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This version coincides with Release 5-4, which includes a new optimisation wrapper function, evaluate,

that improves the optimisation and provides interim results, as well as a progress bar. Small improvements

to the output reports are also included. See Section 1.3.

The previous version (Release 5-3) improved the allele and output reports, which now produce .doc

files, with the same functionality as previous reports. These include improved layout and presentation,

and modifications to the allele report. See Sections 1.2 & 1.4.

The version before (Release 5-2) introduced the function get.likely.genotypes that returns the

most probable genotypes for each locus, and the most probable whole-profile genotype. See Section 1.5

for more information.

Abstract

likeLTD (“likelihoods for Low Template DNA profiles”) is an R package for com-

puting likelihoods for DNA profiles. It is particularly suited for low-template and/or

degraded DNA when alleles from some contributors may be subject to dropout. It

can handle multiple profiled possible contributors and up to two unprofiled contrib-

utors, in addition to the queried contributor. The package also provides input files

for an example analysis (the “Hammer Case” described below).

This document shows how to install and run likeLTD using an illustrative ex-

ample. It also describes the model underlying likeLTD, for example explaining

the “uncertain” category for allele designations, and the dropout and degradation

models. We present results of running likeLTD on a range of single-contributor

and mixed DNA profiles subject to modifications, such as introduction of artifi-

cial dropout and dropin. Some of the material here, and some other analyses, are

published in Balding (2013).

In all the tests described here, unless otherwise stated we have used Version 5.4.0

of likeLTD, with a standard allele frequency database of around 200 UK Caucasians,

FST = 0.02 and a sampling adjustment adj = 1 (these are described briefly below).
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1 Installation and example R script

Installing likeLTD (only needs doing once on any computer) and loading it (once per R

session) are both very simple.

install.packages("likeLTD")

require(likeLTD)

The install.packages command may generate a request for you to choose a site

from which to download the package. Choose any site near you.

The example analysis that comes with likeLTD is called the Hammer Case. The DNA

profiles come from Table 2 of Gill et al. (2007), who introduced the software LoComatioN

which in some respects is similar to likeLTD and also to LRmix, available within the

Forensim R package. The crime scene profile (CSP) consists of two profiling runs at each

of 10 loci. These, and reference profiles from a queried contributor Q and two victims

(K1 and K2), are available in input files hammer-CSP.csv and hammer-reference.csv.

likeLTD allows “uncertain” allele calls but this designation was not used by Gill et al.

(2007) and so there are no alleles labelled as uncertain in this example.

There is a total of six alleles, all of them unreplicated, that are not attributable to

any of Q, K1 or K2. No more than two of these occurs at any one locus. This suggests

a comparison of the following two hypotheses (where Hp stands for the prosecution hy-

pothesis, and Hd stands for the defence hypothesis) for the contributors of DNA to the

sample:

H ′

p : Q + K1 + K2 + U1

H ′

d : X + K1 + K2 + U1

where X and U1 denote unprofiled, unrelated individuals not related to any of Q, K1 and

K2.

1.1 Input

We now show how to calculate likelihoods under H ′

p and H ′

d using likeLTD. The first

command below finds out where your system has stored the Hammer Case files, and saves

that location in datapath. For your own analyses, you will need to create your own CSP

and reference files, in the same format as hammer-CSP.csv and hammer-reference.csv.

It is usually most convenient to create these files in a specific directory, and then set

that to be the working directory for R using the command setwd() or using the R menu

option (its location varies across operating systems). For example if your case files are
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in the directory C:/Users/JoeBloggs/Cases/JoeBloggs1 then you enter the command

setwd("C:/Users/JoeBloggs/Cases/JoeBloggs1"). In that case you can set datapath

= "." in place of the first command below. A default allele frequency database file is

provided with likeLTD. To use your own database file instead (must be in same format)

set databaseFile to the filename, including path if not in the working directory. If you

wish to choose a different individual to be Q, or to add or omit one of the other profiled

contributors (a K, in the notation used here, standing for “known”) then you must create

a new reference file.

datapath = file.path(system.file("extdata", package="likeLTD"),"hammer")

# File paths and case name for allele report

admin = pack.admin.input(

cspFile = file.path(datapath, 'hammer-CSP.csv'),

refFile = file.path(datapath, 'hammer-reference.csv'),

caseName = "hammer"

)

Values are required for cspFile and refFile, but caseName can be omitted above in

which case it defaults to "dummy". Two other arguments have been omitted so that their

default values will be used: databaseFile = NULL and outputPath = getwd().

1.2 Allele report

# Next we generate an allele report

allele.report(admin)

The allele report is a .doc that will be created in the current working directory (set

outputPath to specify a different directory). The .doc file can be converted to .pdf

by opening with MS Word or another document editor and saving as a pdf. The report

generated by the above command (hammer-Allele-Report-1.doc) is shown in Appendix

A. It summarises the input data, highlights rare alleles, and suggests values for key

parameters (and hence the suitable hypotheses), in particular specifying the number of

unprofiled contributors required to explain the observed CSPs under the Hp, and whether

modelling dropin is necessary. Here, it indicates that one unknown contributor is sufficient

under Hp to explain the observed alleles not attributable to Q/X or K1 or K2 by including

dropin. While it is never possible to specify an upper bound on the number of known

contributors, specifying more than the minimum required usually has negligible impact on

the resulting likelihood ratio (LR). Cowell et al. (2013a) illustrate this with an example
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in which a log(LR) of 14.09 with three contributors barely changes as the number of

contributors increases, reaching 14.04 with eight contributors.

1.3 Arguments and optimisation

Based on the allele report we specify the required hypotheses by setting a list of arguments

containing the following items:

nUnknowns: The number of unknown contributors under the prosecution hypothesis

(either 0, 1 or 2). likeLTD automatically adds an additional unknown contributor

(X) under the defence hypothesis, who replaces Q from the prosecutio hypothesis.

doDropin: Whether to model dropin or not (logical: TRUE or FALSE).

ethnic: The ethnic category of the queried contributor. The default database comes

with “EA1”,“EA3” and “EA4”, corresponding to UK residents of Caucasian, Afro-

Caribbean and South Asian origin respectively. If you use your own allele frequency

database you will choose your own category labels (required even if there is only

one category).

adj: Sampling adjustment (scalar). See Section 3.2.

fst: FST adjustment for distant relatedness (coancestry) of Q and X (scalar). See

Section 3.2.

relatedness: Relatedness coefficients for Q and X (vector of length two): the proba-

bilities that they have one and two alleles identical by descent from recent common

ancestors (e.g. parents or grandparents). The setting used below is for Q and X

unrelated; for siblings use relatedness = c(0.5,0.25). Note that likeLTD does

not take into account linkage between markers, which will lead to a slight overstate-

ment of the strength of evidence. The user may prefer to omit one of each pair of

syntenic loci, which will instead lead to understatement of the strength of evidence.

# Enter arguments

args = list(

nUnknowns = 1,

doDropin = FALSE,

ethnic = "EA1",

adj = 1,

fst = 0.02,
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relatedness = c(0,0)

)

# Create hypotheses

hypP = do.call(prosecution.hypothesis, append(admin,args))

hypD = do.call(defence.hypothesis, append(admin,args))

# Get parameters for optimisation

paramsP = optimisation.params(hypP)

paramsD = optimisation.params(hypD)

# Run optimisation

results = evaluate(paramsP, paramsD)

The entries in args shown above are defaults, except for nUnknowns which defaults to 0.

The function do.call calls the function given in its first argument. prosecution.hypothesis

and defence.hypothesis are both functions defined within likeLTD, which generate the

necessary objects for Hp and Hd respectively. The evaluate function is likewise defined

within likeLTD, and is a wrapper function for the DEoptim function that performs optimi-

sation (see Section 2.8), providing improved optimisation, and a progress bar displaying

current WoE. The progress bar can be disabled by setting the argument progBar = FALSE,

which is necessary if you do not have graphical capabilities e.g. running from command

line on a server. The evaluate function now splits the convergence into a number of steps,

with each subsequent step having more stringent convergence tolerance and an increased

crossover rate (a parameter for DEoptim); the combination of these two behaviours means

that the parameter space is searched extensively to start with, and gradually anneals to

a more intensive local search towards the end. The number of steps to run is determined

by the difficulty of converging the first step. Interim results after each step are avail-

able by setting the argument interim = TRUE, which writes the most recent results to

Interim.csv, in the current working directory. The function optimisation.params sets

the parameter values needed for DEoptimLoop. These values can be altered if required

but the default settings should be adequate for most analyses.

The object returned by evaluate is a list of three elements: Pros, Def and WoE.

Both Pros and Def have the same structure as the object returned by DEoptim (see

help(DEoptim)), with each corresponding to the prosecution and defence results respec-

tively. WoE gives the WoE for each step run by evaluate in bans, the final WoE can be

obtained through the command results$WoE[length(results$WoE)].
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1.4 Output report

# Generate output report

output.report(hypP,hypD,results)

The results are given in the output file hammer-Evaluation-Report-1.doc (the num-

bering of the filename increments automatically, or a custom filename may be specified

with file="fileName.doc") which again summarises the input data, similar to the allele

report, but also states the hypotheses compared and gives single-locus and overall likeli-

hood ratios (LR) in favour of the prosecution hypothesis relative to the defence hypothesis.

Logarithms (base 10) are also given for the LRs, and we will refer to the log10(LR) values

as the weight of evidence (WoE) measured in bans. The output file for the Hammer

case analysis is given in Appendix B. The overall WoE was found to be 10.9 bans. The

WoE is > 0 (favours H ′

p over H ′

d) at every locus except D18 (WoE = -0.5 bans). The

most incriminating locus is D19 (WoE = 2.6 bans), where the two alleles of Q are rare,

replicated in the CSP, and not shared with either K1 or K2.

Dropout rate estimates for each contributor subject to dropout, and each profiling run,

are also given in the output file. These estimates are often not precise, particularly under

H ′

d where there are two unprofiled contributors, but this is not important for assessing the

WoE against Q. Note that under H ′

d, X and U1 are indistinguishable; we usually take X

to be the one with dropout rates most similar to Q, but the labelling in the output file is

arbitrary. The single-allele dropout rates for Q/X are estimated at 11%/12% and 0%/1%

in the two replicates. The dropout rate estimates for K1 under H ′

p/H
′

d are 46%/44% for

replicate a and 3%/5% for b. The degradation value for K1 (γK1) is about 0.8% under

both hypotheses, while γQ and γX are both about 0.4%, indicating an increase in dropout

rate with fragment length, an effect of degradation, particularly for K1.

Every CSP allele attributable to K2 could also come from K1 or Q, and so under H ′

p

there is no evidence for DNA from K2. However, under H ′

d the DNA of Q is not present,

leaving three CSP alleles that can be attributed to K2 but not K1. Nevertheless, likeLTD

estimates 100% dropout of the alleles of K2 in both replicates and under both hypotheses.

