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1 Introduction

xsample is an R function that instead of optimizing a linear problem, returns a
sample set that has a uniform or a truncated normal distribution bounded by a
set of inequality constraints.

A general linear problem can be written in matrix notation as: 1
Ax' b
Ex = f
Gx≥ h

(1)

A typical linear model consists of a set of equality constraints that have to
be met either exactly or approximately, and a number of inequality constraints.
When there are as many independent and consistent equations as there are
unknowns, there is one set of parameters that meets all the equations, and the
model can be called evendetermined. In other cases, there are more equations
than unknowns; there is no exact solution and the model is overdetermined. An
approximate solution can then be calculated by minimizing some model cost,
such as the sum of squared residuals. Linear regressions are examples of such
models.

When there are too few equality constraints, the model is underdetermined,
and there exist an infinite number of parameter sets that meet the constraints.
In many research areas such as engineering, economics, one is interested in only
one optimal solution. Thus, one looks for the simplest solution, or the solution
that minimizes cost, or maximizes security, profit, efficiency or other variables.
This kind of problems are solved with linear programming and quadratic pro-
gramming techniques.

Instead of searching a single optimal solution for an underdetermined prob-
lem, xsample() samples the whole solution space, using a Markov Chain Monte
Carlo (MCMC) algorithm. If A and B are NULL, the feasible space is sampled
uniformly. When A, B and sdB are provided, the samples have a truncated
normal distribution.

1notations: vectors and matrices are in bold; scalars in normal font. Vectors are indicated
with a small letter; matrices with capital letter. Indices between brackets indicate elements
of vectors (as in a(i)) or matrices (as in A(i, j)). Rows or columns of matrices are indicated
as A(i,) (rows) or A(, j) (columns). Indices without brackets (q1, q2) indicate vectors that are
subsequent in a random walk.
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2 Method

2.1 Step 1: eliminate equality constraints

The elements x(i) of the solution vector x are not linearly independent; they are
coupled through the equations in Ax = b. They are first linearly transformed to
a vector q for which all elements q(i) are linearly independent. If a vector p is
a particular solution of equation (1), then all solutions x can be written as:

x = p + Zq (2)

Z is an orthonormal matrix obtained e.g. from the QR-decomposition of A and
a basis for the null space of A: AZ = 0 and ZT Z = I.
A particular solution p can be provided if found easily. If not, a particular
solution is calculated using LSEI [1].

There are no equality constraints for the elements in q. The inequality
constraints can be rewritten as:

G(p + Zq)≥ h (3a)

GZq +(Gp−h)≥ 0 (3b)

The problem of finding x with equality and inequality constraints, has been
translated into the problem of sampling q with only inequality constraints.
Because p meets the inequality constraints Gp≥ h, there is already one trivial
solution of q: the null vector 0. From this point, it is possible to sample new
points.

The probability of q is a product of the probability of x and the Jacobian
determinant:

p(q) = p(x)||∂x
∂q
|| (4)

In this case, the Jacobian is |Z|= 1. Therefore p(x) = p(q).

2.2 Step 2: random walk

2.2.1 Markov Chain

The probability distribution of q can be sampled numerically using a random
walk. A Metropolis algorithm [2] produces a series of samples of the solution
space of which the distribution approximates the true probability distribution.
New samples q2 are drawn randomly from a jump distribution j(.|q1) that only
depends on the previously accepted point q1. The new sample point is either
accepted or rejected based on the following criterion:

if r ≤ p(q2)
p(q1)

accept q2 else accept q1 (5)

r is sampled randomly between 0 and 1. The only prerequisite for the sample
distribution to converge to the true probability distribution, is that the jump
distribution from which a new sample is drawn, is symmetrical: the probability
to jump from q1 to q2, j(q2|q1), has to be the same as the probability to jump
from q2 to q1, j(q1|q2).

2



Three jump algorithms for selecting new samples were implemented: Two
hit-and-run algorithms [3] and one algorithm that uses the inequality bounds
as reflective planes. . All three algorithms fulfill the symmetry prerequisite for
the metropolis algorithm.

2.2.2 Random Directions Algorithm (rda) [3]

The algorithm exists of two steps: first it selects a random direction. This
direction together with the starting point define a line in solution space. In
step 2, it searches the intersections of this line with the planes defined by the
inequality constraints. A new point is then sampled uniformly along the line
segment that fulfills all inequalities.

2.2.3 Coordinates Directions Algorithm (cda) [3]

Very similar to the random directions algorithm, this algorithm starts with
selecting a direction along one of the coordinate axes. The rest of the algorithm
is analogous to the random directions algorithm. This proves to be very efficient
for linear problems.

NOTE: rda and cda only work if G and H define a convex solution space. In
an open or half open space, these algorithms will spawn error messages.

2.2.4 mirror

This algorithm was inspired by the reflections in mirrors and uses the inequality
constraints as reflecting planes. New samples are taken from a normal distribu-
tion with q1 as average and a fixed standard deviation, called the jump length.
This jump length has a significant influence on the efficiency of the algorithm .

random walk with inequality constraints When jumping with a Gaus-
sian jump distribution in a highdimensional space with inequality constraints,
the chance to jump out of the accepted range is exponential to the number of
inequality constraints. To make sure every new sample fulfills all inequalities,
the inequalities are used as mirrors.

In a euclidean space, every inequality constraint defines a boundary of the
feasible subspace. Each boundary can be considered a multidimensional plane
(a hyperplane). One side of the hyperplane is the feasible range, where the
inequality is fulfilled. The other side of the hyperplane is non-feasible. The
hyperplanes are determined by the following set of equations:

(GZ)(,i)q +(Gp)(i)−h(i) = 0 ∀i (6)

If q1 is a point for which the equality constraints are fulfilled, a new point q2
can be sampled in the following way: first q2−0 is sampled in the unrestricted
space, ignoring all inequality constraints.

q2−0 = q1 + ε (7)

If q2−0 is in the feasible range (all equalities are met), q2−0 is accepted as a
sample point and becomes the new starting point q1 for further sampling.
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Figure 1: MCMC jump with inequality constraints functioning as mirrors. See
text for explanation.

If there are unmet inequalities (figure 1), then the new point q2−0 is mirrored
consecutively in the hyperplanes representing the unmet inequalities: the line
segment q1→ q2−0 crosses these hyperplanes. For each hyperplane, a scalar α(i)
can be calculated for which

(GZ)(,i)(q1 + α(i)ε)+(Gp)(i)−h(i) = 0 (8)

with ε = q2−0−q1. The hyperplane with the smallest non-negative α(i), call it
α(s), is the hyperplane that is crossed first by the line segment. q2−0 is mirrored
around this hyperplane. If the new point (q2−1 in figure 1) still has unmet
inequalities, a new set of α(i)’s is calculated from the line segment between
the new point and the intersection of the previous line segment and the first
hyperplane: q1 + α(s)ε.
q2−1 is again reflected in the hyperplane with smallest non-negative α(i). This is
repeated until all inequalities are met. The resulting point q2 is in the feasible
subspace and is accepted as a new sample point.
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