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Abstract

The lme4 package provides R functions to fit and analyze linear
mixed models, generalized linear mixed models and nonlinear mixed
models. In this vignette we describe the formulation of these models
and the computational approach used to evaluate or approximate the
log-likelihood of a model/data/parameter value combination.

1 Introduction

The lme4 package provides R functions to fit and analyze linear mixed models,
generalized linear mixed models and nonlinear mixed models. These models
are called mixed-effects models or, more simply, mixed models because they
incorporate both fixed-effects parameters, which apply to an entire popula-
tion or to certain well-defined and repeatable subsets of a population, and
random effects, which apply to the particular experimental units or obser-
vational units in the study. Such models are also called multilevel models
because the random effects represent levels of variation in addition to the
per-observation noise term that is incorporated in common statistical mod-
els such as linear regression models, generalized linear models and nonlinear
regression models.

The three types of mixed models – linear, generalized linear and nonlinear
– share common characteristics in that the model is specified in whole or
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in part by a mixed model formula that describes a linear predictor and a
variance-covariance structure for the random effects. In the next section
we describe the mixed model formula and the forms if these matrices. The
following section presents a general formulation of the Laplace approximation
to the log-likelihood of a mixed model.

In subsequent sections we describe computational methods for specific
kinds of mixed models. In particular, we should how a profiled log-likelihood
for linear mixed models and for some nonlinear mixed models can be evalu-
ated.

2 Mixed-model formulas

The right-hand side of a mixed-model formula, as used in the lme4 package,
consists of one or more random-effects terms and zero or more fixed-effects
terms separated by the ‘+’ symbol. The fixed-effects terms generate the fixed-
effects model matrix, X, from the data. The random-effects terms generate
the random-effects model matrix, Z, and determine the structure of the
relative variance-covariance matrix, Σ.

The model matrices X and Z are of size m×p and m×q respectively. For
linear and generalized linear mixed models m, the number of rows in X and
Y , is equal to n, the dimension of the response vector, y. For nonlinear mixed
models m is a multiple of n, m = ns, where s is the number of nonlinear
model parameters.

The dimension of the fixed-effects parameter vector β is p and the dimen-
sion of the random effects vector b is q. Together with the matrices X and
Z these vectors determine the linear predictor

ηb (β, b) = Xβ + Zb. (1)

The elements of β are parameters in the model. Strictly speaking, the
elements of b are not parameters – they are unobserved random variables.
In the models we will consider, the conditional distribution of the observed
responses, y, depends on b and β only through the linear predictor. The
conditional density, for continuous y, or the conditional probability mass
function, for discrete y, can be written in the form

fy|b(y|b, β, σ2) = k(σ2, y)e−d(µ(Xβ+Zb),y)/(2σ2) = k(σ2, y)e−d(µ(ηb(β,b)),y)/(2σ2)

(2)
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In (2) the discrepancy function, d(µ, y), defines the “squared distance” be-
tween the conditional mean,

µ(η) = µ (ηb(β, b)) = µ (Xβ + Zb) (3)

and the observed data, y, according to the form of the model.
In fact, for linear mixed models and for nonlinear mixed models, the

discrepancy is exactly the square of the usual Euclidean distance, d(µ, y) =
‖y − µ‖2.

The scale factor, σ2, if it is used in the model, only determines the
variance-covariance of the conditional distribution of y; it does not affect
the conditional mean. Some mixed models, such as generalized linear mixed
models for which the conditional distribution of y is Bernoulli or binomial
or Poisson, do not have a separate scale factor because the mean of the con-
ditional distribution completely determines the variance. In such cases the
conditional density or conditional probability mass function can be written
fy|b(y|b, β) = k(y)e−d(µ(Xβ+Zb),y)/2.

The normalization factor k(σ2, y) depends only on the scale factor, σ2, if
it is used in the model, and the observed response, y.

The marginal distribution of b is modelled as a multivariate normal (or
Gaussian) distribution of the form

b ∼ N
(
0, σ2Σ(θ)

)
(4)

where σ2 is the same scale factor as in (2) and the q× q symmetric, positive-
semidefinite matrix Σ(θ), called the relative variance-covariance matrix of
the random effects b, is a function of a parameter θ. The condition that Σ
is positive-semidefinite means that v′Σv ≥ 0,∀v ∈ Rq.

For linear and generalized linear mixed models the model matrix X is
constructed from the data and the fixed-effects terms in the model formula
according to the usual rules for model matrices in the S language (Chambers
and Hastie, 1992, Chapter 2). For nonlinear mixed models these rules are
modified somewhat, as described in §5.2.