This is because the three alleles attributable to K2 under H ′

d are all replicated, whereas

seven other alleles of K2 do not appear at all, indicating very high dropout, and so likeLTD

finds that attribution of the three alleles to K2 is unlikely. Although we cannot exclude K2

from contributing any DNA to the sample, these results indicate that including K2 in the

analysis brings no explanatory power and so has negligible impact on the WoE implicating

Q as a contributor. It isn’t necessary to exclude K2 from the analysis, because likeLTD

has automatically done this by estimating dropout at 100%, but there may be a slight

improvement in the likelihood optimisation in running the analysis again without K2, due

to fewer nuisance parameters to be estimated.
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1.5 Genotype probabilities

LikeLTD can provide a list of the most probable genotypes at each locus for each unprofiled

contributor, using function get.likely.genotypes (new in Version 5.2). By default only

single-locus genotypes with probability > 0.1 are returned; this can be altered using the

argument prob. The most probable whole-profile genotype, and its probability are also

returned (Figure 1). The genotypes and their probabilities add nothing to the assessment

of weight of evidence against an alleged contributor of DNA, but can be useful for searches

in a database.

# Get the most likely single-contributor genotypes

gens = get.likely.genotypes(hypD,paramsD,results$Def)

The returned list object is organised into a series of levels, as shown in Figure 1.

It may also be desirable to obtain the probabilities of joint genotypes, rather than

genotypes of single contributors. In this case, the argument joint can be handed to

set.likely.genotypes, and if set to TRUE, the joint genotypes and probabilities will

be returned rather than the single-contributor genotypes and probabilities. For joint

genotypes the default probability threshold for single-locus genotypes is 5%. This value

can be altered for the single-contributor or joint cases by setting prob.

Note some of the locus-specific genotypes used to contruct the whole profile genotype

may have smaller probabilities than the threshold, and will therefore not be displayed in

the locus-specific results.

# Return joint genotypes and probabilities

gens = get.likely.genotypes(hypD,paramsD,results$Def,joint=TRUE)

# Return joint genotypes with per-locus probability greater than 3%

gens = get.likely.genotypes(hypD,paramsD,results$Def,joint=TRUE,prob=0.03)

The returned object here is organised similarly to the single-contributor object, with

the dependence on contributor removed from the organising heirarchy, as shown in Figure

2.

If there are three unprofiled contributors to the CSP, the function will return either

a genotype list for each contributor if joint=FALSE, or a genotype list with six columns

(two alleles for each contributor) if joint=TRUE. If there is only a single contributor to

the CSP, the results will be identical regardless of the value of joint, although they will

be diplayed slightly differently (if joint=FALSE the dependence on contributor will still

be displayed, but as there is only one contributor this has no real effect).
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[[1]]

[[1]][[1]]

[[1]][[1]]$D2

[[1]][[1]]$D2$genotypes

[1] "17" "20"

[[1]][[1]]$D2$probabilities

[1] 0.9460538

[[1]][[1]]$D21

[[1]][[1]]$D21$genotypes

[1] "29" "32.2"

[[1]][[1]]$D21$probabilities

[1] 0.8806254

[[1]][[1]]$TH01

[[1]][[1]]$TH01$genotypes

[,1] [,2]

[1,] "6" "9.3"

[2,] "8" "9.3"

[3,] "6" "8"

[[1]][[1]]$TH01$probabilities

[1] 0.3113742 0.3109442 0.2923899

[[1]][[2]]

[[1]][[2]]$D2

[[1]][[2]]$D2$genotypes

[,1] [,2]

[1,] "17" "24"

[2,] "20" "24"

[[1]][[2]]$D2$probabilities

[1] 0.3745314 0.2656215

[[1]][[2]]$D21

[[1]][[2]]$D21$genotypes

[,1] [,2]

[1,] "29" "31"

[2,] "31" "32.2"

[[1]][[2]]$D21$probabilities

[1] 0.5306968 0.2493529

[[1]][[2]]$TH01

[[1]][[2]]$TH01$genotypes

[,1] [,2]

[1,] "6" "9.3"

[2,] "8" "9.3"

[3,] "6" "8"

[4,] "9.3" "9.3"

[[1]][[2]]$TH01$probabilities

[1] 0.2776487 0.2232152 0.2017299 0.1318768

$topGenotypes

$topGenotypes$genotypes

$topGenotypes$genotypes[[1]]

[,1] [,2]

D2 "17" "20"

D21 "29" "32.2"

TH01 "6" "9.3"

$topGenotypes$genotypes[[2]]

[,1] [,2]

D2 "17" "24"

D21 "29" "31"

TH01 "6" "9.3"

$topGenotypes$probabilities

$topGenotypes$probabilities[[1]]

[1] 0.2594117

$topGenotypes$probabilities[[2]]

[1] 0.05518619

Figure 1: An example output of get.likely.genotypes for a two-contributor, three-

locus CSP, obtaining marginal genotype probabilities. The first section of the results

shows the single locus genotypes for single contributors and is broken into two subsec-

tions, one for each contributor subject to dropout (designated with [[1]][[1]] for the

first contributor, and [[1]][[2]] for the second contributor). Each of these subsections

is then further divided into locus sections (designated $locusName), which are then each

split into genotypes and probabilities for that locus and that contributor. The probabil-

ities correspond to the rows of the genotypes matrices. The second section (designated

$topGenotypes) shows the most probable whole-profile genotype for each contributor,

and is split into genotypes and probabilities subsections, which are both further subdi-

vided into contributors subject to dropout (e.g. $topGenotypes$probabilities[[2]]

indicates the probability of the most probable genotype for the second contributor, which

is displayed in $topGenotypes$genotypes[[2]]).
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$joint

$joint$D2

$joint$D2$genotypes

[,1] [,2] [,3] [,4]

[1,] "17" "24" "17" "20"

[2,] "20" "24" "17" "20"

[3,] "24" "25" "17" "20"

[4,] "23" "24" "17" "20"

[5,] "19" "24" "17" "20"

$joint$D2$probabilities

[1] 0.35124052 0.23496616 0.07399688 0.07061620 0.06122807

$joint$D21

$joint$D21$genotypes

[,1] [,2] [,3] [,4]

[1,] "29" "31" "29" "32.2"

[2,] "31" "32.2" "29" "32.2"

[3,] "30" "31" "29" "32.2"

[4,] "31" "32.2" "29" "29"

$joint$D21$probabilities

[1] 0.49921332 0.16146173 0.08830646 0.08789113

$joint$TH01

$joint$TH01$genotypes

[,1] [,2] [,3] [,4]

[1,] "6" "9.3" "8" "9.3"

[2,] "8" "9.3" "6" "9.3"

[3,] "9.3" "9.3" "6" "8"

[4,] "6" "8" "6" "9.3"

[5,] "6" "9.3" "6" "8"

[6,] "6" "6" "8" "9.3"

$joint$TH01$probabilities

[1] 0.15636400 0.15062049 0.13187676 0.11295039 0.10912104 0.09935616

$topGenotypes

$topGenotypes$genotype

[,1] [,2] [,3] [,4]

D2 "17" "24" "17" "20"

D21 "29" "31" "29" "32.2"

TH01 "6" "9.3" "8" "9.3"

$topGenotypes$probability

[1] 0.02741748

Figure 2: An example output of get.likely.genotypes for a two-contributor CSP,

obtaining joint genotype probabilities. The first section ($joint) displays the joint

genotype probabilities at each locus for those genotypes with probability greater

than prob ($joint$locusName$genotypes), as well as their associated probabilities

($joint$locusName$probabilities). Once again the probabilities correspond to rows

in the genotypes matrices. The second section ($topGenotypes) displays the most likely

whole-profile joint genotype ($topGenotypes$genotype) as well as its associated proba-

bility ($topGenotypes$probability).
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2 Overview and description of the model

2.1 Overview

likeLTD is an R package for evaluating likelihoods for a crime scene DNA profile (CSP)

given the reference profiles of possible contributors of DNA and a specified number of un-

profiled contributors. It is particularly appropriate for low template DNA (LTDNA) pro-

files in which allelic dropout is considered possible for some or all contributors. likeLTD

is described, and results of some illustrative analyses presented, in Balding (2013) (much,

but not all, of the material in that paper is also found here). It is a development of earlier

algorithms described in Balding and Buckleton (2009).

We consider a single crime stain which may have been profiled multiple times from

replicate PCRs of the original sample. Forensic DNA profiling predominantly assays

autosomal short tandem repeat (STR) loci, using technology in which an allele in the

profiled sample is represented by a peak in an electropherogram (epg). See Butler (2010)

for background on forensic DNA profiling, and Buckleton et al. (2004); Balding (2005)

for introductions to statistical methods for evaluating DNA profile evidence. (We plan a

new edition of Balding (2005) giving more attention to low-template profiles, to appear

early in 2014.)

2.1.1 The contributors of DNA

It is assumed that we are interested in comparing the likelihood given that a profiled

individual Q as a contributor with the likelihood when Q is replaced with an unprofiled

individual X. The ratio of those two likelihoods, each maximised over the nuisance pa-

rameters, is the likelihood ratio (LR). There can be up to two further unprofiled possible

contributors of DNA, U1 and U2, and multiple profiled uncontested contributors (K1,

K2, . . .). The U are always assumed to be subject to dropout, but if all alleles of Q or

any of the K are observed in every replicate, then the dropout rate for that individual is

fixed at zero.

There can be several LRs of interest, considering X of different ethnicities and different

relatedness with Q (the more genetically similar X is to Q, the smaller the LR). likeLTD

allows X to be related to Q with two relatedness coefficients. In addition, we use an FST

adjustment to allele fractions that allows for possible remote shared ancestry of Q with

X. Within likeLTD, this adjustment only affects the alleles of Q and does not take into

account any other profiled contributors. We assume U1 and U2 to be mutually unrelated,

and they and the K are all assumed unrelated to X.

Because the relatedness coefficients and FST account for the positive correlations across

12



loci due to shared ancestry of Q and X, it is reasonable to compute full-profile LRs by

multiplication of single-locus LRs, which is standard practice in the assessment of DNA

profile evidence (Buckleton et al., 2004). We thus focus below on the single-locus case.

2.1.2 The parameters

Some parameters are defined in terms of a reference individual who is X under the defence

hypothesis. Under the prosecution hypothesis, the reference individual is Q if Q is subject

to dropout, otherwise the first K subject to dropout, if any, otherwise the first U, if any.

If there are no contributors subject to dropout, then there is no need for a reference

individual – the parameters defined in terms of this individual are not used.

