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Abstract

lifecontingencies performs financial and actuarial mathematics calculations to model
life contingencies insurance. Its functions are able to determine both the expected value
and the stochastic distribution of insured benefits. Therefore they can be used both to
price new insurance products and to determine portolios’ risk based capital requirements.

This paper briefly summarizes the theory regarding life contingencies, that is repre-
sented by concepts of financial and actuarial mathematics. Then it shows how lifecontin-
gencies functions represent a perfect cookbook to perform life insurance actuarial analysis
and related stochastic simulations throught applied examples.
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1. Introduction

As of March 2012, lifecontingencies appears to be the first R package that deals with life
insurance evaluation. Some actuarial packages have been already available in R, however
most of these packages mainly focus non-life actuaries. In fact non - life insurance modeling
uses more data analysis and applied statistical modelling than life insurance does. Functions
to fit loss distributions and to perform credibility analysis are provided within the package
actuar, Dutang, Goulet, and Pigeon (2008). Package actuar represents the computational
side of the classical actuarial textbook Loss Distribution, Klugman, Panjer, Willmot, and
Venter (2009). The package ChainLadder, Gesmann and Zhang (2011), provides functions
to estimate unpaid loss reserves for P&C insurances. GLM models, widely used in non - life
insurance pricing, can be fit by functions bundled in the base R distribution. More advanced
predictive models used by actuaries, e.g., GAMLSS and Tweedie regressions, can be fit using
specifically developed packages as gamlss, Rigby and Stasinopoulos (2005), and cplm, Zhang
(2011), packages respectively.

Life insurance evaluation models demographic and financial data, mainly . R has a dedicated
view to packages specifically tailored to financial analysis. But, few packages that handle
demographic data have been published yet. For examples, relevant packages that perform
demographic analysis are demography, Rob J Hyndman, Heather Booth, Leonie Tickle, and
John Maindonald (2011), and LifeTables, Riffe (2011). Packages YieldCurve, Guirreri (2010),
and termstrc, Ferstl and Hayden (2010), can be used to perform interest rate analysis. How-
ever, no package exists that performs life contingencies calculations, as of March 2012.

Numerous commercial software specifically tailored to actuarial analysis are available in com-
merce, on the other hand. Moses and Prophet are currently the leading actuarial softwares
for life insurance modelling. lifecontingencies package aims to represent the R computational
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side of the concepts exposed in the classical Society of Actuaries Actuarial Mathematics
book, Bowers, Gerber, Hickman, Jones, and Nesbitt (1997). Since life contingencies theory
grounds on demography and classical financial mathematics, w have made an exstensive use
of Ruckman and Francis (2006) and Broverman (2008) textbooks as references.

The paper has been structured as follows: section 2 outlines the statistical and financial
mathematics theory regarding life contingencies, section 3 overviews the structure of the
lifecontingencies package, section 4 gives a wide choice of applied lifecontingencies examples,
finally section 5 discusses package actual and prospective development and known limitations.

2. Life contingencies statistical and financial foundations

Life insurance analysis involves the calculation of statistics regarding occurrences and amounts
of future cash flows. E.g. the insurance pure premiun (also known as benefit premium) is the
present value of the series of future cash flows whose probability is based on the occurrence
of the policyholder’s life events (life contingencies). Therefore, life insurance actuarial math-
ematics grounds itself on concepts derived from demography and the theory of interest.

A life table (also called a mortality table or actuarial table) is a table that shows how mortal-
ity affects subject of a cohort across different ages. It reports for each age x, the number of
[ individualsliving at the beginning of age x. It represents a sequence of g, [y, ...,[,, where
w, the terminal age, is the farthest age until which a subject of the cohort can survive. Life
table are typically distinguished according to gender, year of birth and nationality.

Using a statistical perspective, a life table allows the probability distribution of the the future
lifetime for a subject aged z, to be deduced. In particular, a life table allows to derive two
key probability distributions: 7}, the future lifetime for a subject aged z and its curtate form,
K, i.e., the number of future years completed before death. Therefore, many statistics can
be derived from the life table. A non exhaustive list follows:

le

l:t, the probability that someone living at age x will reach age = + t.

® Py =
® :q., the complementary probability of ;p,.

e :d,, the number of deaths between age x and x + .

¢
e (L, = > l,+k, the expected number of years lived by the cohort between ages x and
k=0
T +t.

® M, = %, the central mortality rate between ages x and x + .
e ¢, the curtate expectation of life for a subject aged x, e, = FE (K,) and its complete

form e = E (T).

The Keyfitz textbook, Keyfitz and Caswell (2005), provides an exaustive coverage about life
table theory and practice. Life table are usually published by institutions that have access to
large amount of reliable historical data, like government statistics or social security bureaus.
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It is a common practice for actuaries to start from these life tables and to adapt them to the
insurer’s portfolio actual experience.