2.1 Random-effects terms

A simple random-effects term is of the form ‘form|factor ’ where form is a
linear model formula and factor is an expression that can be evaluated as a
factor, called the grouping factor for the term. Such factors isolate the effect
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of certain components of the random effects vector, b, to a specific group of
elements in the conditional mean µ(Xβ + Zb).

Typically a random-effects term is enclosed by parentheses so that the
extent of form is clearly defined.

Let k be the number of random-effects terms in the formula and ni, i =
1, . . . , k be the number of levels in the ith grouping factor, fi.

The linear model formula in the ith random-effects term determines the
m × qi model matrix Zi according to the usual rules for model matrices,
in the case of linear or generalized linear models, and according to slightly
modified rules, as described in §5.2, for nonlinear mixed models.

Together fi and Zi determine the indicator interaction matrix Z̃i that
is the horizontal concatenation of the interaction of the columns of Zi with
the matrix of indicators of the levels of fi. That is, the m × niqi matrix Z̃i

consists of qi vertical blocks, each of size m × ni, whose nonzeros are in the
form of the indicator columns for fi. The values of the nonzeros in the jth
vertical block in Z̃i are the jth column of Zi.

In the not-uncommon case that the linear model formula in a random-
effects term is ‘1’ then qi = 1, Zi is an m × 1 matrix all of whose elements
are 1 and Z̃i is the m× ni matrix of indicators of the levels of fi.

Suppose, for example, that we wish to model data where three obser-
vations have been recorded on each of five subjects. A data frame with a
“subject” factor could be constructed as

> str(dat <- data.frame(subj = gl(5, 3, labels = LETTERS[1:5])))

'data.frame': 15 obs. of 1 variable:
$ subj: Factor w/ 5 levels "A","B","C","D",..: 1 1 1 2 2 2 3 3 3 4 ...

if the data are ordered by subject. A random effects term of the form
(1|subj) generates a model matrix Zi which has one column, all of whose
elements are unity

> str(Zi <- model.matrix(~1, dat))

num [1:15, 1] 1 1 1 1 1 1 1 1 1 1 ...
- attr(*, "dimnames")=List of 2
..$ : NULL
..$ : chr "(Intercept)"
- attr(*, "assign")= int 0

and the indicator interaction matrix, Z̃i, which, in this case, is simply the
matrix of indicators,
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15 x 5 sparse Matrix of class "dgCMatrix"

[1,] 1 . . . .
[2,] 1 . . . .
[3,] 1 . . . .
[4,] . 1 . . .
[5,] . 1 . . .
[6,] . 1 . . .
[7,] . . 1 . .
[8,] . . 1 . .
[9,] . . 1 . .
[10,] . . . 1 .
[11,] . . . 1 .
[12,] . . . 1 .
[13,] . . . . 1
[14,] . . . . 1
[15,] . . . . 1

In the lme4 package these sparse model matrices are stored as compressed,
column-oriented, sparse matrices (Davis, 2006) of class "dgCMatrix". When
such a matrix is printed, the systematic zeros are shown as ‘.’.

For a more general example, assume that each subject was observed at
times 1, 2 and 3. If the time variable is

> dat$time <- rep(1:3, 5)

so that the first few rows of the model frame are

> head(dat, n = 5)

subj time
1 A 1
2 A 2
3 A 3
4 B 1
5 B 2

(i.e. we have ordered the data first by subject then by time within subject)
then the first few rows of Z1 for a random-effects term (time|Subject) are

> head(Z1 <- model.matrix(~time, dat), n = 7)

5



(Intercept) time
1 1 1
2 1 2
3 1 3
4 1 1
5 1 2
6 1 3
7 1 1

and the matrix Z̃i is

15 x 10 sparse Matrix of class "dgCMatrix"

[1,] 1 . . . . 1 . . . .
[2,] 1 . . . . 2 . . . .
[3,] 1 . . . . 3 . . . .
[4,] . 1 . . . . 1 . . .
[5,] . 1 . . . . 2 . . .
[6,] . 1 . . . . 3 . . .
[7,] . . 1 . . . . 1 . .
[8,] . . 1 . . . . 2 . .
[9,] . . 1 . . . . 3 . .
[10,] . . . 1 . . . . 1 .
[11,] . . . 1 . . . . 2 .
[12,] . . . 1 . . . . 3 .
[13,] . . . . 1 . . . . 1
[14,] . . . . 1 . . . . 2
[15,] . . . . 1 . . . . 3