The “nuisance” parameters, which must be eliminated under each multi-locus likeli-

hood before taking their ratio, are

� the dropout rates (one per replicate) for the reference individual;

� the contributions of DNA, relative to that from the reference individual (one param-

eter for each contributor subject to dropout other than the reference individual);

the relative contribution from an individual is used to compute dropout rates – see

below;

� the parameters of the dropout model: locus adjustment (one per locus), power

parameter (one), and degradation parameters (one for each contributor subject to

dropout);

� a dropin parameter (optional, see below).

likeLTD maximises a (penalised) likelihood over these parameters using the R DEoptim

function.

2.1.3 Key features of likeLTD

Some key features of likeLTD:

� It can accept “uncertain” allele calls, in addition to present/absent, which mitigates

the “cliff edge” effect of calls that are restricted to present/absent.

� It combines information across all DNA profiling runs, thus avoiding the need for a

“consensus” profile (Gill et al., 2000).

� It allows a different dropout rate for each contributor in each profiling runs.
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� The dropout probability for a given dose of DNA, relative to unit dose (for the

reference individual), uses the model of (Tvedebrink et al., 2009).

� Dropout rates can increase with fragment length, based on the model of Tvedebrink

et al. (2012b).

� As a consequence of estimating the dropout rate for contributors, a potential con-

tributor can be considered in an hypotheses without implying that their DNA is

present, because the contribution of DNA from that individual can be estimated at

zero.

� Because the penalised likelihoods are maximised over the nuisance parameters, com-

bining information over alleles, loci, replicates and individuals, there is little need

for external calibration data. This is only required for a few hyperparameters – the

parameters of the penalty functions and a rate parameter of the dropout model (for

which we use results from Tvedebrink et al. (2009), see below). The underlying

parameters are allowed flexibility to best fit the CSP data under each hypothesis,

constrained by penalty functions that depend on these hyperparameters.

� likeLTD does not use peak height information directly; it is used indirectly by the

forensic scientist when making the present/uncertain/absent designations. Peak

heights would provide more information and hence greater statistical efficiency for

many CSPs, but typically require extensive calibration data specific to the profiling

protocol used for the CSP. Because DNA evidence is so powerful, statistical effi-

ciency is not usually an urgent priority; robustness is usually more important and

the results below show that likeLTD has good robustness properties. In the pres-

ence of multiple replicates there is often very little loss of information from using

present/uncertain/absent rather than peak heights, but if only a single profiling run

is available the loss of information can be substantial.

For a comparison between likeLTD and other software packages for computing forensic

DNA LRs see Steele and Balding (2014).

2.2 Single-locus LR with dropout

Consider first a single profiling run in which the CSP showed two alleles, A and B. If the

contributors under the competing hypotheses are

H1
p : Q and H1

d : X,
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and Q ≡ AB, where “≡” denotes “has genotype”, then the LR under usual assumptions

(Buckleton et al., 2004; Balding, 2005) is

Q ≡ AB, CSP = AB: LR =
(1+FST )(1+2FST )

2(FST + (1 − FST )pA)(FST + (1 − FST )pB)
(1)

where the p are population allele fractions. We henceforth assume that sampling and FST

adjustments have been made to the p as described below, so that we can ignore FST and

the LR simplifies to 1/(2pApB).

Dropout refers to any allele of a hypothesized contributor that is not observed in the

CSP. If CSP = A, and low epg peak heights suggest that dropout is possible, then under

a standard model (Balding and Buckleton, 2009; Gill et al., 2012) the LR can be written

as

Q ≡ AB, CSP = A: LR =
D(1−D)

p2
A(1−D2) + 2pA(1−pA)D(1−D)

(2)

where D denotes the probability of dropout for a heterozygote allele, while D2 denotes

the probability of a homozygote dropout. The numerator is the probability that the B

allele of Q has dropped out (D), while the A has not (1−D). In the denominator, either

X is AA and there has been no dropout (1st term), or (2nd term) X is heterozygous but

the non-A allele has dropped out.

Logically, D in the numerator of the LR is different from D in the denominator.

However, typically a similar range for D is supported under both hypotheses and they

are often taken to be equal for illustrative calculations (Gill et al., 2007).

2.3 Effect of an “uncertain” allele designation

If now we assume CSP = A[B], where [] denotes an “uncertain” allele designation, while

again Q ≡ AB, then the LR becomes

CSP = A[B]: LR =
1−D

p2
A(1−D2) + 2pApB(1−D) + 2pA(1−pA−pB)D(1−D)

. (3)

In the numerator we only know that Q’s A allele has not dropped out (1−D), whereas

we do not know if B has dropped out and so the corresponding term is one. In the

denominator, the three terms correspond to X ≡ AA, AB and AZ, where Z is any allele

other than A or B.

Figure 3 (solid curves) shows the LRs (1) through (3) as a function of dropout rate

D for a locus with pA = pB = 0.1 (after adjustments). The computation of D2 from D

is discussed in Section 2.5. As expected, the LR for CSP = A[B] (red curve) is always

intermediate between those for CSP = AB (black) and CSP = A (green). When D is

high the red and green curves are similar, because in the presence of high dropout both
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Figure 3: Single-locus, single-

contributor LRs for three CSPs

with 1 profiling run (solid curves) and

three with 2 runs (dashed curves). In

the legend box, + separates the two runs

and [ ] denotes an uncertain allele call. Allele

A is observed in every case, whereas the

designation of allele B in the first run varies

over present, uncertain, and absent; it is

uncertain in the second run. The LRs are

expressed as a function of the dropout rate

D, assumed to be the same for all alleles.

For purposes of illustration, D has the same

value in numerator and denominator.

an uncertain and an absent designation for B convey little information about whether or

not X has a B allele. However when D is small the two LRs differ substantially as CSP

= A is inconsistent with X ≡ AB, whereas CSP = A[B] is consistent with both X ≡ AA

and X ≡ AB.

Next consider the LRs when the three CSPs considered above constitute only the first

run, and there is a second run that gives A[B] in each case (Figure 3 dashed curves). We

assume the same D for both runs. When CSP = AB + A[B], we must have X ≡ AB (we

ignore dropin here, see Section 2.7) and the LR is again (1). The LRs in the other two

cases are

CSP = A + A[B]: LR =
D(1−D)2

p2
A(1−D2)2 + 2pApBD(1−D)2 + 2pA(1−pA−pB)D2(1−D)2

,

CSP = A[B] + A[B]: LR =
(1−D)2

p2
A(1−D2)2 + 2pApB(1−D)2 + 2pA(1−pA−pB)D2(1−D)2

.

Note that we assume that the different runs are independent, conditional on the genotypes

of all contributors (Curran et al., 2005).

We see from Figure 3 that observing A[B] in the 2nd run increases both LRs when D is

small but decreases them when D is large. In fact, when D is very high, observing either

A or A[B] in just one run yields LR > 1, favouring H1
p , whereas two such observations

in independent runs gives LR < 1, against H1
p . This is because X ≡ AA under H1

d then

provides a better explanation of the replicate observations than H1
p , since homozygotes

are much less likely to drop out than a heterozygote allele.
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2.4 Additional contributors

LRs such as (2) and (3) can be rewritten more generally as

LR =
P (CSP|Q ≡ AB)

∑

g∈Γ pgP (CSP|X ≡ g)
(4)

where Γ denotes the set of possible genotypes, while pg denotes the population fraction of

genotype g. Equation (4) makes explicit the requirement to sum over all possible geno-

types for the unprofiled contributor X. When there is an additional unprofiled contributor

U1, we proceed in the same way as for X. We sum over all possibilities for each unknown

genotype, multiplying each term by the genotype probability:

LR =

∑

g∈Γ P (CSP|Q ≡ AB, U1 ≡ g)
∑

g1,g2∈Γ pg1pg2P (CSP|X ≡ g1, U1 ≡ g2)
. (5)

Each term in these sums follows the same well-established and simple rules that have been

used for Q and X above, now applied additionally to the current genotype for U1.

Individuals contribute different amounts of DNA to the mixed-source sample, and

multiple individuals can have one or two copies of a given allele. Thus we need to model

the dropout probability at an allelic position as a function of the total amount of DNA

from all contributors with that allele.

2.5 Multi-dose dropout model

At each step in the likelihood calculation, there is a set of individual hypothesized contrib-

utors of DNA to the CSP and each has a genotype (tentatively assigned for the unprofiled

contributors). Dropout refers to any allele of these hypothesized contributors that is not

observed in the CSP. The dropout model used here (Tvedebrink et al., 2009) can be

written
D(k)

1−D(k)
= (αsk)β, (6)

where s indicates the locus. Note that β is β1 in the notation of Tvedebrink et al. (2009),

and αs is proportional to exp(β0,s/β1). Here we choose the scale by fixing the mean

over loci of αs at one. The estimates of β0,s obtained by Tvedebrink et al. (2009), from

experimental non-degraded LTDNA profiled at the ten loci of the SGM+ system, imply

an SD for αs of 0.141. Because they may depend sensitively on the experimental protocol

employed, we do not use the Tvedebrink et al. (2009) estimates directly, but instead

estimate the αs under each hypothesis from the observed CSP. To keep the estimates

realistic, we impose a gamma distribution prior on the αs, here assigning mean = 1 and

SD = 0.141, although a different SD may be appropriate for example in highly-degraded

17



0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Dropout for allele dose 1

D
ro

p
o
u
t 
fo

r 
a
lle

le
 d

o
s
e

 k

k=3

k=1.6

k=1.2

k=0.8

k=0.25

Figure 4: Dropout probabili-
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against those for a unit dose
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samples. For the global parameter β, we adopt a normal distribution with mean −4.35

and SD 0.38. These both derive from the work of Tvedebrink et al. (2009), but the SD

value was not published in the paper and was supplied in personal correspondence with

Dr Tvedebrink.

Figure 4 illustrates D(k) as a function of D(1) for several values of k, evaluated by

substituting αβ
s = D(1)/(1−D(1)) in (6). We see for example that if D(1) = 0.5, then

D(1.2) ≈ 0.3 and D(0.8) ≈ 0.7, and so just a 20% change in DNA dose can have a large

impact on dropout probabilities.

We take k = 1 to correspond to a single heterozygote allele of the reference individual

(see Section 2.1.2). Thus D(1) is the heterozygote dropout probability, and D(2) is the

homozygote dropout probability, for the reference individual. For k large

D(2k)

D(k)2
≈
(

2

αsk

)β

> 1,

so a homozygote dropout can be more likely than independent dropout of both alleles,

which is implausible. However, this inequality only applies for low dropout probabilities

(Tvedebrink et al., 2012a) and so this defect of the model is unimportant in practice.

The problem of calculating likelihoods for LTDNA profiles was not addressed by

Tvedebrink et al. (2009); they validated their model by comparing theoretical and em-

pirical dropout rates. To achieve this, they estimated the amount of DNA from each

contributor using the heights of peaks due only to that contributor over the whole profile.
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This is problematic for calculating LTDNA likelihoods, because it ignores information

from allele peaks with multiple contributors, and requires alleles of individual contribu-

tors to be distinguished, which is frequently not possible. Here, we directly specify the

likelihood for each replicate in terms of D(k) at every allelic position, with k calculated

according to the contributions of DNA and the genotypes of all the hypothesised con-

tributors. We thus use present/uncertain/absent information at every allelic position to

provide information about amounts of DNA.

