1 LMVAR: a linear model with heteroscedastic-
ity

This vignette describes in more detail the mathematical aspects of the model
with which the lmvar package is concerned. A short description can be found
in the vignette ’Intro’ of this package. The model has been discussed by various
authors [1, 2, 3].

Assume that a stochastic vector Y € R™ has a multivariate normal distribu-
tion as

Y~ N (p*, 57) (1)
in which p* € R™ is the expected value and ¥* € R™" a diagonal covariance
matrix

SIS NI )

J (07)? i=j.

Assume that the vector of expectation values p* is linearly dependent on the
values of the covariates in a model matrix X,

pr=XuB, (3)

with X, € R™ku and B € REw.
Similarly, assume that the vector o* = (o7, ..., 0y) depends on the covariates

in a model matrix X, as
logo™* = X, 8% (4)

where logo* = (logof,...,logo}), X, € Rk and 8% € RFe. The logarithm
is taken to be the 'natural logarithm’; i.e., with base e.

We assume n > k, + k, to avoid having an overdetermined system when we
calculate estimators for 8 and (7, as explained in the next section.

If we take X, a n x 1 matrix in which each element is equal to 1, we have
the standard linear model.

The parameter vector (3 is defined uniquely only if X, is full-rank. If not,
the space R¥* can be split into subspaces such that there is a uniquely defined B
in each subspace. The way lmvar treats this is as follows. If the user-supplied
X,, is not full-rank, 1mvar removes just enough columns from the matrix to
make it full-rank. This amounts to selecting §;; from the subspace in which all
vector elements corresponding to the removed columns, are set to zero.

In the same way, if the user-supplied X, is not full-rank, just enough columns
are removed to make it so. This defines a subspace in which 3} is defined
uniquely.

In what follows we assume that X, and X, are the matrices after the columns
have been removed, i.e., they are full-rank matrices. The vector elements that
are set to zero, drop out of 3 and 3 and the dimensions k,, and k, are reduced
accordingly. These reduced dimensions are returned by the function dfree in
the 1mvar package.



2 Maximum-likelihood equations

A vector element Y; is distributed as

1 1Y =\
Y~ ——e — | — . 5
V2ro} Xp( 2 ( or ) ) (5)

The logarithm of the likelihood L is defined as

n

2
log L(B,, Bs) = —g log(27) — Z(log o + e = i) 2012%) )- (6)
k=1 k

for all vectors 8, € Rk« and 8, € RF> and p and o defined as

n= X,uﬁ,u
logo = X, 0.

We are looking for B}L € R*» and 3, € R*s that maximize the log-likelihood:

(Bw Ba) = argmax log L(B,, Bs)- (8)
(Bu,Bo) ER* 1 xRFo
These maximum likelihood estimators are taken to be the estimators of 5 and
B%. We assume that Bﬂ and Bg thus defined, exist and are unique.

Given Ba, this is true for BA“. Namely, given any S, log £ is maximized by
the B, which is the solution of

Vg, log L =0 (9)
where Vg stands for the gradient (#, cel %‘”L).
This solution is ’ . ’
Bu= (X 27'X,)  Xix'y. (10)
with ¥ € R™" defined as in (2) but with 3, arbitrary:
0 i#]
Yij = { s (11)
of i=j.

Because of our assumption that X, is full rank, the inverse of the matrix
X;;FZ_lXH can be taken.

It is easy to see that the solution (10) represents a maximum in the log-
likelihood. The matrix H,, of second-order derivatives

0%log L

(Hﬂﬂ)ij = 6ﬁ/tiaﬂuj

is given by -
H,=-X,Y"X,, (13)



which is negative-definite for any S,.
Our maximization search can now be carried out in a smaller space:

By = argmax log Lp(8,) (14)
Bo ERKa

where Lp is the so-called profile-likelihood

£P(6cf) = ‘C(Bu(ﬁo)aﬁa)- (15)

with 8, depending on 3, as in (10).
To find B, from (14), we must solve

(Vg,log L) (Vp,Bu) + Vg, logL.=0 (16)
evaluated at 8, = ,(85), and (Vg,3,) the matrix
6ﬁm
(V,Bgﬂu)z] aBa’j ( 7)

However, because of (9), the first term in (16) vanishes and we are left to solve
Vg, log L = 0. (18)

The derivatives that are the elements of this gradient are given by

T S+ B )
Bo’i k=1 Uk
v (@ ;zﬂk)Q 1)(Xo) ki (19)

k=

—

The entire gradient can be written as a matrix-product as
Vg, log £ =X\, (20)

with A\, a vector of length n whose elements \,; are

Aoi = (y_“>2 ~1. (21)

;i

The maximum-likelihood equations (18) take the form

XTI\, =0. (22)
The estimate p of the expectation value that appears in A, depends on 3,
as
1= Xuby
= X, (XI=7'x,) T XIs Ty
=y 12X, (xTxX,) T XIn Ty (23)



where the latter form is the more symmetric, with

0 i#j
(z2) =41 . (24)
ij — i=7.
o
The vector (y — u)/o, which i-th element is (y; — p;)/0;, can be written as
Y1 _ s [1 —xV2X, (XTE X)) T XTIy (25)
g
in which I € R™" is the identity matrix.

