1 LMVAR: a linear model with heteroscedastic-
ity

This vignette describes in more detail the mathematical aspects of the model

with which the lmvar package is concerned. A short description can be found

in the vignette 'Intro’ of this package.

Assume that a stochastic vector Y € R™ has a multivariate normal distribu-
tion as

Yo~ No(p*, %) (1)
in which p* € R”™ is the expected value and ¥ € R™" a diagonal covariance
matrix

0 iF
Yij = 2
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Assume that the vector of expectation values p is linearly dependent on the
values of the covariates in a model matrix X,

ph=XuB, (3)

with X, € R™ku and B € RFEw.
Similarly, assume that the vector o* = (o7, ..., o)) depends on the covariates
in a model matrix X, as

log o™ = X, 37 (4)

where logo* = (logot,...,logor), X, € R™Fs and 8% € RF>. The logarithm
is taken to be the 'natural logarithm’; i.e., with base e.

We assume n > k,, + k, to avoid having an overdetermined system when we
calculate estimators for 8 and 37, as explained in the next section.

If we take X, a n x 1 matrix in which each element is equal to 1, we have
the standard linear model.

The parameter vector (3 is defined uniquely only if X, is full-rank. If not,
the space R¥* can be split into subspaces such that there is a uniquely defined B
in each subspace. The way lmvar treats this is as follows. If the user-supplied
X, is not full-rank, 1lmvar removes just enough columns from the matrix to
make it full-rank. This amounts to selecting §;; from the subspace in which all
vector elements corresponding to the removed columns, are set to zero.

In the same way, if the user-supplied X, is not full-rank, just enough columns
are removed to make it so. This defines a subspace in which £} is defined
uniquely.

In what follows we assume that X, and X, are the matrices after the columns
have been removed, i.e., they are full-rank matrices. The vector elements that
are set to zero, drop out of 3 and 37 and the dimensions k,, and k, are reduced
accordingly. These reduced dimensions are returned by the function dfree in
the lmvar package.



2 Maximum-likelihood equations

A vector element Y; is distributed as

1 (Yi — u*)2>
Vi~ ——exp | -t Fi) ) 5
Varor OF ( 2(07)? ®)
The logarithm of the likelihood L is defined as

n

2
log £L(B,.,8s) = —g log(2m) — Z(log o + (kang)) (6)
k=1

for all vectors 8, € RF« and B, € RFs and p and o defined as

u= Xuﬁu
logo = X, 0.

We are looking for BA# € Rk« and Bl, € R¥- that maximize the log-likelihood:

(Bu, Bo) = argmax  log L(By, Bs). (8)

(Bu:Bs) ERFL xREo
These maximum likelihood estimators are taken to be the estimators of 8, and
Bx. We assume that Bu and BU thus defined, exist and are unique.

Given Bg, this is true for B;r Namely, given any S, log £ is maximized by
the 8, which is the solution of

Vg, log£L=0 9)
where Vg, stands for the gradient (ﬁ, cey ﬁ).
The derivatives are 1 1
dlog £ <~ (s — )
7 = =) Xk (10)
85%1‘ kZ:l 0'% "
= (X Ay — ), (11)

with A a diagonal matrix given by

1
Aij = 07251'3'- (12)
Hence
Vg, log £= XAy — p) (13)

and the maximum-likelihood equation (9) becomes

XIAX,B, =X Ay (14)



which has the solution
-1
Bu=(XJAX,) X! Ay. (15)

Because of our assumption that X, is full rank, the inverse of the matrix X EAX 1
can be taken.

It is easy to see that the solution (15) represents a maximum in the log-
likelihood. The matrix H,,, of second-order derivatives

9% log L
(H,,).. = ——— (16
A ¥] aﬁp.iaﬂ,u.j )
is given by

Hpuy=-X1IAX,, (17)

which is negative-definite for any S,.

Our maximization search can now be carried out in a smaller space:

30 = argmax IOg £P(50) (18)
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where Lp is the so-called profile-likelihood
£P(Bo) = ‘C(BM(BO')a ﬁa)' (19)

with 8, depending on 3, as in (15).
To find f, from (18), we must solve

(V. 10g L) (V,Bu) + Vg, logL=0 (20)
evaluated at 8, = B,(85), and (Vg,3,) the matrix

_ aﬁp,z
aﬂa]’ .

However, because of (9), the first term in (20) vanishes and we are left to solve

(Vi Bu)ij (21)

VBU 1og£ =0. (22)

The derivatives that are the elements of this gradient are given by

aalogﬁ _ zn:(—(Xg)m 4 M(Xg)m)
Bo’i k=1 a-k
_ (W;i;“f (X )k (23)
k=1 k

The entire gradient can be written as a matrix-product as

Vs, log £ =X\, (24)



with A\, a vector of length n whose elements \,; are

Aoi = (y“>2 1 (25)
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The maximum-likelihood equations (22) take the form

XTI, = 0. (26)
The estimate p of the expectation value that appears in A, depends on 3,
as
= Xuby
— X, (XTAX,) " X Ay
— AV2X, (XTAX,) T XTAY2y (27)

where the latter form is the more symmetric, with
(Al/z) T (28)
ij o

The vector (y — p)/o can be written as

Tl = a1 - N2, (XAX,) T XAy (29)

in which I € R™" is the identity matrix.

