The LORI model is designed to analyse count data with covariates, using a Poisson log-linear model. In particular, it can be used to assess the effect of temporal and geographical covariates on species abundances.
Let \(Y\in\mathbb{N}^{n\times p}\) be a (incomplete) matrix of counts, and \(L\in\mathbb{R}^{np\times K}\) a matrix of covariates about the rows and columns of \(Y\). For example if \(Y\) counts the abundance of species across sites (rows) and time stamps (columns), \(L\) might contain temporal, spatial, and spatio-temporal information.
## Loading required package: Matrix
## Loading required package: foreach
## Loaded glmnet 2.0-16
The {Aravo data set} measures the abundance of \(82\) species of alpine plants in \(75\) sites in France. The data consist of a contingency table collecting the abundance of species across sampling sites. Covariates about the environments and species are also available.
## Aspect Slope Form PhysD ZoogD Snow
## AR07 7 2 1 50 no 140
## AR71 1 35 3 40 no 140
## AR26 5 0 3 20 no 140
## AR54 9 30 3 80 no 140
## AR60 9 5 1 80 no 140
## AR70 1 30 3 40 no 140
## Height Spread Angle Area Thick SLA N_mass Seed
## Agro.rupe 6 10 80 60.0 0.12 8.1 218.70 0.08
## Alop.alpi 5 20 20 190.9 0.20 15.1 203.85 0.21
## Anth.nipp 15 5 50 280.0 0.08 18.0 219.60 0.54
## Heli.sede 0 30 80 600.0 0.20 10.6 233.20 1.72
## Aven.vers 12 30 60 420.0 0.14 12.5 156.25 1.17
## Care.rosa 30 20 80 180.0 0.40 6.5 208.65 1.68
d <- dim(aravo$spe)
n <- d[1]
p <- d[2]
# Create covariate matrix, choose quantitative variables in Row and Column covariates
# and use covmat function to replicate species/environments
# center and scale covariate matrix
cov <- scale(covmat(aravo$env[, c(1,2,4,6)], aravo$traits, n, p))