2.6 Degradation model

DNA degrades over time, at a rate that depends on temperature, humidity and environ-

mental exposure. In forensic DNA profiling, degradation is manifested in higher dropout

rates for alleles with large fragment lengths. Our model for the effect of degradation is

based on that of Tvedebrink et al. (2012b), who posited a geometric distribution for the

effective amount of DNA as a function of allele fragment length. Thus, the average allele

dose k from the ith contributor subject to dropout is modified at an allele with fragment

length l base pairs (centred to have mean zero) according to

k′ = k(1+γi)
−l,

where γi > 0. Shorter fragments (l < 0) correspond in effect to an enhanced allele dose,

while longer fragments generate a smaller effective allele dose. An STR allele consists

of flanking regions in addition to the tandem repeats, and so the repeat number that

characterises the allele is not a good proxy for fragment length, which can be obtained

for many DNA profiling systems at www.cstl.nist.gov/div831/strbase/.

In the spirit of shrinkage regression methods, likeLTD incorporates a weak penalty

(exponential, mean 0.02) on each γi. An example below (Section 3.6) illustrates the effect

of this penalty, which is a slight tendency to shrink the parameter estimates towards zero,

which is usually negligible but avoids inflated values when there is very little information

(for example, in the presence of high dropout or substantial masking).

2.7 Dropin

Dropin refers to an allele in the CSP that is not included in the genotype of any hy-

pothesized contributor, profiled or unprofiled. Dropin alleles can arise from individuals

contributing a very low level of DNA to the sample, perhaps generated from fragments of

the DNA molecule that persist for some time after the death and decay of a cell. Foren-

sic scientists often restrict “dropin” to lab-based contamination which can be measured

by control runs and is usually found to be rare. However, we cannot usually determine
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the source of any dropin (Gill et al., 2000), so for the purposes of evaluation we do not

distinguish distinguish dropin according to its source. It follows that lab-based estimates

of drop-in rates are of limited usefulness.

Each dropin allele does come from an individual, but it may arise from very few and

possibly degraded cells so that very little of this individual’s DNA is reflected in CSP

peaks. It is computationally inefficient to sum over all possible genotypes, as in (5),

for such low-level contributors, and so we allow the possibility of modelling dropin more

simply, as independent Bernoulli trials (Curran et al., 2005). Dropin is non-dropout of an

allele of a low-level contributor, and so we model the dropin probability as a constant (c)

times the non-dropout rate for each replicate. As for the γi, we impose a weak penalty

on c (exponential, mean 0.5) to discourage solutions with c large, reflecting background

information that dropin is usually rare.

If there are sufficient unprofiled contributors to explain all observed alleles, it is un-

necessary to model dropin explicitly. If dropin is not modelled, any proposed allocation of

alleles to the unprofiled contributors that does not explain every CSP allele is impossible,

and the corresponding likelihood calculations can be avoided. We are unable to model

the effect of degradation on dropin probability, because dropins are too rare to estimate

γi, so it is preferable to avoid use of the dropin model when possible. We suggest that the

dropin model be used when there are one or two unreplicated alleles in a 10-locus profile

that cannot be accounted for by the hypothesized contributors.

2.8 Maximising the penalised likelihood

To compute the LR, it is necessary to deal with the “nuisance” parameters under each

hypothesis. These are: the D(1) (one per replicate), the dropout model parameters αs

(one per locus) and β, the contributions of DNA, relative to the reference individual,

and the γi (one of each for every contributor subject to dropout), and possibly a dropin

parameter c (see above). likeLTD seeks to maximise a penalised likelihood over these

parameters, with penalties on αs, β, γi and c as described above. These penalties can

be thought of as prior distributions, but we do not use a Bayesian approach since we

maximise over unknown parameters rather than integrate. The primary purpose of the

penalty is to avoid the maximisation algorithm from exploring unrealistic regions of the

parameter space.

We use the R DEoptim function to maximise the penalised likelihoods, which is a

genetic algorithm utilising differential evolution optimisation to find the global minimum

of a function (since we want to maximise and not minimise, it is necessary to multiply

the log-likelihoods by −1).

The results from DEoptim consist of two lists, DEoptim and member. DEoptim consists
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of four parts:

bestmem: The parameter values that gave the maximum likelihood.

bestval: The negative log likelihood at these parameter values.

nfeval: The number of evaluations of the objective function that were carried out during

optimisation.

iter: The number of generations for the optimation.

while member consists of:

lower: The lower bounds of the parameters used.

upper: The upper bounds of the parameters used.

bestvalit: A vector containing the maximum likelihood at each generation.

bestmemit: A matrix containing the parameters that gave the maximum likelihood at

each generation.

pop: The set of parameter values generated for the last generation.

storepop: The sets of parameters generated for previous generations.

See the DEoptim help page for more information.

Rather than estimate the nuisance parameters, they can be set to fixed values if

desired, by setting the upper and lower bounds. For example

tofix = "dropout"

value = 0.2

# Create index of which parameters are dropout parameters

index = grep(tofix,names(paramsP$upper))

# Set those parameters upper value to the fixed value for prosecution

paramsP$upper[index] = rep(value,times=length(index))

# Set those parameters lower value to the fixed value for prosecution

paramsP$lower[index] = rep(value,times=length(index))

# Repeat for the defence uppers and lowers

index = grep(tofix,names(paramsD$upper))

paramsD$upper[index] = rep(value,times=length(index))

paramsD$lower[index] = rep(value,times=length(index))
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2.9 Computing time and memory requirements

The Hammer case analysis described above required 49 minutes to run, while the three

contributor test (see Section 3.4) requires 117 minutes to run. These timings were made on

a desktop computer with 15Gb of RAM, and an eight core Intel i7 processor (at 3.1GHz

per core). Computing times may vary across machines. Most desktop computers will

have enough memory to run all cases except when dropin is modelled and there are three

unknown contributors under Hd. In that case up to 1Gb of RAM may be required per

locus, depending on the number of alleles, and so 3 unknowns + dropin analyses will only

be possible on large-memory machines.

The number of generations used for optimisation by DEoptim is not fixed in advance,

but is determined by the function evaluate. Each step is a separate optimisation, with a

geometric pattern in the crossing over rate (see DEoptim::DEoptim.control) and conver-

gence tolerance. Each step checks for convergence after every 75 generations; convergence

occurs if log10(|1 − Lc/Lc−75|) ≤ t where L denotes likelihood, c the current generation

and t the tolerance for the given step.

As discussed previously the major determinant of runtime is now the number n of steps

required by evaluate runs for convergence, n. This is computed as n =max(4, 4⌈log2(x)⌉)+

rd where rd is the number of rcont parameters handed to DEoptim under the defence

case, and x is the mean of σp and σd, where σp is the standard deviation of the likelihood

for the first phase (iterations 1-75) of the first step of optimisation for the prosecution (σd

is the same, but for defence). We can see that the minumum number of steps is 4, and

that the number of steps increases with both complexity and difficulty of optimisation.

A key parameter determining the DEoptim run time is the size of the population (num-

ber of random starts per generation). Larger values tend to generate higher likelihoods,

but there is a rapidly diminishing benefit with increasing population size, while run time

increases approximately linearly. likeLTD sets the population size to be four times the

number of parameters varied in the optimisation (NP). For the Hammer timings above

this implies a population size of 80, while for the three contributor test (Section 3.4)

the population size was 72. NP, and hence population size and run time, depend on the

number of contributors subject to dropout, since there is an effective amount of DNA and

a degradation parameter for each of these. Run time is also affected by the number of

unprofiled contributors: these are always subject to dropout, and summation over their

possible genotypes adds to run time and to the memory requirement. Below we show

that likeLTD can handle up to four contributors subject to dropout, of which up to two

can be unprofiled under Hp. In previous versions (5.3 and earlier), an increased NP was

necessary for proper optimisation when close relatedness is taken into account, however,

this need has been negated with the evaluate function introduced in version 5.4, which
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performs well without any increase in NP.

3 Performance tests of likeLTD

3.1 Validation of likelihood ratios

Laboratory procedures to measure a physical quantity such as a concentration can be val-

idated by showing that the measured concentration consistently lies within an acceptable

range of error relative to the true concentration. Such validation is infeasible for software

aimed at computing an LR, because there is no underlying true value (no equivalent of the

true concentration). The underlying truth that is being probed is whether or not an indi-

vidual Q is a contributor of DNA to the crime scene profile (CSP), which is a yes/no and

not a quantitative event. Even if I know all the contributors to a complex mixture there is

still no “correct” value of the LR. Probabilities measure our certainty about the true state

of nature, and there is no “true” level of certainty about an unknown fact, it depends on

the data available (for example details of the CSP) and on modelling assumptions, e.g.

about dropout and dropin. However, forensic LRs are expected to behave in a particular

manner, particularly they should not exceed the inverse of the match probability (Cowell

et al., 2013b), which can be used to validate any given software package. We have shown

(Steele et al., 2014) that likeLTD adheres to this behaviour with multiple replicates, and

demonstrated that the inverse match probability is fit for purpose as a validation tool.

For a given set of input data and modelling assumptions, there may be an exact value

for the likelihood, but there are always other plausible modelling assumptions that can give

different values. In practice, the different programs that are available or in development

for the evaluation of LTDNA profiles do make different assumptions and obtain different

answers, though of course the differences should be, and in practice are, small relative to

the 10 or more orders of magnitude over which LRs range in practical applications. It

follows that it is fruitless to insist on very high precision of likelihood calculations under

any specific model. It was recognised by Turing over a half-century ago that evidence is

best measured in units of base 10 logarithms, a unit that he called the ban. An error

of 1 deciban (≈ 26% on the natural scale) should be regarded as negligible, because the

implications of different, reasonable, modelling assumptions are often larger than this,

and so bans should not be reported to one decimal place. Moreover, we show below that

routine sampling and FST adjustments can make a difference of between one and two

bans, and these are designed to err substantially in favour of defendants, typically by at

least several decibans.

There is a convenient analogy between the measurement of WoE and earthquakes.
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Both are logarithmic scales that should usually be reported to at most one decimal place,

and typical values range up to about 10. There is no maximum for WoE but in practice

in the UK any value above 9 bans (LR > 1 billion) is reported as “over a billion”.

While there is no “true” value of the LR, even for simulated cases, many checks on

the performance of likeLTD are possible, using simulated and real profiles. We report

below the performance of likeLTD under an extensive set of tests. For example, we check

if an allele in the reference profile of Q is removed from the CSP, then the LR is reduced,

whereas if an allele not in Q’s reference profile is removed this increases the resulting LR.