The m×q matrix Z is the horizontal concatenation of the Z̃i, i = 1, . . . , k.
Thus

q =
k∑

i=1

niqi. (5)

2.2 The relative variance-covariance matrix

The elements of the random-effects vector b are partitioned into groups in
that same way that the columns of Z were partitioned. That is, they are
divided into k groups, corresponding to the k random-effects terms, and the
ith such group is subdivided into ni groups of qi elements, corresponding to
the levels of the ith grouping factor.
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This partitioning determines the structure of the variance-covariance ma-
trix of b because we assume that random effects corresponding to different
terms are uncorrelated, as are random effects corresponding to different levels
of the same term. Furthermore, the variance-covariance structures of the ni

groups of size qi from the ith term are identical.
Thus the relative variance-covariance matrix, Σ, has the form

Σ =


Σ̃1 0 . . . 0

0 Σ̃2 . . . 0
...

...
. . .

...

0 0 . . . Σ̃k.

 (6)

with the ith diagonal block of the form

Σ̃i =


σ1,1Ini

σ1,2Ini
. . . σ1,qi

Ini

σ1,2Ini
σ2,2Ini

. . . σ2,qi
Ini

...
...

. . .
...

σ1,qi
Ini

σ2,qi
Ini

. . . σqi,qi
Ini

 = Σi ⊗ Ini
(7)

where

Σi =


σ1,1 σ1,2 . . . σ1,qi

σ1,2 σ2,2 . . . σ2,qi

...
...

. . .
...

σ1,qi
σ2,qi

. . . σqi,qi

 (8)

is a qi× qi symmetric matrix. (The symbol ⊗ denotes the Kronecker product
of matrices, which is a convenient shorthand for a structure like that shown
in (7).)

The matrix Σ will be positive-semidefinite if all the symmetric matrices
Σi, i = 1, . . . , k are positive-semidefinite. This occurs if and only if each
of the Σi has an Cholesky factorization of the “LDL′” form where the left
factor “L” is a unit lower triangular matrix and “D” is a diagonal matrix with
non-negative diagonal elements.

In the “LDL′” form of a variance-covariance matrix the elements of “D”
would be on the variance scale. Because it will be more convenient to work
with elements on the standard deviation scale we write factorization as

Σi = TiSiSiT
′
i i = 1, . . . , k (9)
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where Ti is a unit lower triangular matrix of size qi × qi and Si is a diagonal
qi × qi matrix with non-negative diagonal elements.

We parameterize Σi according to the decomposition (9) by defining θi to
be the vector of length qi(qi + 1)/2 consisting of the diagonal elements of Si

followed by the elements in the strict lower triangle of Ti in row-major order.
Finally, let θ be the concatenation of the θi, i = 1, . . . , k.
The unit lower-triangular and non-negative diagonal factors, T (θ) and

S(θ), of Σ(θ) are constructed from the Ti, Si and ni, i = 1, . . . , k according
to the pattern of Σ illustrated in (6) and (7). That is, T (θ) (respectively
S(θ)) is block-diagonal with ith diagonal block T̃i = T ⊗ Ini

(respectively
S̃i = S ⊗ Ini

).
Although the number of levels of the ith factor, ni, can be very large, the

number of columns in Zi, qi, is typically very small. Hence the dimension of
the parameter θi, which depends on qi but not on ni, is also small and the
structure of Ti and Si is often very simple.

Consider our example of 3 observations on each of 5 subjects. For the
random effects term (1|subj) qi = 1 and Ti, which is a 1 × 1 unit lower
triangular matrix, must be [1], the 1× 1 identity matrix. Hence T̃i = I5 and
the decomposition Σ̃ = T̃ S̃S̃T̃ ′ reduces to Σ̃ = S̃S̃. Furthermore, Si = [θi,1]
subject to θi,1 ≥ 0,

S̃i = θi,1I5

and
Σ̃i = S̃iS̃i = θ2

i,1I5.