2.1 Profile-likelihood Hessian

Numerical procedures to solve the maximum-likelihood equations X'\, = 0
involve the calculation of the Hessian Hp of the profile log-likelihood. Hp is
the matrix of second-order derivatives of log Lp:

B 0%log Lp
660j8/80i

Differentiation of (23) gives for the second-order derivatives

(HP)ij (30)

(Hp);; =2 ;(Xa i 2 Jﬁuk {35/32 + (i — Mk)(Xa)kj} (31)

with Ouk/(0Bs;) the element at row k and column j of the matrix (Vg u).
Given that p = X3, and §, is given by (15), the jth column vector of the



matrix is

o 9By
=X
aﬁoj luaﬁoj
a(XTAX,)™ g OA
=X, — = XTA+ (XTAX,) X[
N{ 0Bo; phot (X AX) X, 90 [ *
= x, (x7ax,) L oxr O v (xrax,) T xra xr AL
8/80' aﬂa’]
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(XEAX) ™ X (=% (XIAX,) " XIA+ 1}y
X, (XTAX,) " xT oA 2
= M(u ) " 9B (y — ) (32)
oj
The matrix OA/(0f,;) takes the form
OA Oo;
660] lz 80'1‘ aﬁaj (33)
(Xo)1j 0
=2 A
0 (Xo)nj
The jth column vector of the matrix is
) yla_ful (XU)lj
°w -1
B, = —2X, (XJAX,) X[ (34)

waa (X,

and the element (Vg )i, of the matrix (Vg p) is given by

o _
ag; - —22( (x7ax,) " xT) AR, (35)

kL 0]
If we substitute this result in (31), we obtain for the element at row ¢ and column
j of the Hessian:

(Hp),; =
-1 Y —
43 (X, (XM (xfax,) " x7) AR (X),+
k=1 l
S — Hk
SN ( - ) (X (36)
We can write the Hessian as a matrix-product as
Hp = XIA X, (XTAX,) ™ XTA X, + XT A X, (37)



with two n x n diagonal matrices

(]\1>' —9 Yi ;izui 5

ij
([\z)ij =-2 (yi;i'ui>2 ij-

3 Distributions for estimators

Asymptotic theory of maximum-likelihood estimators tells that the vector of
the combined estimators (3, 8,) as defined in (8), is distributed approximately
as

(Bu, Bs) ~ Nkﬁka ((5;,5;)a Eﬁﬁ) for n large. (39)
This distribution is valid in the limit of a large number of observations n.
The covariance matrix X33 is given in terms of the inverse Fisher information
matrix I,,:

Lo
Ypp = ﬁIn . (40)
The Fisher information matrix is given in terms of the expected value of the
Hessian:
I, = —%E[H}. (41)

The Hessian H is the Hessian of the full log-likelihood, in contrast to the profile-
likelihood Hessian:

_(Huy Huo
H= (H;To' H.. (42)
with the three block-matrices defined as
0?log L 0%log L 0%log L

(), (Hoo),; (43)

= —F, H 0)is = T A A -
aﬁui8ﬁuj ( . )ZJ 8ﬂuia/80j 8601’8603'

We have already calculated H,, in (17). Differentiation of (10) and (23) re-
spectively gives

(2

n
Ye — Kk
(le)ij =2 Z 2 (X (XU)ch
k=1

g Yk — Kk ?
(Hoo)ij = _2’; (%) (Xo)pi (Xo)y; -

In matrix notation:

H,uo - XEAlXaa Ho’o - XZAQXUa (44)
with the diagonal matrices
2
Yi — Hi Yi — Wi
(A1);; =2 p dijs (Ag);; = —2 ( - > dij- (45)



When we take expected values, we have to take 8, = 3}, and 8, = 7. Keeping
in mind that

ElY —p*] =0
B((Yi = u)(Y; — )] = 0776,
we have
E[H,,) = -X!IANX,, E[H,,] =0, E[Hy,o] = —2X} X, (46)

where A* is A with o taken to be o*. This brings the expected value of the
Hessian in the form

XTA*X 0
= — H H
g == (Y5 xrx,)

The function fisher in the lmvar package calculates the Fisher information ma-
trix. It estimates E[H| by replacing the true but unknown ¢* by its maximum-
likelihood estimator 6 in A*.

The expectation value (47) brings the covariance matrix Xgs in the form

((xIarx,) 0
o= (40 ) (48)

(47)

This implies

3 “(XTArX,)
ﬁAH N, (/Bw ( w “)_1 ) for n large. (49)
B ~ Ni, (855 5 (X5 X5) )

We obtain for the asymptotic distribution of the maximum-likelihood estimators
of u* and o*

X N -1
fi~ N (0¥, Xy (XA X)) X))
log & ~ N, (log o™, X, (XTX,) ™" X7T)

2

for n large. (50)

The expectation value and the variance for an element 6; of & are

(X, (XIX,)"" X(,T)“)

EAi: *
(6] UzeXp< 1

for n large. (51)

var(6i) = (E[3:])” (exp<(X" L X;’) Rediy 1)

The function fitted.lmvar (with the option log = FALSE) returns ji and &.