Classical financial mathematics deals with monetary amount that could be available in dif-
ferent times. The present value of a series of cash flows, reported in Formula 2, is probably
the most important concept. The present value represents the current value of a series of
monetary cash flows, C'F}, that will be available in different periods of time.

The interest rate, i;, represents the measure of the price of money available in future times.
This paper will use i to express the effective (real) compound interest. It means that if i is the
interest rate, a sum of 1 monetary unit accumulates throught time according to the accumu-
lation function, A (t) = (1 + i)’. Arrangements lead to discount and nominal (m-compound)
interest rates as shown in Formula 1.

Ay =1+ =1-d) " = (1 + i:)tm = (1 — dm>t*m (1)

m

All financial mathematics functions (such annuities, azm, or accumulated values, sg)) can be
written as a particular case of formula 2. See the classical Broverman (2008) textbook for
further reference on the topic.

PV =Y CF1+i)" (2)

teT

Actuaries use the probabilities inherent the life table to evaluate life contingencies insurances.
Life contingencies are themselves stochastic variables, in fact. They consist in present values
whose amounts are not certain, since both the time of their (eventual) occurrence and their
final values depend by events regarding the life of the policyholder (that is the reason for which
they are called life contingencies). lifecontingencies package provides function to model many
of such random variables, Z, and in particular their expected value, the Actuarial Present
Value (APV). APV is certainly the most important statistic for Z variables that actuaries
use, since it represents the average cost of the benefits the insurer guarantees to policyholders.
In a P&C context it would be also known as pure premim. The benefit premiums plus the
loadings for expense, profits and taxes sum up to the commercial premium policyholders pay.
Life contingencies can be either continue or discrete. lifecontingencies package models only
discrete life contingencies, that is insured amounts are supposed to be due at the end of each
year or fraction of year. However most continuous time life contingencies insurance are easily
derived from the discrete form under broad assumptions as the Bowers et al. (1997) textbook
formulas show.

Few examples of life contingencies follow:

1. An n-year term life insurance provides payment of $ b, if the insured dies within n years
from issue. If the payment is perfomed at the end of year of death, we can write Z as
= b*vkﬂﬂ“,f(mgn

N 0, f(z >n

The APV symbol is Aglc:m.

2. A life annuity consists in a sequence of benefits paid contingent upon survival of a given
life. In particular, a temporary life annuity due pays a benefit at the beginning of each
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period so long as the annuitant (x) survives, for up to a total of n years, or n payments.
Assuming $1 payment, we can write Z as Z = am. Its APV expression is dz.m.

3. An n-year pure endowment insurance grants a benefit payable at the end of n years, if
the insured survives at least n years from issue. The expression of Zisv" 1 (R’x >n

and its APV expression is , F,.

4. A n-year endowment insurance will pay a benefit either at the earlier of the year of death
or the end of the n-th year, whichever occurs earlier. We can write Z as Z = vmin("’KI),

while its APV symbol is AIZ%.

We send interested readers to the Bowers et al. (1997) textbook for formulas regarding other
life contingencies insurances as (DA). -, the decreasing term life insurance, (I 4),, the increas-
ing term life insurance, and common variations on payment form arrangments like deferrment
and fractional payments.

The lifecontingencies package provides functions that allows the actuary to evaluate the APV
and to draw random samples from Z distribution. The evaluation of the APV has traditionally
followed three approaches: the use of commutation tables, the current payment technique and
the expected value tecniques.

Commutation tables extend life table by tabulating special function of age and rate of interest
whose ratios allow the actuary to evaluate APV for standard insurances. The Anderson (1999)
paper provides a comprehensive overview of this topic. The lifecontingencies allows underlying
commutation table to be printed out as further described. However, commutation table usage
has become useless in computer era. In fact they are not enough flexible and their usage is
computationally inefficient. Therefore, commutation table approach has not been used within
lifecontingencies.

The current payment technique calculates the APV of a life contingencies insurance, z, as the
scalar product of three vectors: z = ((cev) e p). The vector of all possible uncertain cash
flows, ¢, the vector of discount factors, v and the vector of cash flow probability, p. Since
the current payment technique is the the most efficient approach from a computationally
side perspective, we have used this approach to evaluate APV. Finally, the expected value

approach models z as the scalar product of two vector: z = <p7k ° §;> pk is Pr {R’ = k}, that

is the probability that the future (integer) remaining years will be exactly k, Z is the amount
of the cash flow due under the policy term if K = k. The latter approach has been used
to define the probability distribution of the life contingency Z when performing stochastic
analyses.