We check that if we wrongly assume an extra contributor, either profiled or unprofiled,

the LR computed by likeLTD is little changed, and similarly if a small number of alleles

is modelled ether using a dropin term in the model, or as the alleles of an additional

contributor with heavy dropout. We check that when large fragment length alleles are

removed from the CSP, the degradation parameter estimate is high. When different

numbers of dropouts occur in different replicates, we show that the estimates of the

dropout rates for those replicates differ accordingly. We also check that likeLTD produces

answers consistent with those generated by a similar program, in that any discrepancies

can be qualitatively understood in terms of the different modelling assumptions of the

programs. We further provide simulations to illustrate the search length required for

stable estimates of the LR over replicate runs of likeLTD.

3.2 A one-contributor CSP with dropout and dropin

Three CSPs were analysed (Table 1(i)), to which Q (Table 1(i), row 1) is the only true

contributor, but both dropout and dropin are introduced for CSPs 2 and 3. Thus H1
p

(page 14) is the truth, and in the analyses below this is compared with H1
d .

CSP1: Exactly the profile of Q (Table 1, row 1) appears in each replicate of CSP1 (rows

2,3). There would be no need to use likeLTD for this perfect single-contributor match,

but we apply it here in order to check that likeLTD works correctly in this setting. The

WoE (Table 1, row 1) is 11.3 bans. A naive application of the product rule using the

allele counts in Table 1 gives 12.9 bans (Table 2), but using the allele fractions in the

bottom two rows of the table, adjusted for coancestry (FST = 0.02) and sampling (adj =

1), reduces this to 11.43 bans.

The sampling adjustment “adj” is a value added to the database counts for the alleles

of Q, to reduce the risk of understating the population frequency, particularly for rare

alleles. Except in the first column of Table 2, we always use adj = 1. Balding (1995)

advocated adj = 2 in the absence of an FST adjustment, but since FST has a big impact

on low-frequency alleles, adj = 1 is adequate when an appropriate FST adjustment is
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Fst 0.00 0.00 0.01 0.02 0.03

adj 0 1 1 1 1

WoE (bans) 12.3 12.3 11.7 11.3 10.9

Table 2: Overall weight of evidence (WoE) for CSP1.

n. contrib. D3 vWA D16 D2 D8 D21 D18 D19 TH01 FGA WoE

1 2.4 2.9 2.3 2.8 2.1 2.9 3.4 2.2 2.3 2.9 4.1

2 2.4 2.9 2.3 2.8 2.1 2.9 3.4 2.2 2.3 2.9 4.1

Table 3: Single-locus LRs and overall weight of evidence for CSP1 when X, the alternative

source of the DNA, is a brother of Q. Results are shown for both 1- and 2-contributor

analyses.

employed. Note that likeLTD only adjusts for coancestry between X and Q, by replacing

each population allele fraction estimate p (after sampling adjustment) with:

(1−FST )p/(1+FST ) for alleles not in the profile of Q

(FST + (1−FST )p)/(1+FST ) for a heterozygote allele of Q

(2FST + (1−FST )p)/(1+FST ) for a homozygote allele of Q

These FST adjustments implemented in likeLTD are allelic adjustments, rather than

the alternative genotype adjustments. Genotype adjustments require a different FST

adjustment depending on the genotype configuration of both Q and X/U. The allelic

adjustments can be seen as a approximation of a full FST genotype adjustment, which

should not have a large effect if FST is low. The largest effect will be seen when both Q and

X/U are homozygotes, where the numerator of the genotype adjusted allele probability

would include a 3FST term, while the allelic adjusted probability would instead include

a 2FST term, as shown in Table 3.2. Note that all allelic FST adjustment denominators

differ from the genotypic FST adjustments, in that a 1 + FST is replaced with a 1 + 2FST .

The numerator only differs between the two methods when X is homozygous.

FST values comparing different parts of mainland Europe are typically < 0.005, and

so 0.02 is a relatively large value, except perhaps for Q and X both from a small pop-

ulation isolate such as a remote island. FST = 0.03, or in extreme cases FST = 0.05,

may be more appropriate for small, isolated or heterogeneous populations, such as many

migrant populations. See Balding (2005) for further discussion and for more details of

FST adjustments based on the multinomial-Dirichlet distribution.

Brother alternative: Repeating the 1-contributor analysis but now assuming that X is
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GQ GX Allele adjustment Genotype adjustment

AA AA (2FST +(1−FST )pA)(2FST +(1−FST )pA)
(1+FST )(1+FST )

(2FST +(1−FST )pA)(3FST +(1−FST )pA)
(1+FST )(1+2FST )

AA AB 2 (2FST +(1−FST )pA)(1−FST )pB

(1+FST )(1+FST )
2 (2FST +(1−FST )pA)(1−FST )pB

(1+FST )(1+2FST )

AB AB 2 (FST +(1−FST )pA)(FST +(1−FST )pB)
(1+FST )(1+FST )

2 (FST +(1−FST )pA)(FST +(1−FST )pB)
(1+FST )(1+2FST )

AB AA (FST +(1−FST )pA)(FST +(1−FST )pA)
(1+FST )(1+FST )

(FST +(1−FST )pA)(2FST +(1−FST )pA)
(1+FST )(1+2FST )

AB AC 2 (FST +(1−FST )pA)(1−FST )pC

(1+FST )(1+FST )
2 (FST +(1−FST )pA)(1−FST )pC

(1+FST )(1+2FST )

AB CD 2 ((1−FST )pC)((1−FST )pD)
(1+FST )(1+FST )

2 ((1−FST )pC)((1−FST )pD)
(1+FST )(1+2FST )

Table 4: FST adjusted genotype probabilities for all combinations of matching/non-

matching alleles between Q and X, with both the allelic FST adjustment used in likeLTD

and the full genotypic FST adjustment.

an unprofiled brother of Q gives 4.1 bans (Table 3). The single locus LRs computed by

likeLTD follow very closely the usual formula for a sibling (Balding, 2005), which in the

heterozygote (homozygote) case is:

LR =
4

1 + pa + pb + 2papb

(

4

(1 + pa)2

)

Note that the single-locus LR can never exceed 4 for the brother alternative. Also, there

is no explicit FST adjustment in the formula above because the allele fractions p have been

adjusted as described above: this provides a reasonable approximation to the adjustment

based on the multinomial-Dirichlet distribution.

Assuming two contributors: If we wrongly guessed that there were two contributors to

CSP1, we could compare the hypotheses

H2
p : Q + U1 with H2

d : X + U1

where X and U1 denote unprofiled individuals that are unrelated to each other and to Q.

In this case likeLTD correctly estimates near 100% dropout for U1 under both hypotheses

(Table 1(ii), row 2) and the WoE is almost unchanged from assuming one contributor.

Similarly, when X is a brother of Q, the single-locus LRs and overall WoE computed by

likeLTD are almost identical to the 1-contributor case (Table 3). The package does not

take into account linkage between markers, so these results will be slightly overstated (see

Section 1.3 for more information).

CSP2: The two replicates of CSP2 differ from those of CSP1 due to one dropin and two

dropouts (Table 1(i), rows 4,5). The two dropouts both affect loci with large fragment

lengths, consistent with the effects of DNA degradation. Because the dropin allele is at a
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heterozygous locus where the two alleles of Q are replicated, and the two dropout alleles

each appear in the other replicate, the evidence implicating Q remains very powerful

and the WoE is only slightly reduced, to 11.2 bans (Table 1, rows 5,6). The dropout

parameter estimates are similar over the four replicate/hypothesis combinations. The

γQ/γX estimates are, as expected, moderately large at around 0%. Since the dropin

allele must have come from somebody, it is possible to analyse CSP2 as a two-contributor

profile without a dropin term in the model, which implies very heavy dropout for the

second contributor, U1. We see from (Table 1(ii), rows 7,8) that this analysis gives a

slightly stronger WoE (11.3 bans), closer to the WoE for CSP1. The dropout rates for

U1 are, as expected, very high, and γU1 is also high (about 1 because the dropin allele is

at a short fragment length locus, so when attributed to U1 it gives further support to the

pattern of dropout increasing with DNA fragment length.

CSP3: One further dropin and two more dropouts have been introduced into CSP3

relative to CSP2 (Table 1(i), rows 6,7). The extra dropin is at a locus for which Q is

homozygous, so while it must be a dropin under H1
p , that is not so under H1

d . The two

additional dropouts again both affect loci with large fragment lengths, and this time an

allele of Q has dropped out in both replicates (FGA 24), which has a substantial impact

on the evidence implicating Q as a contributor. While the evidence remains powerful,

the overall WoE is now reduced by at least two bans compared with CSP2 (Table 1(ii),

rows 9–12). CSP3b is affected by three dropouts, whereas CSP3a by only one, and

consequently the dropout rate estimates are much higher for CSP3b than for CSP3a.

The difference between modelling CSP3 as a one-contributor profile with two dropins,

and a two-contributor profile with substantial dropout for one of the contributors, is

now more important (0.6 bans). The two models differ in several respects. The two-

contributor model gives the stronger WoE, and the dropin model can be regarded as a

simple approximation that reduces computation time, and is more conservative for the

examples considered here.

3.3 Two unprofiled contributors

Table 6 presents results from likeLTD analyses of two-contributor profiles shown in Ta-

ble 5. The contributors are Q and an individual treated here as unknown, while the

hypotheses compared are those given above (page 27): H2
p (the truth) and H2

d . Note that

under H2
d the labels X and U1 for the two unprofiled contributors are arbitrary: in the

discussion below we call X the one with dropout rates most similar to Q.

CSP4: shows exactly the alleles of the two contributors in both replicates, with no

dropout or dropin. The dropout rates, and γQ and γX , are all correctly estimated to be
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close to zero. The WoE is 6.2 bans, reduced by over five bans from the case of a single-

contributor CSP matching Q (CSP1), because of the additional uncertainty created by

the masking effect of the alleles of U1.

CSP5: introduces random 50% dropout for the alleles of U1 not shared with Q. Because

of the reduced masking effect, the WoE is much higher than for CSP4, now >9 bans.

The dropout rates for X are correctly estimated as close to zero. The actual numbers of

dropouts of the alleles of U1 are 4 in CSP5a and 5 in CSP5b, and this is reflected in the

dropout rate estimates of 35% for CSP5a and 47% for CSP5b. These estimates cannot

be precise because of the masking of the alleles of U1 by those of Q.

CSP6: Here, the opposite scenario is considered of a random 50% dropout of the alleles

of Q not shared with U1. As expected, this reduces the WoE relative to CSP4, by one

ban. At locus FGA both alleles of Q have dropped out in both replicates; the WoE is

−0.74 at this locus and is > 0 at all other loci (not shown). There are again four dropouts

in CSP6a but five in CSP6b, which is reflected in different dropout rates over the two

replicates. The dropouts were predominantly at the loci with large fragment lengths (D2,

D18 and FGA) and so γQ is moderately high, at 0.6%.