For a term like (time|subj) in which qi = 2 let us write θi as [a, b, c]′.
Then

Si =

[
a 0
0 b

]
so that

S̃i =

[
aI5 0
0 bI5

]
and

Ti =

[
1 0
c 1

]
so that

T̃i =

[
I5 0
cI5 I5

]
. The constraints on θi are a ≥ 0 and b ≥ 0.
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2.3 Orthogonal random effects

For a fixed value of θ we can write b as

b = T (θ)S(θ)u (10)

where u is a vector of orthogonal random effects with distribution u ∼
N (0, σ2I). This provides the desired distribution b ∼ N (0, σ2Σ) because

E[b] = E[TSu] = TSE[u] = 0

and

Var(b) = E[bb′] = TSE[uu′]ST ′ = TSVar(u)ST ′ = σ2TSST ′ = σ2Σ

Because µ, the conditional mean of y given b and β, and the discrepancy
function, d(µ, y), depend on b only through the linear predictor and because
we can rewrite the linear predictor as a function of β and u

Xβ + Zb = Xβ + ZT (θ)S(θ)u = Xβ + V (θ)u, (11)

where
V (θ) = ZT (θ)S(θ), (12)

we can express the discrepancy as a function of β and u. These two forms
of the discrepancy are

db(b, β, y) = d(Xβ + Zb, y) (13)

and
du(u, β, θ, y) = d(Xβ + V (θ)u, y). (14)

Note that du depends on θ but db does not.
In the next section we will evaluate an integral with respect to b by

changing the variable of integration to u. When performing the change of
variable on an integral with respect to a vector we must incorporate the
determinant of the Jacobian of the transformation. For the transformation
b = TSu this is ∣∣∣∣ db

du

∣∣∣∣ = |TS| = |T | |S| = |S|

because |T |, which is the product of the diagonal elements of this unit trian-
gular matrix, is unity.

The determinant |S|, which is the product of the diagonal elements of this
diagonal matrix, is easily evaluated and must be non-negative. Furthermore,

|Σ|1/2 =
√
|T |2|S|2 = |S|. (15)
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3 Evaluating the likelihood

If the distribution of y is continuous, the likelihood of the parameters, β,
θ and σ2, given the observed data, y, is equal to the marginal density of y
given the parameters. If the distribution of y is discrete, the likelihood is
equal to the marginal probability mass function of y given the parameters.

In either case we can write the likelihood as

L(β, θ, σ2|y) =

∫
b

fy|b(y|b, β, σ2) fb(b|θ, σ2) db (16)

where fy|b(y|b, β, σ2), defined in (2), is the conditional density or the condi-
tional probability mass function of y, as appropriate.

As described in §2.1, the unconditional distribution of b is b ∼ N (0, σ2Σ),
for which the density function is

fb(b|θ, σ2) =
e−b′Σ−1b/(2σ2)

(2πσ2)q/2 |Σ|1/2
. (17)

Substituting (2) and (17) into (16) and changing the variable of integration
from b to u produces

L(β, θ, σ2|y) =

∫
b

k(σ2, y)

(2πσ2)q/2 |Σ|1/2
exp

[
db(b, β, y) + b′Σ−1b

−2σ2

]
db

=

∫
u

k(σ2, y)

(2πσ2)q/2
exp

[
du(u, β, θ, y) + u′u

−2σ2

]
du

(18)

Note that the likelihood can be evaluated for a positive-semidefinite Σ when
written as an integral with respect to u.

3.1 The Laplace approximation

The numerator of the exponent in (18),

δ(u|β, θ, y) = du(u, β, θ, y) + u′u, (19)

is called the penalized discrepancy. We will see that, for the models we are
considering, it is relatively straightforward to determine the minimizer of the
penalized discrepancy

ũ(β, θ, y) = arg min
u

δ(u|β, θ, y), (20)
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either directly, as the solution to a penalized least squares problem, or through
an iterative algorithm in which each iteration requires the solution of a pe-
nalized least squares problem.

For a fixed value of σ2 the minimizer of the penalized discrepancy maxi-
mizes the conditional density

fu|y(u|β, θ, y) =
k(σ2, y)e−δ(u,β,θ,y)/(2σ2)

(2πσ2)q/2
.

That is, ũ(β, θ, y) is the conditional mode of u given β, θ and y.
Near the conditional mode the penalized discrepancy has a quadratic

approximation

δ(u|β, θ, y) ≈ δ(ũ|β, θ, y) + (u− ũ)′ LL′ (u− ũ) (21)

where L is the Cholesky factor of 1
2
∇2

uδ(u|β, θ, y)
∣∣
u=ũ

.
After substituting the quadratic approximation (21) into expression (18)

for L(β, θ, σ2|y), the only part of the integrand that depends on u will be
the quadratic term in the exponent. To evaluate an integral of the form

I =

∫
u

1

(2πσ2)q/2
exp

[
(u− ũ)′LL′(u− ũ)

−2σ2

]
du

we change the variable variable of integration from u to

v = L′(u− ũ)/σ. (22)

The determinant of the Jacobian of the transformation (22) is∣∣∣∣dv

du

∣∣∣∣ =
|L|
σq

.