##
1 / 100
2 / 100
3 / 100
4 / 100
5 / 100
6 / 100
7 / 100
8 / 100
9 / 100
10 / 100
11 / 100
12 / 100
13 / 100
14 / 100
15 / 100
16 / 100
17 / 100
18 / 100
19 / 100
20 / 100
21 / 100
22 / 100
23 / 100
24 / 100
25 / 100
26 / 100
27 / 100
28 / 100
29 / 100
30 / 100
31 / 100
32 / 100
33 / 100
34 / 100
35 / 100
36 / 100
37 / 100
38 / 100
39 / 100
40 / 100
41 / 100
42 / 100
43 / 100
44 / 100
45 / 100
46 / 100
47 / 100
48 / 100
49 / 100
50 / 100
51 / 100
52 / 100
53 / 100
54 / 100
55 / 100
56 / 100
57 / 100
58 / 100
59 / 100
60 / 100
61 / 100
62 / 100
63 / 100
64 / 100
65 / 100
66 / 100
67 / 100
68 / 100
69 / 100
70 / 100
71 / 100
72 / 100
73 / 100
74 / 100
75 / 100
76 / 100
77 / 100
78 / 100
79 / 100
80 / 100
81 / 100
82 / 100
83 / 100
84 / 100
85 / 100
86 / 100
87 / 100
88 / 100
89 / 100
90 / 100
91 / 100
92 / 100
93 / 100
94 / 100
95 / 100
96 / 100
97 / 100
98 / 100
99 / 100
100 / 100
## [1] "fitting model..."
##
1%
2%
3%
4%
5%
6%
7%
8%
9%
10%
11%
12%
13%
14%
15%
16%
17%
18%
19%
20%
21%
22%
23%
24%
25%
26%
27%
28%
29%
30%
31%
32%
33%
34%
35%
36%
37%
38%
39%
40%
41%
42%
43%
44%
45%
46%
47%
48%
49%
50%
51%
52%
53%
54%
55%
56%
57%
58%
59%
60%
61%
62%
63%
64%
65%
66%
67%
68%
69%
70%
71%
72%
73%
74%
75%
76%
77%
78%
79%
80%
81%
82%
83%
84%
85%
86%
87%
88%
89%
90%
91%
92%
93%
94%
95%
96%
97%
98%
99%
100%
100% - iter: 10 - error: 1.170462e-05 - objective: 0.6617426
100% - iter: 20 - error: 1.169266e-05 - objective: 0.6616652
100% - iter: 30 - error: 1.16807e-05 - objective: 0.6615879
100% - iter: 40 - error: 1.166876e-05 - objective: 0.6615107
100% - iter: 50 - error: 1.165681e-05 - objective: 0.6614335
100% - iter: 60 - error: 1.164488e-05 - objective: 0.6613565
100% - iter: 70 - error: 1.163295e-05 - objective: 0.6612795
100% - iter: 80 - error: 1.162102e-05 - objective: 0.6612026
100% - iter: 90 - error: 1.16091e-05 - objective: 0.6611258
100% - iter: 100 - error: 1.159719e-05 - objective: 0.6610491
100% - iter: 110 - error: 1.158528e-05 - objective: 0.6609725
100% - iter: 120 - error: 1.157338e-05 - objective: 0.660896
100% - iter: 130 - error: 1.156148e-05 - objective: 0.6608196
100% - iter: 140 - error: 1.154959e-05 - objective: 0.6607432
100% - iter: 150 - error: 1.153771e-05 - objective: 0.6606669
100% - iter: 160 - error: 1.152583e-05 - objective: 0.6605908
100% - iter: 170 - error: 1.151396e-05 - objective: 0.6605147
100% - iter: 180 - error: 1.150209e-05 - objective: 0.6604387
100% - iter: 190 - error: 1.149023e-05 - objective: 0.6603627
100% - iter: 200 - error: 1.147837e-05 - objective: 0.6602869
100% - iter: 210 - error: 1.146652e-05 - objective: 0.6602112
100% - iter: 220 - error: 1.145468e-05 - objective: 0.6601355
100% - iter: 230 - error: 1.144284e-05 - objective: 0.66006
100% - iter: 240 - error: 1.1431e-05 - objective: 0.6599845
100% - iter: 250 - error: 1.141918e-05 - objective: 0.6599091
100% - iter: 260 - error: 1.140735e-05 - objective: 0.6598338
100% - iter: 270 - error: 1.139554e-05 - objective: 0.6597585
100% - iter: 280 - error: 1.138373e-05 - objective: 0.6596834
100% - iter: 290 - error: 1.137192e-05 - objective: 0.6596084
100% - iter: 300 - error: 1.136013e-05 - objective: 0.6595334
100% - iter: 310 - error: 1.134833e-05 - objective: 0.6594585
100% - iter: 320 - error: 1.133655e-05 - objective: 0.6593837
100% - iter: 330 - error: 1.132476e-05 - objective: 0.659309
100% - iter: 340 - error: 1.131299e-05 - objective: 0.6592344
100% - iter: 350 - error: 1.130122e-05 - objective: 0.6591599
100% - iter: 360 - error: 1.128945e-05 - objective: 0.6590854
100% - iter: 370 - error: 1.127769e-05 - objective: 0.6590111
100% - iter: 380 - error: 1.126594e-05 - objective: 0.6589368
100% - iter: 390 - error: 1.125419e-05 - objective: 0.6588626
100% - iter: 400 - error: 1.124245e-05 - objective: 0.6587885
100% - iter: 410 - error: 1.123072e-05 - objective: 0.6587145