CSP7: A new difficulty is introduced: in addition to 50% dropout for the alleles of Q,

50% of the alleles of U1 generate stutter peaks that have a non-negligible probability of

masking an allele of Q. Each of these peaks is classified as “uncertain” for the likeLTD

analysis, irrespective of whether or not Q has an allele at that position. This additional

ambiguity in the CSPs reduces further the WoE, to 4.1 bans. Once again the dropout and

γi parameter estimates are broadly reasonable, noting that high precision is not possible

here because of the masking effects of the stutters and alleles of U1.

CSP8: Random 50% dropout affects the alleles of both Q and U1. Once again all the

dropout and γi estimates are reasonable for the two-contributor analysis, and the WoE is

4.5 bans. Even though the CSPs were created assuming two contributors, there are now

only three replicate/locus combinations (out of 20) at which > 2 alleles were observed.

Thus, it would be possible, though not recommended, to analyse this case assuming one

contributor plus dropin. The results (Table 6(ii) two rows) again show that this simplified

analysis gives a conservative result, with the WoE now 2.5 bans.

We repeated the computation of the likelihoods for CSP7 and CSP8 (2 contributors)

varying the tolerance of evaluate, which sets the tolerance for convergence of the last

step of optimisation (Table 7). We find no variance in the WoE with any of the tolerance

levels, suggesting advanced users may wish to reduce the tolerance to gain some speed

increases. However, while this is true for these results, this may not apply to other CSPs;
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user discretion is advised.

3.4 Three unprofiled contributors

We generated an example with three unprofiled contributors using the profiles from the

Hammer Case (see above) but omitting K2 and treating K1 as if unprofiled. The hy-

potheses compared were then

H3
p : Q + U1 + U2 with H3

d : X + U1 + U2.

Once again the tolerance has no effect on the final WoE. This comes with the same caveat

that this may only apply to the cases shown here; any decision by the user to reduce

the tolerance threshold should be investigated thoroughly before implementation. Minor

changes to tolerance should be cause no problem (e.g. 1e-4), however, larger changes may

cause suboptimal optimisation for more difficult CSPs (e.g. 1e-1).

In likeLTD the population size of each iteration (NP) was determined as a factor mul-

tiplied by the number of parameters to optimise over. In earlier versions of the program,

factor=1 was inadequate for the three-contributor case, but with improvements imple-

mented in version 5.4 this is no longer the case and the overall WoE is accurate even

when factor=1 (results not shown).

3.5 Complex Case

We simulated a complex CSP with four replicate profiling runs. The genotypes of the

four contributors (Q, K1, U1 and U2) were generated randomly assuming HWE and allele

fractions from the Caucasian database (EA1). The probabilities of dropout were 0.2, 0.4,

0.6 and 0.7 for Q, K1, U1 and U2, respectively, each constant over runs. Dropout of

the two alleles of a homozygote, and/or multiple contributors with the same allele, were

treated as independent events (so the allele dropped out only if each copy from each

contributor dropped out according to the probabilities above). This makes dropout at

such alleles more likely than predicted under the multi-dose dropout model, generating

an inflated dropout rate estimates in likeLTD

At any locus and in any replicate, with probability 0.95 there were no dropins, other-

wise exactly one dropin, chosen according to the allele fractions.

At locus D2 there are three alleles that cannot be explained by Q or K1 (17,22,23),

all three of which are replicated and so cannot be explained by drop-in, thus indicating

the presence of at least two unprofiled contributors. We therefore compared the following

hypotheses:
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H4
p : Q + K1 + U1 + U2 with H4

d : X + K1 + U1 + U2.

Hp K1 Q U1 U2

Dropout a 0.558 0.271 0.726 0.730

Dropout b 0.559 0.272 0.727 0.730

Dropout c 0.653 0.357 0.798 0.801

Dropout d 0.624 0.328 0.777 0.780

Hd K1 X U1 U2

Dropout a 0.542 0.669 0.635 0.605

Dropout b 0.541 0.668 0.634 0.604

Dropout c 0.633 0.746 0.717 0.690

Dropout d 0.602 0.721 0.690 0.661

Table 8: Dropout rate estimates for the complex case (Section 3.5)

The dropout estimates returned by likeLTD tend to overestimate the known values

slightly under H4
p , due to the the independent assignment of drop-out as discussed above.

Under H4
d , the differences in DNA contribution from the three unprofiled contributors

are, as might be expected, not well distinguished.

The log likelihoods returned were -55.3 under Hp and -62.44 leading to a WoE of 7.1

bans. Here, H4
p is true and so the strong WoE in favour of this hypothesis is encouraging.

However, the WoE has been tempered by the presence of substantial masking from the

one profiled and two unprofiled other contributors of DNA.

3.6 Modifying the model

In this section we introduce various modifications to the model underlying the Hammer

Case analysis of Section 1.

3.6.1 Including a dropin term

In the original analysis we did not explicitly model dropin because the CSPs show at

most three alleles not attributable to the victims, so they are consistent with two unknown

contributors and no dropin. We now investigate the effect of introducing an explicit dropin

term, retaining U1 so that the algorithm could account for the unreplicated alleles either

as dropin or as alleles of U1. Allowing the possibility of dropin had a noticeable impact
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Hammer Standard Drop-in Unc Beta locAdj σ2 deg

-3.97 -4.73 0 0.32 0

D3 1.0 1.1 1.0 1.1 1.1 1.1 1.1 1.3

vWA 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1

D16 1.5 1.4 1.3 1.4 1.4 1.4 1.4 1.5

D2 0.9 1.4 0.9 1.4 1.3 1.5 1.3 1.5

D8 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9

D21 1.5 1.6 1.5 1.6 1.6 1.6 1.6 1.5

D18 −0.5 −0.5 −0.5 −0.5 −0.5 −0.4 −0.5 −0.9

D19 2.6 2.6 1.7 2.6 2.6 2.6 2.6 2.5

TH01 0.9 0.8 0.9 0.8 0.8 0.9 0.8 0.8

FGA 1.1 1.2 0.7 1.2 1.2 1.1 1.2 1.3

Overall 10.9 11.6 9.5 11.6 11.6 11.7 11.6 11.4

Table 9: Single-locus and overall WoE values for analyses of the Hammer case imposing

various modifications to the dropout model.

on the overall WoE (Table 9). The most important single-locus difference was an increase

of 5 decibans at D2. This is the only locus at which more alleles were observed in CSPa

than in CSPb: overall there are 11 more alleles observed in CSPb than in CSPa, and

consequently the dropout rate for U1 in CSPa is high (estimate 95% under H ′

p, compared

with 38% for CSPb). This makes the unreplicated D2 23 allele in CSPa better explained

as a dropin. However, the fact that the dropin model does not adequately account for the

evidence for a high dropout rate in CSPa reflects a limitation of the model, and a reason

to prefer the standard analysis above that does not include a dropin term.

3.6.2 Uncertain allele calls

The capability of likeLTD to treat an allelic position as “uncertain” was not available in

LoComatioN and so this designation was not made in the Hammer Case CSPs. Additional

features of likeLTD not incorporated in LoComatioN include dropout rate estimates per

replicate and per contributor, and modelling of DNA degradation.

To illustrate its impact on WoE, we recoded seven CSP alleles as “uncertain”. Overall,

this weakens the evidence but it remains very strong at 9.5 bans (Table 9). However, the

consequence of changing an allele call to “uncertain” varies, depending for example on

whether it affects an allele of Q or a profiled contributor or both. For each allele the

change in the computed WoE matches intuition we briefly describe some examples:
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� Locus D16, CSPa, allele 11. This is an allele of Q, not shared with K1, and so

changing its status from present to uncertain reduces the WoE, but only slightly

because the allele is called in CSPb: the single-locus WoE is decreases slightly from

1.5 bans to 1.3 bans (Table 9, column 4).

� Locus D8, CSPa, allele 11 and CSPb allele 15. These are both alleles of K1 not

shared with Q, and both are called as alleles in the other run. The WoE is unchanged

at 0.9 bans.

� Locus D19, CSPa and CSPb, allele 15.2. This is a rare allele, included in the profile

of Q but not K1 or K2, and so changing its status in both CSPs substantially reduces

the WoE, by 9 decibans.

There are also indirect effects on all loci, because the changes in allele calls impact the

support for dropout parameter values.

In the following subsections, we investigate the effects on WoE of various modifications

to the dropout model (6).

3.6.3 Varying the dropout power parameter

We performed new analyses assigning β = −3.97 and β = −4.73. These values represent

one SD above and below the central estimate of −4.35 reported by Tvedebrink et al.

(2009). The overall WoE values are identical at 11.6 bans, and 11.6 bans, respectively.

3.6.4 Varying the dropout locus adjustments

The locus-adjustment parameter αs allows for differences in dropout rates over loci, be-

yond the dependence on fragment length that is captured with the degradation model.

In the standard analysis, likeLTD imposes a gamma distribution penalty term with both

parameters equal to 50, implying a prior variance in αs of 0.14. We first fixed αs at one

(variance = 0), so that the dropout probability of an allele of a given fragment length is

the same for all loci. The overall WoE was 11.7 bans. The converse change was to weaken

the gamma penalty by changing its prior SD from 0.14 to 0.32 (the two parameters of the

gamma distribution penalty changed from both = 50 to both = 10). This reduced the

overall WoE to 11.6 bans.

3.6.5 Varying the degradation model

Degradation is manifested in higher dropout rates for large fragment length alleles. In

the SGM+ system, this has greatest effect for the alleles at D2, D18 and FGA. In Table
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9, we note a reduced number of observed alleles relative to other loci at D18 and FGA,

but not D2. To investigate the effect of modelling degradation in likeLTD, we repeated

the analysis but with the degradation parameter γi = 0 for every contributor i, which

implies no change in dropout probability with fragment length. This increased the WoE

by nearly 6 decibans at locus D2 relative to the standard analysis, but decreased it by 4

decibans at D18.

In contrast with fixing the γi, we removing the penalty term (Table 9). The estimates

of γQ, γX , γK1 and γU1 were almost identical to those given in Appendix A, rows 3 and 6,

confirming that the penalty term has little effect in the presence of good information. For

K2 we have essentially no information, and γK2 was estimated at 0.000 and 0.000 with

the penalty, but at 0.001 and 0.003 without it, illustrating that the penalty can prevent

inflated γi estimates in the presence of little information.

The overall effect on WoE of both the failure to model degradation and the removal

of the penalty term was close to zero (Table 9).