and I becomes a multiple of the integral of the standard q-variate normal
density

I =

∫
v

e−v′v/2

(2π)q/2

dv

|L|
=

1

|L|

∫
v

e−v′v/2

(2π)q/2
dv = |L|−1. (23)

Expression (23) requires that L is non-singular, which will be the case when
L is the Cholesky factor of 1

2
∇2

uδ(u|β, θ, y)
∣∣
u=ũ

.
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Returning to expression (18), we can now express the Laplace approxi-
mation to the likelihood function or the log-likelihood,

`(β, θ, σ2|y) = log L(β, θ, σ2|y), (24)

which is more commonly used as the optimization criterion when deter-
mining maximum likelihood estimates. (Because the logarithm function is
monotonic, the maximizer of the log-likelihood function also maximizes the
likelihood function and generally the quadratic approximation to the log-
likelihood is much better than the quadratic approximation to the likelihood.)

On the deviance scale (twice the negative log-likelihood) the Laplace ap-
proximation is

−2`(β, θ, σ2|y) ≈ −2 log[k(σ2)] +
δ(ũ|β, θ, y)

σ2
+ 2 log |L|. (25)

Expression (25) will be an exact expression for the log-likelihood and not
just an approximation whenever the penalized discrepancy δ(u|β, θ, y) is a
quadratic function of u.

4 Linear mixed models

A linear mixed model can be expressed as

y = Xβ + Zb + ε, ε ∼ N
(
0, σ2I

)
, b ∼ N

(
0, σ2Σ

)
, ε ⊥ b (26)

where the symbol ⊥ denotes independence of random variables. This model
implies that the mean of y is the linear predictor, the discrepancy function is

the residual sum of squares and the normalizing factor is (2πσ2)
−n/2

. That
is,

µ(Xβ + Zb) = Xβ + Zb = Xβ + V (θ)u (27)

d(µ, y) = ‖µ− y‖2 (28)

k(σ2) =
(
2πσ2

)−n/2
. (29)
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The penalized discrepancy is

δ(u|β, θ, y) = d(µ, y) + u′u

= ‖µ− y‖2 + u′u

= ‖V (θ)u + Xβ − y‖2 + u′u

=

∥∥∥∥∥∥[
V (θ) X y

]  u
β
−1

∥∥∥∥∥∥
2

+ u′u

=
[
u′ β′ −1

] V (θ)′V (θ) + I V (θ)′X V (θ)′y
X ′V (θ) X ′X X ′y
y′V (θ) y′X y′y

 u
β
−1

 .

(30)
In this form it is obvious that δ(u|β, θ, y) is a quadratic function of u and
that

∇2
uδ(u|β, θ, y)

2
= V (θ)′V (θ) + I (31)

is positive definite. This expression for ∇2
uδ depends on θ but not on β or

u. Thus the Cholesky factor L required for (25) depends only on θ.
The conditional mode of the orthogonal random effects, ũ(β, θ, y) can be

expressed as the solution to

(V (θ)′V (θ) + I) ũ(β, θ, y) = L(θ)L(θ)′ũ(β, θ, y) = V (θ)′ (y −Xβ)
(32)

which can easily be calculated from the Cholesky factor L(θ) of V (θ)′V (θ)+
I.

We could use L(θ) and ũ(β, θ, y) from (32) to evaluate the log-likelihood
using (25), which is exact because the penalized discrepancy is quadratic
for linear mixed models. However, we can take advantage of the fact that
δ(u|β, θ, y) is a quadratic function of both u and β to minimize δ with
respect to u and β simultaneously. For a given value of θ we evaluate the
Cholesky factorizationV ′V + I V ′X V ′y

X ′V X ′X X ′y
y′V y′X y′y

 =

 L 0 0
LV X LX 0
`′V y `′Xy r

L′ L′
V X `V y

0 L′
X `Xy

0 0 r

 (33)

where `V y and `Xy are column vectors of dimensions q and p, respectively.
The lower right element, r, is a scalar.
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With the factorization (33) we can write

δ(u|β, θ, y) =

∥∥∥∥∥∥
L′ L′

V X `V y

0 L′
X `Xy

0 0 r

 u
β
−1

∥∥∥∥∥∥
2

= r2 + ‖L′
Xβ − `Xy‖2

+ ‖L′u + L′
V Xβ − `V y‖2

= r2 +
∥∥∥LX(θ)′

(
β − β̂(θ)

