estimate SE t.ratio

Golden Rain, 0 81.55647 12.756235 6.39346

Marvellous, 0 104.59111 9.651565 10.83670

Victory, 0.6 121.12672 11.129134 10.88375

The lsmeans library includes a function empty.cells that you may use to check for empty cells relative to
a model:

R> empty.cells(~ Variety * nitro, wildOats)

[[1]]

Variety nitro

1 Golden Rain 0

12 Victory 0.6

R> empty.cells(~ Variety + nitro, wildOats)

list()

6 GLMM example

The dataset cbpp in the lme4 package, originally from Lesnoff et al. (1964), provides data on the incidence
of contagious bovine pleuropneumonia in 15 herds of zebu cattle in Ethiopia, collected over four time
periods. These data are used as the primary example for the glmer function, and it is found that a model
that accounts for overdisperion is advantageous; hence the addition of the (1|obs) in the model fitted
below.

lsmeans may be used as in linear models to obtain marginal linear predictions for a generalized linear
model or, in this case, a generalized linear mixed model. Here, we use the trt.vs.ctrl1 contrast family
to compare each period with the first, as the primary goal was to track the spread or decline of CBPP over
time. We will save the results from lsmean, then add the inverse logits of the predictions and the estimated
odds ratios for the comparisons as an aid in interpretation.

R> library(lme4, quietly = TRUE, warn.conflicts = FALSE)

R> cbpp$obs = 1:nrow(cbpp)

R> cbpp.glmer = glmer(cbind(incidence, size - incidence)

R> ~ period + (1 | herd) + (1 | obs), family = binomial, data = cbpp)

Number of levels of a grouping factor for the random effects

is *equal* to n, the number of observations

R> cbpp.lsm = lsmeans(cbpp.glmer, trt.vs.ctrl1 ~ period)

R> cbpp.lsm[[1]] = transform(cbpp.lsm[[1]], pred.incidence = 1 - 1 / (1 + exp(estimate)))

R> cbpp.lsm[[2]] = transform(cbpp.lsm[[2]], odds.ratio = exp(estimate))

R> cbpp.lsm

$‘period lsmeans‘

estimate SE t.ratio pred.incidence

1 -1.500292 0.2887610 -5.195617 0.18238203

2 -2.726800 0.3809740 -7.157445 0.06141032

3 -2.829133 0.3994052 -7.083366 0.05577003

4 -3.366631 0.5193989 -6.481783 0.03335476

$‘period differences from control‘

estimate SE t.ratio odds.ratio

2 - 1 -1.226509 0.4734567 -2.590541 0.2933148

3 - 1 -1.328841 0.4883951 -2.720833 0.2647839

4 - 1 -1.866339 0.5905702 -3.160233 0.1546889

In a way, the comparisons table is not needed because the results are the same as the regression coefficients
under the default parameterization.

8

7 Miscellaneous

You may occasionally want to know exactly what contrast coefficients are being used, especially in the
polynomial case. Contrasts are implemented in functions having names of the form name.lsmc (“lsmc” for
“least-squares means contrasts”), and you can simply call that function to see the contrasts; for example,

R> poly.lsmc(1:4)

linear quadratic cubic

1 -3 1 -1

2 -1 -1 3

3 1 -1 -3

4 3 1 1

poly.lsmc uses the base function poly plus an ad hoc algorithm that tries (and usually succeeds) to make
integer coefficients, copmparable to what you find in published tables of orthogonal polynomial contrasts.

You may supply your own custom contrasts in two ways. One is to supply a contr argument in the
lsmeans call, like this:

R> lsmeans(typing.lm, custom ~ type,

R> contr = list(custom = list(A.vs.others=c(1, -.5, -.5)))) [-1]

$‘type custom‘

estimate SE t.ratio

A.vs.others 21.59777 4.49307 4.806907

Each contrast family is potentially a list of several contrasts, and there are potentially more than one contrast
family; so we must provide a list of lists.

The other way is to create your own .lsmc function, and use its base name in a formula:

R> inward.lsmc = function(levs, ...) {

R> n = length(levs)

R> result = data.frame(‘grand mean‘ = rep(1/n, n))

R> for (i in 1 : floor(n/2)) {

R> x = rep(0, n)

R> x[1:i] = 1/i

R> x[(n-i+1):n] = -1/i

R> result[[paste("first", i, "vs last", i)]] = x

R> }

R> attr(result, "desc") = "grand mean and inward contrasts"

R> result

R> }

Testing it, we have

R> inward.lsmc(1:5)

grand.mean first 1 vs last 1 first 2 vs last 2

1 0.2 1 0.5

2 0.2 0 0.5

3 0.2 0 0.0

4 0.2 0 -0.5

5 0.2 -1 -0.5

. . . and an application:

R> lsmeans(Oats.lme, inward ~ nitro) [-1]

9

$‘nitro grand mean and inward contrasts‘

estimate SE t.ratio

grand.mean 103.97222 6.640574 15.65711

first 1 vs last 1 -44.00000 4.249955 -10.35305

first 2 vs last 2 -29.66667 3.005172 -9.87187

References

Lesnoff, M., Laval, G., Bonnet, P., et al. (2004) Within-herd spread of contagious bovine pleuropneumo-
nia in Ethiopian highlands, Preventive Veterinary Medicine, 64, 27–40.

Oehlert, G. (2000) A First Course in Design and Analysis of Experiments, W. H. Freeman. This is out-of-print,
but now available under a Creative Commons license via http://users.stat.umn.edu/~gary/Book.
html (accessed August 23, 2012).

SAS Institute Inc. (2012) Online documentation, SAS/STAT version 9.3: Shared concepts: LSMEANS state-
ment. http://support.sas.com/documentation/cdl/en/statug/63962/HTML/default/viewer.htm#
statug_introcom_a0000003362.htm (accessed August 14, 2012).

Tukey, J. W. (1977) Exploratory Data Analysis. Addison-Wesley.

Yates, F. (1935) Complex experiments, Journal of the Royal Statistical Society (Supplement), 2, 181–247.

10

http://users.stat.umn.edu/~gary/Book.html
http://users.stat.umn.edu/~gary/Book.html
http://support.sas.com/documentation/cdl/en/statug/63962/HTML/default/viewer.htm#statug_introcom_a0000003362.htm
http://support.sas.com/documentation/cdl/en/statug/63962/HTML/default/viewer.htm#statug_introcom_a0000003362.htm

	Introduction
	Analysis-of-covariance example
	Two-factor example
	Split-plot example
	Empty cells
	GLMM example
	Miscellaneous