2.1 Profile-likelihood Hessian

Numerical procedures to solve the maximum-likelihood equations XZ )\, = 0
involve the calculation of the Hessian Hp of the profile log-likelihood. Hp is

the matrix of second-order derivatives of log Lp:
0%log Lp

Hp).,. = —=>" 26

(Hp);; Doy O (26)

Differentiation of (19) gives for the second-order derivatives

(Hp);; = —2 i(xmy‘“ L { Ok 4 (4 —uk><Xg>kj} (27)
k=1

Ok 8ﬂgj

with Oui/(0Bs;) the element at row k and column j of the matrix (Vg p).
Given that p = X, 8, and S, is given by (10), the jth column vector of the
matrix is

ou 0B,
=X
0B " 0By ;
o (XTs1x,)"! IR
=X r P xTyty (xTytx,) xT
IL{ aﬂgj 1% Jr( " #) 12 8607 Yy
_ Z—l _ 2—1
=X, (XI's7'X,) 1{-X}f%ﬂ - X, (X157 X,) 1X§2—1+X§‘?)5 _}y
aj aj
—1
— X, (xTs'x,) xr (X, (XI271x,) 7 XIx 4 1}y
aﬂaj
_ —1 oy—1
=X, (X)s7'Xx,) X} 95 ~(y — p) (28)
oj

The matrix 027! /(98,;) takes the form
oyt B " 9% 9oy
Boj = Ooi 0B,
(Xo)1 0
=-2 »-!

(29)



The jth column vector of the matrix is

yl;%,ul (XU)lj
_ -1 .
=-2X, (X)27'X,) X[ ; (30)
Yn —Hn (X ) .
o2 o/nj

n

ou
860]

and the element (Vg_pt)r; of the matrix (Vg p) is given by

Opi - _ -1 Y —
S = 72; (X# (XTx1X,,) Xg)kl 7 (X (31)

If we substitute this result in (27), we obtain for the element at row ¢ and column
j of the Hessian:

(Hp)ij =

- Yk — [k 1yl Y1 — 1
4y (XD (XH (XT271X,) Xf)kl (X +
k=1 k

n 2
-2 (X)) (M> (Xo )k (32)
o
k=1
We can write the Hessian as a matrix-product as
Hp = XA X, (XTR71X,) 7 XTA X, + XE Ao X, (33)
with two n x n diagonal matrices
0 i 0 i FJ
_ R _ 2
(Al)ij =\ ¥ 2/% i=j (AZ)ij ) 29 (yz’ - Hi) i— (34)

i

3 Distributions for estimators

Asymptotic theory of maximum-likelihood estimators tells that the vector of
the combined estimators (5., 5») as defined in (8), is distributed approximately
as

(Bmﬁo) ~ Ni,+k, ((ﬁ;,ﬁ;), 253) for n large. (35)

This distribution is valid in the limit of a large number of observations n.
The covariance matrix X gg is given in terms of the inverse Fisher information

matrix I,,:
1 _
Yps = 5171 L (36)
The Fisher information matrix is given in terms of the expected value of the
Hessian at 3, = §;; and 3, = f3;:

I, = —%E[H*]. (37)



The Hessian H is the Hessian of the full log-likelihood, in contrast to the profile-
likelihood Hessian:

H* H*
= (i ) (59)
no oo
with the three block-matrices defined as

2log L 2log L 2log L
0° log N 0° log 7 _ 0%log (39)

Hin)s = 95,08, Moo = 9308, o) = 55,0,

evaluated at 3, = B, and 38, = f3;.
We have already calculated H,,, in (13). The other block matrices are given
by

o\ Sy —
(Hpp),; = —2 T (X i (Xo)g;
k=1 k
n *\ 2
" Y —
(#2,), = =23 (P20 0, (Ko,
k=1 k

In matrix notation:

T -1 T T
Y =-XIs7'X,,  Hi,=-XI'NiX,,  H,=XIA}X,. (40)

with A7 equal to A; with = p* and o = ¢*, and likewise for Aj.
When we take expected values and keep in mind that

0

{0 i# ]
) )
0-1', Z:j

E[H},] = —XMTZ*_lXH, E[H},] =0, E[H},] = —2X] X, (41)

ElY — p”]
E((Y; — ) (Y; — 1))

we arrive at

This brings the expected value of the Hessian in the form
(XIS lX, 0
E[H*] = ( 0 2XTX, ) (42)

The function fisher in the lmvar package calculates the Fisher information ma-
trix. It estimates E[H*] by replacing the true but unknown ¢* by its maximum-
likelihood estimator 6 in 3*.

The expectation value (42) brings the covariance matrix Xgs in the form

XTIy ty,) " 0
S O " e 43
88 ( 0 L(xXTx,)" (43)



This implies that BH and B,, are independent stochastic variables distributed as

B~ N, (83, (X071 X,) )

) for n large. (44)
Bo ~ Ni, (85, 5 (X0 X))

We obtain for the asymptotic distribution of the maximum-likelihood estimators
of u* and o*

-1
0o~ N (', X, (XTIt xT
s s X ( # H) . 2 for n large. (45)
log 6 ~ Ny (logo*, X, (XX X,) XTI

The expectation value and the variance for an element 6; of & are

(X, (XIX,)"" X(?)“-)

EAi: *
(6] UzeXp< 1

for n large. (46)

var(6;) = (E[3])° (exp<<X" X X;’) Xodiy 1)

The function fitted.lmvar (with the option log = FALSE) returns j and &.
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