)∥∥∥2

+ ‖L(θ)′ (u− û(θ))‖2

(34)

where β̂(θ), the conditional estimate of β given θ, and û(θ), the conditional

mode of u given θ and β̂(θ), are the solutions to

LX(θ)′β̂(θ) = `Xy(θ) (35)

L(θ)′û(θ) = `V y(θ)−LV X(θ)′β̂(θ). (36)

Furthermore, the minimum of the penalized discrepancy, conditional on θ, is

min
u

δ(u|β̂(θ), θ, y) = r2(θ). (37)

The deviance function, −2`(β, θ, σ2|y), at the conditional estimate, β̂(θ),
is

−2`(β̂(θ), θ, σ2|y) = n log
(
2πσ2

)
+

r2(θ)

σ2
+ 2 log |L(θ)|. (38)

Differentiating −2`(β̂(θ), θ, σ2|y) as a function of σ2 and setting the deriva-
tive to zero provides the conditional estimate

σ̂2(θ) =
r2(θ)

n
. (39)

Substituting this estimate into (38) provides the profiled deviance function

−2`(β̂(θ), θ, σ̂2(θ)|y) = n log

(
2πr2(θ)

n

)
+ n + 2 log |L(θ)|

= n

[
1 + log

(
2π

n

)]
+ n log r2(θ) + 2 log |L(θ)|

.

(40)
That is, the maximum likelihood estimate (mle) of θ is

θ̂ = arg min
θ

n

[
1 + log

(
2π

n

)]
+ n log r2(θ) + 2 log |L(θ)|. (41)
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The mle’s of the other parameters are determined from θ̂ using (39) and (35).

The conditional modes of the orthogonal random effects, û(θ̂), evaluated
using (36), and the corresponding conditional modes of the untransformed
random effects,

b̂(θ̂) = T (θ̂)S(θ̂)û(θ̂), (42)

are called the Best Linear Unbiased Predictor (BLUPs) of the random effects.
The three terms in the objective function being minimized in (41) are,

respectively, a constant, n [1 + log (2π/n)], a measure of the fidelity of the

fitted values to the observed data, n log r2(θ̂), and a measure of model com-

plexity, 2 log |L(θ̂)|. Thus we can consider maximum likelihood estimation of
the parameters in a linear mixed model to be balancing fidelity to the data
against model complexity.

4.1 REML estimates

The maximum likelihood estimate of σ2, σ̂2 = r2/n, is the penalized residual
sum of squares divided by the number of observations. It has a form like
the maximum likelihood estimate of the variance from a single sample, σ̂2 =∑n

i=1(yi−ȳ)2/n or the maximum likelihood estimate of the variance in a linear

regression model with p coefficients in the predictor, σ̂2 =
∑n

i=1(yi − ŷi)
2/n.

Generally these variance estimates are not used because they are biased
downward. This is, on average they will underestimate the variance in the
model. Instead we use σ̂2

R =
∑n

i=1(yi− ȳ)2/(n−1) for the variance estimate

from a single sample or σ̂2
R =

∑n
i=1(yi−ŷi)

2/(n−p) for the variance estimate
in a linear regression model. These estimates are based on the residuals,
yi− ŷi, i = 1, . . . , n which satisfy p linear constraints and thus are constrained
to an (n − p)-dimensional subspace of the n-dimensional sample space. In
other words, the residuals have only n− p degrees of freedom.

In a linear mixed model we often prefer to estimate the variance compo-
nents, σ2 and Σ, according to the residual maximum likelihood (REML) cri-
terion (sometimes called the restricted maximum likelihood criterion) which
compensates for the estimation of the fixed-effects parameters when estimat-
ing the random effects.
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The REML criterion can be expressed as

LR(θ, σ2|y) =

∫
β

L(β, θ, σ2|y) dβ

=
e−r2/(2σ2)

|L|(2πσ2)(n−p)/2

∫
β

e−(β−bβ)′LXL′
X(β−bβ)/(2σ2)

(2πσ2)p/2
dβ

=
e−r2/(2σ2)

|L||LX |(2πσ2)(n−p)/2

(43)

or, on the deviance scale,

−2`R(θ, σ2|y) = (n− p) log
(
2πσ2

)
+

r2(θ)

σ2
+ 2|L(θ)|+ 2|LX(θ)| (44)

from which we can see that the REML estimate of σ2 is

σ̂R(θ) =
r2(θ)

n− p
(45)

and the profiled REML deviance is

− 2`R(θ, σ̂2(θ)|y) =

(n− p)

[
1 + log

(
2π

n− p

)]
+ (n− p) log r2 + 2 log |L|+ 2 log |LX | (46)