3.7 Conclusions

As discussed above there is no “gold standard” test of a likelihood calculation for LTDNA

profiles, but we have shown here a good performance of likeLTD in analysing a wide range

of crime scene DNA profiles, involving complex mixtures, uncertain allele designations,

dropin and dropout, degradation, stutter, and relatedness of alternative possible contrib-

utors. likeLTD behaves gives the same answer as well-established formulas in simple

settings. The parameter estimates and WoE change in a coherent and interpretable man-

ner under artificial modifications of the CSPs, and are robust to major modifications of

the modelling assumptions.

As well as providing strong WoE in favour of true contributors in simulation experi-

ments, we found in examples that likeLTD identified no support for the presence of DNA

even when superficially there appeared to be some support. This, together with the de-

cline in WoE as dropins and dropouts were introduced, illustrate that, while powerful,

likeLTD does not overstate evidential strength, due to a number of features in the algo-

rithm including FST and sampling adjustments. The introduction of “uncertain” allele

calls mitigates the “cliff edge” problem of yes/no allele calls required by other approaches.

Full results are available from the authors, including all input files that enable others

to replicate any of the analyses reported here or to make additional tests.
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� Version 1

– Release 1-0, 19/1/10. The initial code had separate files LR1unk.R and LR2unk.R

for 1 and 2 unprofiled contributors. Each included functions LRnumer() and

LRdenom()

– Release 1-1, 23/1/10. Restructured code for LR1unk.R to make it more similar

to LR2unk.R

– Release 1-2, 26/3/10. Fixed small bug reported by Kirk Lohmueller, affecting

the assignment of allfracs in 3 places

– Release 1-3, 24/5/10. Changed way dropin is modelled.

� Version 2

– Release 2-0, 21/6/10. Merged previous LR1unk.R and LR2unk.R into a single

file LTDNALR.R with the functions LRnumer() from those files renamed as

LRnumer1() and LRnumer2(), respectively, and similarly for LRdenom().

– Release 2-1. The change introduced in V2.1 has since been undone in V3.0, by

introduction of a better way to deal with rare alleles
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� Version 3

– Release 3-0, 12/10/11. The previous functions LRnumer1(), LRnumer2(), LR-

denom1() and LRdenom2() were all replaced by a single function likeLTD.

There is now a distinct dropout rate for each replicate (DO). The dropout rate

for other individuals is determined as a function of DO and the amount of

DNA from that individual relative to the amount contributed by the reference

individual (Q or U). We now strip out alleles with zero database frequency. If

an allele of Q or CSP is not found in rownames(acbp) this allele is inserted

into acbp with count 1. This has speeded up computations so that it now be-

comes feasible to allow three unprofiled contributors to the crime scene profile

when Qcont=F, otherwise two unprofileds + Q. The model for dropout is now

improved: the previous kdrop function has gone, and both dropout and dropin

calculations are included in a new function Calclik(). Stutter alleles, or other

apparent artefacts, can be entered as uncertain alleles allowing the possibility

that they could be allelic.

– Release 3-1, 4/1/12. Previously the dropin parameter DI was the non-dropout

rate for a hypothetical extra individual, but this is now modified so that the

dropin rate for each replicate is DI times the non-dropout rate (1-DO) for that

replicate. As before, if DI=0 then all CSP alleles must come from one of the

specified contributors. We now allow any of the profiled possible contributors

to be unaffected by dropout, including Q. This option should only be used

if the individual’s alleles are observed in the CSP in every replicate at every

locus; otherwise an error is generated. Alleles of profiled possible contributors

not subject to dropout are converted to uncertain and removed from the CSP

in the preprocessing step and (except for Q) don’t play any further role in

likeLTD. There has been some rearrangement of the code so that more work

is done in a preprocessing function that is called only once, rather than being

repeated in every call to the main function. Some changes have been made to

the way parameters are named and passed; function calls to previous versions

of likeLTD will not work without modification.

� Version 4

– Release 4-0, 19/3/12. The main innovation is to allow dropout rates to increase

with fragment length. Thus, fragment lengths for each allele in the profiling

system being employed must be supplied (in base-pairs, bp, centred so that

0 represents an average length). These are passed to likeLTD in column 2

of matrix afbp, which replaces vector allfracs in Version 3.1; column 1 is the
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previous allfracs, and specifies population allele fractions. The program uses

the model of Tvedebrink et al. (2012b) and essentially the “dose” of DNA

contributed by an individual at an allele is adjusted by a geometric function of

fragment length (increased for below-average fragment lengths, and decreased

for above-average). The rate of the geometric distribution is a parameter deg

(for degradation), which is a vector with one entry per contributor subject to

dropout.

– Release 4-1, 8/5/12. Improvement to computation of number of simulations

used when denNu=3 and also starting values for nupa and depa. Release of

test document giving results from performance tests of likeLTD.

– Release 4-2, 26/6/12. These are mainly minor changes to improve the output

and program clarity documentation. The test results document distributed

with this code is also updated to include new test results. The most important

change is an improved assignment of the simulation size for the likelihood

approximation invoked for three unprofiled contributors (i.e. denNu=3). For

one or two unknown contributors there should be no changes to results from

Version 4.1. BB is now passed as a parameter rather than being assigned as a

constant.

– Release 4-3, 10/8/12. Mostly just a few minor changes to documentation but

there is one important bug fix that affected the likelihood calculations when DI

> 0; thus any V4.2 runs that modelled dropin (Drin = TRUE in the wrapper)

should be rerun with V4.3. Further improvements to output and to value for

nsim.

– Release 4-4, 2/11/12. Two changes:

* A new block of code can provide much faster computation when Nunp=2 or

3 and DI=0. The speed-up is greatest when the CSPs determine many alle-

les in the genotypes of the unprofiled contributors. The new code uses com-

binatorial functions that require the R gtools library; library(gtools)

is now included in the Wrapper, but the package must first be installed

using install.packages("gtools"). The result of the computation is

unchanged from the original code that uses “for” loops. Both codes are

kept, and the initial likelihood calculation is done once using each code in

order to set flags indicating which is quickest; the faster code is then used

for all subsequent calculations at that locus (there are separate flags for the

calculations under Hp and Hd). Because of this improvement, the previous

code that performed a simulation-based approximation to the likelihood
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when Nunp=3 has been removed, and so nsim has been removed from the

list of parameters passed to likeLTD.

* Locus adjustment terms are now included in the dropout model, as in

Tvedebrink et al. (2009). However, rather than estimate the locus effects

on dropout from external data, they are estimated from the input data

for the profile being analysed. Because this may be relatively little in-

formation, a strong prior is imposed on the locus adjustments: gamma

with both parameters equal so that the mean is 1. The default value of

this parameter (lap) is 50, giving a prior standard deviation for the locus

adjustments of 0.14, the same as the SD of the estimates of Tvedebrink

et al. (2009).

Also the inverse of the exact match probability is output for comparison with

the LR for the observed CSP: this is the the standard match probability that

would apply if the CSP showed exactly the reference profile of Q, and it is

assumed that there is only one contributor. The LR for any other CSP should

not exceed the inverse of the match probability.

– Release 4-5, 2/11/12. The power parameter β (eq. 6) has been fixed in previous

versions at −4.35 (Tvedebrink et al., 2009). In this version it is updated in

the simulated annealing, separately under Hp and Hd, subject to a Gaussian

prior/penalty with mean −4.35 and SD 0.38, the values obtained by Tvedebrink

et al. (2009). This is a relatively minor and sensible change, and we have

checked that it has little impact. However all the test results reported in this

document are for V4-4 and not V4-5.

� Version 5

– Release 5-0. This is a complete re-writing of the basic code, which is now es-

tablished as an official R package on CRAN. The simulated annealing algorithm

used in previous versions for parameter optimisation is replaced with a differ-

ential evolution algorithm for optimisation. The underlying likelihood model

remains the same as version 4.5, however, significant speed improvements have

been gained through re-factoring of R code (e.g. converting for loops into vec-

tor/matrix operations), re-writing computationally intensive steps in C, and

implementing parallel computation of the C code. Steps that have been im-

plemented in C code include the computation of genotype combinations for

unknown contributors, computing allele doses for each genotype combination,

dose adjustments for relatedness, heterozygocity, dropout and power. Upload-

ing the package to CRAN comes with improved documentation, version control
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and ease of access.

– Release 5-1. This update improved the calculation of the LR when close-

relatedness is taken into account.

– Release 5-2. This update adds the function get.likely.genotypes that re-

turns the most probable genotypes for each locus, and the most probable whole-

profile genotoype. There is an option to return marginal genotype probabilities

for each contributor subject to dropout, or joint probabilities for all contribu-

tors subject to dropout.

– Release 5-3. This update improves the generation of both allele and output

reports. These are now output as .doc files instead of .pdf files, and will now

scale with the numer of loci and the number of replicates correctly. The change

to .doc files was motivated by client requests, and .pdf files can still be easily

obtained by opening the .doc file in MS Word and saving as a pdf. There

are additional improvements to the checks for unusual alleles (which will now

recognize typos and alleles not present in the database), and to the suggestion

of appropriate hypotheses to test.

– Release 5-4. This update improves the optimisation procedure, replacing the

simple convergence threshold with a geometric progression of convergence. This

includes a geometric progression of the DEoptim::DEoptim.control CR vari-

able, which controls the crossover rate of the optimisation algorithm. The

combination of these two means that the parameter space is more thoroughly

searched in the initial stages, leading to improved optimisation. Lp and Ld

are now optimised together (within each step), allowing for estimation of the

progress of optimisation (and an associated progress bar). Interim results af-

ter each step are now available. These changes are incorporated in the new

optimisation function, evaluate. Small changes to the outputs are included,

namely altered default file names (including the case name in the file name)

and including which database file is used in the information section.
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Data provided by forensic scientist 

 
Crime scene profiles (CSP) 
 

run status D3 vWA D16 D2 D8 D21 D18 D19 TH01 FGA 

1 certain 14,16 15,16,19 11,13,14 20,23,24,25 11,12,13,15 28,31  12,14,15.2,17.2 6,8,9,9.3 22 

- uncertain           

2 certain 14,16 15,16,17,19 11,13,14 20,24,25 11,12,13,15 28,29,30,31,31.2 13,14,16,17 12,13,14,15.2,17.2 6,8,9,9.3 22,23,25 

- uncertain           

 

 

 

Reference profiles 
 

profile D3 vWA D16 D2 D8 D21 D18 D19 TH01 FGA 

Suspect 14,16 15,19 11,14 24,25 12,13 28,31 14,17 15.2,17.2 9,9.3 22,23 

Victim 1 16 15,16 13 20 11,15 29,30 17 12,14 6,8 22,25 

Victim 2 15,17 16,19 13,12 25,18 11,13 29,30 17,15 14 6,7 22,20 

Other  17  23  31.2 13,16 13   

 

Alleles that are replicated, unreplicated or absent in the crime scene profile, using the certain designations only. 

 

 

 

Summary 

 
Unattributable alleles 
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The number of 'certain' alleles that cannot be attributed to the known profile(s). 