An example will better clarify this concept. Consider an annuity due lasting n years. Its
APV, G,.7, using the commutation tables approach is reported in Formula 3, while Formula
4 reports the APV using the current payment technique. Finally, Formula 5 calculates the
APV using the expected value approach.

N:v - N:ern

APV =
|4 D,

3)
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w—x

APV = 3" Pr[K, = k| * i (5)
k=0

3. The structure of the package

Package lifecontingencies contains classes and methods to handle lifetables and actuarial ta-
bles conveniently.

The package is loaded within the R command line as follows:
R> library(lifecontingencies)

Two main S4 classes, Chambers (2008), have been defined within the lifecontingencies pack-
age: the lifetable class and the actuarialtable class. The lifetable class is defined as
follows

R> #definition of lifetable
R> showClass("lifetable")

Class "lifetable" [in ".GlobalEnv"]

Slots:
Name: X 1x name
Class: numeric numeric character

Known Subclasses: "actuarialtable"

Class actuarialtable inherits from lifetable class adding one more slot dedicated to the
interest rate.

R> showClass("actuarialtable')

Class "actuarialtable" [in ".GlobalEnv"]

Slots:
Name: interest X 1x name
Class: numeric numeric numeric character

Extends: "lifetable"

Beyond generic S4 classes and method there are three groups of functions: demographics
functions, financial mathematics functions and actuarial mathematics functions.

The demographic functions group comprises the followings:
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1. dxt returns deaths between age x and = + ¢, d ;.
2. pxt returns survival probability between age x and = + ¢, p, ;.
3. pxyt returns the survival probability for two lifes, dgy ..
4. gxt returns death probability between age x and x +t, g .
5. gxyt returns the survival probability for two lifes, gz,
6. Txt returns the number of person-years lived after exact age x, Tj ;.
7. mxt returns central mortality rate, my ;.
8. exn returns the complete or curtate expectation of life from age x to x +n, e, .
9. rLife returns a sample from the time until death distribution underlying a life table.
10. exyt returns the expected life time for two lifes between age x and x + .
11. probs2lifetable returns a life table [, from raw one - year survival / death probabil-
ities.
The financial mathematics group comprises the followings:

1. presentValue returns the present value for a series of cash flows, PV = 3" CF;  v'i.
i

2. annuity returns the present value of a annuity - certain, am.

3. accumulatedValue returns the future value of a series of cash flows, sz.

4. increasingAnnuity returns the present value of an increasing annuity - certain, (1A),,.
5. decreasingAnnuity returns the present value of a decreasing annuity, (DA)z7.

6. nominal2Real returns the effective annual interest (discount) rate i given the nominal
m-periodal interest i(k) or discount d(k) rate.

7. real2Nominal returns the m-periodal interest or discount rate given the m periods or
the discount.

8. intensity2Interest returns the intensity of interest d given the interest rate i.

9. interest2Intensity returns the interest rate ¢ given the intensity of interest 4.

T
10. duration returns the duration of a series of cash flows,
i

t+CFy (1+
P

L-)ft*m
m

T
11. convexity returns the convexity of a series of cash flows, Y- t+(t + L)xCF, (14 %) T2

t

The actuarial mathematics group comprises the following functions, for which we report must
important function:



Giorgio Alfredo Spedicato

1. Axn models one head life insurance, whose APV symbol is A} .

2. AExn models the n-year term insurance, whose APV symbol is sz%.

3. Axyn models two heads life insurances, whose APV symbol is flxiy:m.

4. axn models annuities, whose APV symbol is d,.

5. axyn models two heads annuities, whose APV symbol is G-

6. Exn models pure endowment, whose APV symbol is ,, F,.

7. Iaxn models the increasing annuity, whose APV symbol is (Ia),.

8. IAxn models the increasing life insurance, whose APV symbol is (I A),.

9. DAxn models the decreasing life insurance, whose APV symbol is (DA),.
As general remark, standard financial and actuarial mathematics functions parameters are:

e x, the policyholder’s age at the policy issuance time.

e n, the coverage duration that could be missing if the policy lasts for the remaining
lifetime. For financial mathematics function it represent the lenght of the payment.

e actuarialtable, an actuarial table on which life insurance calculation are performed.
e i, the interest rate, that in some case could be time - varying.

e k, the frequency of payments per year (default value is 1).
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4. Code and examples

4.1. Classical financial mathematics example

The lifecontingencies package provides functions to perform classical financial mathematics
calculations. Following examples show how to handle interest and discount rates with different
compounding frequency, how to perform present value, annuities and future values analysis
calculations as long as loans amortization and bond pricing.

Interest rate functions

The code below shows how to switch from effective interest rates (APR) to nominal interest
rates, i(™ — i, and vice versa. Similarly, it is possible to work with discount rates also, that
is d™ — d and vice versa.