5 Nonlinear mixed models

Like the linear mixed model, the nonlinear mixed model is based on a mul-
tivariate normal (or Gaussian) distribution of the response y given µ. That
is,

y = µ(β, b) + ε, ε ∼ N (0, σ2I), b ∼ N (0, σ2Σ(θ), ε ⊥ b (47)

and the discrepancy function and normalizing factor are the same as for the
linear mixed model

d(µ, y) = ‖µ− y‖2 (48)

k(σ2) =
(
2πσ2

)−n/2
. (49)
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The mean, µ, however, is no longer equal to the linear predictor. Each
element of µ is the value of a nonlinear model function g(x, φ) that depends
on covariates, x, and a nonlinear model parameter, φ, of length s. When
fitting a model the values of the covariates at each observation are known so
we can regard µi as a function of φi only and write

µ = g(Φ) (50)

where Φ is the n× s matrix whose ith row is φi, i = 1, . . . , n and the vector-
valued function g applies the scalar function g rowwise to Φ using covariates
xi, i = 1, . . . , n for the ith row.

The linear predictor determines Φ as

vec(Φ) = Xβ + Zb = Xβ + V (θ)u (51)

where the vec operator concatenates the columns of Φ to form a vector of
length m = ns. Thus the matrix X is ns× p while Z and V are ns× q.

5.1 Optimizing the penalized discrepancy

As for a linear mixed model, the problem of determining ũ(β, θ), the opti-
mizer of the penalized discrepancy function, can be written as a penalized
least squares problem

ũ(β, θ) = arg min
u

δ(u|β, θ, y) = arg min
u

[
‖µ(β, u)− y‖2 + u′u

]
. (52)

Unlike the case of the linear mixed model this is generally a penalized non-
linear least squares problem that requires an iterative solution.

Given u(i) (the parenthesized superscripts denote the number of the iter-
ation at which a quantity is evaluated) we evaluate

∂µ

∂u′

∣∣∣∣
u=u(i)

= M (i)

=
[
I I . . . I

]
diag

(
vec

dµ

dΦ

∣∣∣∣
Φ=Φ(i)

)
V ,

(53)

where the matrix on the left is the horizontal concatenation of s copies of the
n × n identity matrix. The proposed updated vector of orthogonal random
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effects, u(i+1), minimizes the approximate penalized discrepancy

u(i+1) = arg min
u

∥∥y − µ
(
β, u(i)

)
−M (i)

(
u− u(i)

)∥∥2
+ u′u

= arg min
u

∥∥y − µ(i) + M (i)u(i) −M (i)u
∥∥2

+ u′u

= arg min
u

∥∥∥∥[
y − µ(i) + M (i)u(i)

0

]
−

[
M (i)

I

]
u

∥∥∥∥2

.

(54)

That is, u(i+1) is the solution to a linear least squares problem for which the
normal equations are(

M (i)′M (i) + I
)

u(i+1) = L(i)L(i)′u(i+1) = M (i)′ (y − µ(i) + M (i)u(i)
)
.

(55)
At convergence the Laplace approximation to the deviance is

−2`(β, θ, σ2|y) = n log
(
2πσ2

)
+

δ(ũ|θ, β)

σ2
+ 2 log |L(β, θ)| (56)

where L(β, θ) is the Cholesky factor of M ′M + I evaluated at ũ(β, θ), β
and θ. As for the linear mixed model we can form the conditional estimate
of σ2

σ̂2(θ, β) =
δ(ũ|θ, β)

n
. (57)

Substituting this estimate into (56) produces the Laplace approximation to
the profiled deviance

−2`(β, θ, σ̂2(β, θ)|y) = n

[
1 + log

(
2π

n

)]
+n log δ(ũ|θ, β)+2 log |L|. (58)

5.2 Constructing model matrices for nonlinear mixed
models

In our previous example involving three measurements at times 1, 2 and
3 on each of five subjects, the conditional mean µ(β, b) was linear in the
parameters β and the in random effects b and also linear with respect to
time. Suppose instead that we felt that the trajectory of each subject’s
response with respect to time was more appropriately modelled as

φ1

(
1− e−φ2xi,j

)
i = 1, . . . , 5; j = 1, . . . , 3 (59)
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where xi,j is the time of the jth observation on the ith subject while φ1

and φ2 are subject-specific parameters representing the asymptotic value for
subject i (i.e. the value predicted for large values of the time, x) and the
rate constant for subject i, respectively.