100% - iter: 420 - error: 1.121899e-05 - objective: 0.6586406
100% - iter: 430 - error: 1.120726e-05 - objective: 0.6585667
100% - iter: 440 - error: 1.119554e-05 - objective: 0.658493
100% - iter: 450 - error: 1.118383e-05 - objective: 0.6584193
100% - iter: 460 - error: 1.117212e-05 - objective: 0.6583457
100% - iter: 470 - error: 1.116042e-05 - objective: 0.6582722
100% - iter: 480 - error: 1.114872e-05 - objective: 0.6581988
100% - iter: 490 - error: 1.113703e-05 - objective: 0.6581254
100% - iter: 500 - error: 1.112535e-05 - objective: 0.6580522
100% - iter: 510 - error: 1.111367e-05 - objective: 0.657979
100% - iter: 520 - error: 1.1102e-05 - objective: 0.6579059
100% - iter: 530 - error: 1.109033e-05 - objective: 0.6578329
100% - iter: 540 - error: 1.107867e-05 - objective: 0.65776
100% - iter: 550 - error: 1.106701e-05 - objective: 0.6576872
100% - iter: 560 - error: 1.105536e-05 - objective: 0.6576145
100% - iter: 570 - error: 1.104372e-05 - objective: 0.6575418
100% - iter: 580 - error: 1.103208e-05 - objective: 0.6574692
100% - iter: 590 - error: 1.102045e-05 - objective: 0.6573968
100% - iter: 600 - error: 1.100882e-05 - objective: 0.6573244
100% - iter: 610 - error: 1.09972e-05 - objective: 0.657252
100% - iter: 620 - error: 1.098558e-05 - objective: 0.6571798
100% - iter: 630 - error: 1.097397e-05 - objective: 0.6571077
100% - iter: 640 - error: 1.096237e-05 - objective: 0.6570356
100% - iter: 650 - error: 1.095077e-05 - objective: 0.6569636
100% - iter: 660 - error: 1.093917e-05 - objective: 0.6568917
100% - iter: 670 - error: 1.092759e-05 - objective: 0.6568199
100% - iter: 680 - error: 1.0916e-05 - objective: 0.6567482
100% - iter: 690 - error: 1.090443e-05 - objective: 0.6566765
100% - iter: 700 - error: 1.089286e-05 - objective: 0.656605
100% - iter: 710 - error: 1.088129e-05 - objective: 0.6565335
100% - iter: 720 - error: 1.086974e-05 - objective: 0.6564621
100% - iter: 730 - error: 1.085818e-05 - objective: 0.6563908
100% - iter: 740 - error: 1.084663e-05 - objective: 0.6563196
100% - iter: 750 - error: 1.083509e-05 - objective: 0.6562484
100% - iter: 760 - error: 1.082356e-05 - objective: 0.6561774
100% - iter: 770 - error: 1.081203e-05 - objective: 0.6561064
100% - iter: 780 - error: 1.08005e-05 - objective: 0.6560355
100% - iter: 790 - error: 1.078898e-05 - objective: 0.6559647
100% - iter: 800 - error: 1.077747e-05 - objective: 0.655894
100% - iter: 810 - error: 1.076596e-05 - objective: 0.6558233
100% - iter: 820 - error: 1.075446e-05 - objective: 0.6557528
100% - iter: 830 - error: 1.074297e-05 - objective: 0.6556823
100% - iter: 840 - error: 1.073148e-05 - objective: 0.6556119
100% - iter: 850 - error: 1.071999e-05 - objective: 0.6555416
100% - iter: 860 - error: 1.070851e-05 - objective: 0.6554713
100% - iter: 870 - error: 1.069704e-05 - objective: 0.6554012
100% - iter: 880 - error: 1.068557e-05 - objective: 0.6553311
100% - iter: 890 - error: 1.067411e-05 - objective: 0.6552612
100% - iter: 900 - error: 1.066265e-05 - objective: 0.6551913
100% - iter: 910 - error: 1.06512e-05 - objective: 0.6551214
100% - iter: 920 - error: 1.063976e-05 - objective: 0.6550517
100% - iter: 930 - error: 1.062832e-05 - objective: 0.6549821
100% - iter: 940 - error: 1.061689e-05 - objective: 0.6549125
100% - iter: 950 - error: 1.060546e-05 - objective: 0.654843
100% - iter: 960 - error: 1.059404e-05 - objective: 0.6547736
100% - iter: 970 - error: 1.058263e-05 - objective: 0.6547043
100% - iter: 980 - error: 1.057122e-05 - objective: 0.654635
100% - iter: 990 - error: 1.055981e-05 - objective: 0.6545659
100% - iter: 1000 - error: 1.054841e-05 - objective: 0.6544968
## Aspect Slope PhysD Snow Height Spread
## 0.03812487 0.07070402 -0.01872686 -0.07311364 0.09327172 -0.23549705
## Angle Area Thick SLA N_mass Seed
## -0.18366508 -0.19437829 -0.10844523 -0.16766109 0.18173165 -0.11695309