 

 

 

Unusual alleles 
 

source locus allele EA1.freq EA3.freq EA4.freq error 

Reference profiles D19 17.2 0 2 1 - 

Crime scene certain D19 17.2 0 2 1 - 

 

Alleles are automatically checked against the database. An error will be reported if an allele is absent from the database, or present more than once, or if a locus 

is absent. 

 

 

 

Approximate representation 
 

Contributor Rep 1 Rep 2 Total 

Suspect 85 100 92 

Victim 1 75 100 88 
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Contributor Rep 1 Rep 2 Total 

Victim 2 47  63 55 

 

The fraction of an individual's alleles (as a percentage) that have been designated as 'certain' alleles in each replicate. This estimate is not used by likeLTD, and is 

intended to assist informal assessments of possible known contributors to the CSP. A more formal approach is to do a likeLTD run to compute the likelihood 

ratio (LR) for that individual contributor. 

 

 

 

Suggested parameter values 
 

nUnknowns doDropin Recommendation 

0 TRUE  

1 FALSE recommended 

 

Recommended values for 'nUnknowns', choose from 0,1 or 2 (likeLTD automatically adds and additional unknown X to the defence hypothesis in place of the 

queried profile Q). 

Recommended values for 'doDropin', choose from 'TRUE' or 'FALSE'. 

All the attributable alleles must either come from an unknown or dropin. 

 

 

 

System information 

 
Type Details 

Date report 

generated: 

Sun Jun 29 01:49:57 2014 

Package likeLTD 

Title Tools to determine DNA profile evidence. 

Description Tools to determine DNA profile Weight of Evidence. For further information see the likeLTD guide at the URL provided, or the paper 

under citation.  

Depends R (≥ 2.10), DEoptim, ggplot2, gtools, rtf 

Suggests svUnit, scales 

Imports gdata, tools, tcltk 

Version 5.3.3 

Date 2013-03-15 

Author David Balding, Adrian Timpson, Christopher Steele, Mayeul d'Avezac, James Hetherington. 
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License GPL-3 
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Built R 3.0.1; x86_64-unknown-linux-gnu; 2014-06-26 12:50:44 UTC; unix 

sysname Linux 

release 2.6.32-358.18.1.el6.x86_64 

version #1 SMP Wed Aug 28 17:19:38 UTC 2013 

nodename ugi-151057.ugi.ucl.ac.uk 

machine x86_64 

login csteele 

user csteele 

effective_user csteele 

 



B Output file for Hammer case

50



---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------  

 

 

 

hammer-Evaluation-Report 

hammer 

 
Prosecution Hypothesis: Suspect (Q) + Victim 1 + Victim 2 + 1U 
 

Defence Hypothesis: Unknown (X) + Victim 1 + Victim 2 + 1U 
 
----------------------------------------------------------------------------------------------------------------------------- ---------------------------------------------------------------- 
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Data provided by forensic scientist 

 
Crime scene profiles (CSP) 
 

run status D3 vWA D16 D2 D8 D21 D18 D19 TH01 FGA 

1 certain 14,16 15,16,19 11,13,14 20,23,24,25 11,12,13,15 28,31  12,14,15.2,17.2 6,8,9,9.3 22 

- uncertain           

2 certain 14,16 15,16,17,19 11,13,14 20,24,25 11,12,13,15 28,29,30,31,31.2 13,14,16,17 12,13,14,15.2,17.2 6,8,9,9.3 22,23,25 

- uncertain           

 

 

 

Reference profiles 
 

profile D3 vWA D16 D2 D8 D21 D18 D19 TH01 FGA 

Suspect 14,16 15,19 11,14 24,25 12,13 28,31 14,17 15.2,17.2 9,9.3 22,23 

Victim 1 16 15,16 13 20 11,15 29,30 17 12,14 6,8 22,25 

Victim 2 15,17 16,19 13,12 25,18 11,13 29,30 17,15 14 6,7 22,20 

Other  17  23  31.2 13,16 13   

 

Alleles that are replicated, unreplicated or absent in the crime scene profile, using the certain designations only. 

 

 

 

Summary 

 
Unattributable alleles 
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The number of 'certain' alleles that cannot be attributed to the known profile(s). 

 

 

 

Unusual alleles 
 

source locus allele EA1.freq EA3.freq EA4.freq error 

Reference profiles D19 17.2 0 2 1 - 

Crime scene certain D19 17.2 0 2 1 - 

 

Alleles are automatically checked against the database. An error will be reported if an allele is absent from the database, or present more than once, or if a locus 

is absent. 

 

 

 

Approximate representation 
 

Contributor Rep 1 Rep 2 Total 

Suspect 85 100 92 

Victim 1 75 100 88 
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Contributor Rep 1 Rep 2 Total 

Victim 2 47  63 55 

 

The fraction of an individual's alleles (as a percentage) that have been designated as 'certain' alleles in each replicate. This estimate is not used by likeLTD, and is 

intended to assist informal assessments of possible known contributors to the CSP. A more formal approach is to do a likeLTD run to compute the likelihood 

ratio (LR) for that individual contributor. 

 

 

 

Likelihoods at each locus 
 

Likelihood D3 vWA D16 D2 D8 D21 D18 D19 TH01 FGA 

Prosecution.log10  0.031 -0.408 -0.168 -3.065  0.126 -1.549 -3.226  -0.418  0.112 -0.910 

Defence.log10 -1.013 -1.523 -1.620 -3.935 -0.818 -3.030 -2.691  -3.013 -0.760 -1.993 

Ratio.log10  1.045  1.116  1.452  0.871  0.944  1.481 -0.535   2.595  0.872  1.083 

Ratio 11.081 13.054 28.299  7.423  8.794 30.300  0.292 393.415  7.451 12.093 

 

 

 

Overall Likelihood 
 

calculation estimate 

Prosecution.log10 -9.475 

Defence.log10 -20.398 

Ratio.log10 10.923 

Ratio 83738325729 

 

 

 

Theoretical maximum LR 
 

calculation estimate 

likelihood ratio 218884512327670 

Log10 likelihood ratio 14.340 
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Dropout and degradation parameter estimates 
 

hypothesis contributor 

Dropout 

(Run 1) 

Dropout 

(Run 2) 

Degradation 

(overall) 

Prosecution Victim 1 (K1) 0.465 0.027 0.009 

Prosecution Victim 2 (K2) 1.000 1.000 0.000 

Prosecution Suspect (Q) 0.108 0.004 0.004 

Prosecution U1 0.954 0.397 0.000 

Defence Victim 1 (K1) 0.438 0.046 0.008 

Defence Victim 2 (K2) 1.000 1.000 0.000 

Defence X 0.896 0.347 0.000 

Defence U1 0.117 0.008 0.004 

 

 

 

Dropin parameter estimates 
 

hypothesis dropin 

Prosecution - 

Defence - 

 

 

 

User defined parameters 

 
Parameter User input 

caseName hammer 

outputPath /ugi/home/shared/steele/Dropbox/PhD/likeLTD/likeLTD-5.0/TestResults/hammer-standard 

nUnknowns 1 

ethnic EA1 

adj 1 

fst 0.02 

relatedness1 0 

relatedness2 0 

doDropin FALSE 
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Input files 
 

File Used 

CSP hammer-CSP.csv 

Reference hammer-reference.csv 

Database lgc-allele-freqs-wbp.txt (Default) 

 

 

 

Optimised parameters 

 
Prosecution parameters 
 

parameter estimate 

upper 

bound lower bound 

locusAdjustment1   0.946   1.500   0.500 

locusAdjustment2   1.010   1.500   0.500 

locusAdjustment3   1.004   1.500   0.500 

locusAdjustment4   1.098   1.500   0.500 

locusAdjustment5   0.981   1.500   0.500 

locusAdjustment6   0.943   1.500   0.500 

locusAdjustment7   0.932   1.500   0.500 

locusAdjustment8   1.009   1.500   0.500 

locusAdjustment9   1.010   1.500   0.500 

locusAdjustment10   0.873   1.500   0.500 

power  -4.330  -2.000  -6.000 

dropout1   0.108   1.000   0.000 

dropout2   0.004   1.000   0.000 

degradation1  -2.062   0.000 -20.000 

degradation2 -16.686   0.000 -20.000 

degradation3  -2.360   0.000 -20.000 

degradation4 -17.597   0.000 -20.000 

rcont1   0.635 100.000   0.000 
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parameter estimate 

upper 

bound lower bound 

rcont2   0.000 100.000   0.000 

rcont3   0.305 100.000   0.000 

 

 

 

Defence parameters 
 

parameter estimate 

upper 

bound lower bound 

locusAdjustment1   0.946   1.500   0.500 

locusAdjustment2   0.999   1.500   0.500 

locusAdjustment3   1.013   1.500   0.500 

locusAdjustment4   1.088   1.500   0.500 

locusAdjustment5   0.994   1.500   0.500 

locusAdjustment6   0.937   1.500   0.500 

locusAdjustment7   0.878   1.500   0.500 

locusAdjustment8   1.014   1.500   0.500 

locusAdjustment9   1.022   1.500   0.500 

locusAdjustment10   0.908   1.500   0.500 

power  -4.401  -2.000  -6.000 

dropout1   0.896   1.000   0.000 

dropout2   0.347   1.000   0.000 

degradation1  -2.110   0.000 -20.000 

degradation2 -16.891   0.000 -20.000 

degradation3 -17.384   0.000 -20.000 

degradation4  -2.374   0.000 -20.000 

rcont1   1.725 100.000   0.000 

rcont2   0.000 100.000   0.000 

rcont3   2.578 100.000   0.000 

 

 

 

System information 

 
Type Details 
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Type Details 

Date report 

generated: 

Sun Jun 29 01:49:58 2014 

Package likeLTD 

Title Tools to determine DNA profile evidence. 

Description Tools to determine DNA profile Weight of Evidence. For further information see the likeLTD guide at the URL provided, or the paper 

under citation.  

Depends R (≥ 2.10), DEoptim, ggplot2, gtools, rtf 

Suggests svUnit, scales 

Imports gdata, tools, tcltk 

Version 5.3.3 

Date 2013-03-15 

Author David Balding, Adrian Timpson, Christopher Steele, Mayeul d'Avezac, James Hetherington. 

Maintainer Christopher Steele <c.steele.11@ucl.ac.uk> 

License GPL-3 

URL https://sites.google.com/site/baldingstatisticalgenetics/ 

Packaged 2014-06-26 12:50:41 UTC; csteele 

Built R 3.0.1; x86_64-unknown-linux-gnu; 2014-06-26 12:50:44 UTC; unix 

sysname Linux 

release 2.6.32-358.18.1.el6.x86_64 

version #1 SMP Wed Aug 28 17:19:38 UTC 2013 

nodename ugi-151057.ugi.ucl.ac.uk 

machine x86_64 

login csteele 

user csteele 

effective_user csteele 

 