The model formula used in the nlmer function is a three-part formula
in which the left hand side determines the response, the middle part is the
expression of the nonlinear model involving the parameters φ and any co-
variates and the right hand side is a mixed model formula that can (in fact,
must) involve the names of parameters from the nonlinear model.

In our example, if subject-specific parameters are modelled as population
means, β = [β1, β2]′ plus a subject-specific random effect for each parameter,
allowing for correlation of the random effects within each subject, the formula
would be written

y ~ A * (1 - exp(-rc * time)) ~ (A + rc | subj)

The vec of the 15× 2 parameter matrix Φ is a vector of length 30 where
the first 15 elements are values of A and the last 15 elements are values of rc.
In the mixed-model formula the names A and rc represent indicator variables
for the first 15 and the last 15 positions, respectively. In the general case of a
nonlinear model with s parameters there will be s indicator variables named
according to the model parameters and determining the positions in vec(Φ)
that correspond to each parameter.

For the model matrices X and Z the implicit intercept term generated
by the standard S language rules for model matrices would not make sense.
The intercept term is suppressed in the random-effects terms and is replaced
by the sum of the parameter name indicators in the fixed-effects terms. Thus
the formula shown above is equivalent to

y ~ A * (1 - exp(-rc * time)) ~ A + rc + (0 + A + rc | subj)

The matrix X will be 30 × 2 with the two columns being the indicator
for A and the indicator for rc.

5.3 Random effects for conditionally linear parameters
only

There is a special case of a nonlinear mixed model where the Laplace ap-
proximation is the deviance and where the iterative algorithm to determine
ũ(β, θ, y) will converge in one iteration. Frequently some of the elements of
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the parameter vector φ occur linearly in the nonlinear model g(x, φ). These
elements are said to be conditionally linear parameters because, conditional
on the values of the other parameters, the model function is a linear function
of these.

If the random effects determine only conditionally linear parameters then
µ is linear in u and the matrix M depends on β and θ but not on u. We
can rewrite the mean function as

µ(β, u) = µ0(β) + Mu (60)

where µ0(β) = µ(β,0) = µ (Xβ). The penalized least squares problem (54)
for the updated u can be rewritten as

ũ (β, θ, y) = min
u

∥∥∥∥[
y − µ0(β)

0

]
−

[
M
I

]
u

∥∥∥∥2

. (61)

That is, ũ(β, θ, y) is the solution to

(M ′M + I) ũ = M ′ (y − µ0(β)) (62)

6 Generalized linear mixed models

A generalized linear mixed model differs from a linear mixed model in the
form of the conditional distribution of y given β, b and, possibly, σ2, which
determines the discrepancy function d(µ, y), and in the mapping from the
linear predictor, η, to the conditional mean, µ. This mapping between η and
µ is assumed to be one-to-one and to enforce any constraints on the elements
of µ, such as the mean of a Bernoulli or binomial random variable being in the
range 0 ≤ {µ}k ≤ 1, k = 1, . . . , n or the mean of a Poisson random variable
being positive. By convention, it is the mapping from µ to η = g (µ) that
is called the link function, so the inverse mapping, µ = g−1 (η), is called the
inverse link.

Although we have written the link and the inverse link as functions of
vectors, they are defined in terms of scalar functions, so that

ηk = {η}k = {g(η)}k = g ({η}) = g(µk) k = 1, . . . , n

µk = {µ}k =
{
g−1(µ)

}
k

= g−1 ({µ}) k = 1, . . . , n.
(63)

where g(µ) and g−1(η) are the scalar link and inverse link functions, re-
spectively. Furthermore, the elements of y are assumed to be conditionally
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independent, given µ, and for k = 1, . . . , n the distribution of yk depends
only on µk and, possibly, sigma2. That is, the discrepancy function can be
written

d(µ, y) =
n∑

k=1

r2
D(µk, yk) (64)

where rD is the deviance residual function. For many models the discrepancy
defines

6.1 Examples of deviance residual and link functions

If the yk, k = 1, . . . , n are binary responses (i.e. each yk is either 0 or 1) and
they are conditionally independent given µ, then the conditional distribution
of y given µ has probability mass function

fy|µ(y, µ) =
n∏

k=1

µyk

k (1− µk)
(1−yk) (65)

Because the distribution of yk is completely determined by µk there is no
need for a separate scale factor, σ2, and expression (2) for the conditional
density in terms of the discrepancy can be written

fy|µ(y|µ) = ke−d(µ,y)/2. (66)

Thus the discrepancy function must be

d(µ, y) = (67)
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