R> #an APR of 3], is equal to a

R> real2Nominal(0.03,12)

[1] 0.02959524

R> #nominal interest rate

R> #while 6J, annual nominal interest rate is the same of
R> nominal2Real(0.06,12)

[1] 0.06167781

R> #4), effective interest rate corresponds to
R> real2Nominal (0.04,4)*100

[1] 3.941363

R> #nominal interest rate (in 100s) compounded quarterly
R>

R> #an effective rate of discount of 4], is equal to a

R> real2Nominal (i=0.04,k=12,type="discount")

[1] 0.04075264

R> #nominal rate of discount payable quarterly

Present value analysis

Performing a project appraisal means evaluating the net present value (NPV) of all projected
cash flows. Following code examples will show NPV evaluation assuming a varying cash flow
pattern (example 1), varying interest rate (example 2) and uncertain cash flow (example 3).
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R> #varing cash flow pattern

R> capitals=c(-1000,200,500,700)

R> times=c(0,1,2,5)

R> exl<-presentValue(cashFlows=capitals, timeIds=times,

+ F interestRates=0.03)

R> #varying interest rates

R> ex2<-presentValue(cashFlows=capitals, timelds=times,

+ F interestRates=c( 0.04, 0.02, 0.03, 0.05))
R> #uncertain cash flows

R> ex3<-presentValue(cashFlows=capitals, timelds=times,

+ F interestRates=c( 0.04, 0.02, 0.03, 0.05), probabilities=c(1,1,1,0.5))
R> c(ex1,ex2,ex3)

[1] 269.29886 215.84470 -58.38946

Annuities and future values

Code below shows examples of annuities (a#) and accumulated values (s+) evaluations:

R> #the PV of an annuity immediate $100 payable at the end of next 5 years at 3] is
R> 100*annuity(i=0.03,n=>5)

(1] 457.9707

R> #while the corresponding future value is
R> 100*accumulatedValue (i=0.03,n=5)

[1] 530.9136

A more concrete and meaningful example follows. A man wants to save $ 100,000 to pay for
the education of his son in 10 years time. An education fund requires the investors to deposit
equal instalments annually at the end of each year. If interest of 0.05 is paid, how much does
the man need to save each year (R) in order to meet his target?

R> C=100000
R> R=C/accumulatedValue (i=0.05,n=10)
R> R

[1] 7950.457

The fractional payments annuities represent an important class of financial contract. An an-
nuity with m fractional payments per period grants a payment of % during each period.
lifecontingencies package allows fractional annuities (a(m)m) can be handled when using
annuity and accumulatedValue functions. The present value of an annuity-immediate of
100 per quarter for 4 years, assuming interest to be compounded semiannually at the nominal
rate of 6% is
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R> 100#4*annuity(i=nominal2Real (0.06,2) ,n=4,k=4)
[1] 1414.39

increasingAnnuity and decreasingAnnuity functions handle increasing and decreasing an-
nuities, whose symbols are (I A),, (DA),. Code below exemplifies these function, assuming
a ten years duration and a 3% interest rate.

R> #increasing annuity example

R> exl<-increasingAnnuity(i=0.03, n=10,type="due")

R> #decreasing annuity example

R> ex2<-decreasingAnnuity(i=0.03, n=10,type="immediate")
R> c(exl1,ex2)

[1] 46.18416 48.99324

The last example of this section exemplifies the calculation of the present value of a geomet-
rically increasing annuity. We will assume each year the annuity increases its value by 3%,
being the interest rate is 4% and the annuity duration being 10 years.

R> annuity(i=((1+0.04)/(1+0.03)-1) ,n=10)

[1] 9.48612

Loan amortization

lifecontingencies financial mathematics function allow to define the repayments schedule of
any loan arrangment, as exemplified in this section. In the following example, let C' denote
the loaned capital (principal), then assuming an interest rate i, the amount due to the lender

at each instalment is R = & Therefore the R; amount repays Iy = Cy_1 * i as interest and

Cy = Ry — I as capital at each installment. Figure 7?7 showS the end of period (EoY) balance
due for a 30 - years duration loan, assuming a 5% interest rate on a principal of $ 100,000.

R> capital=100000

R> interest=0.05

R> payments_per_year=2

R> rate_per_period=(1+interest) "~ (1/payments_per_year)-1

R> years=30

R> installment=

+ F 1/payments_per_year*capital/annuity(i=interest, n=years,k=payments_per_year)
R> installment

[1] 3212.9

R> #compute the balance due at the beginning of each period

R> balance_due=numeric (years*payments_per_year)

R> balance_due[1]=capital#*(l+rate_per_period)-installment

R> for(i in 2:length(balance_due)) balance_due[i]=balance_due[i-1]*(1+rate_per_period)-ins
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Loan amortization
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Figure 1: Loan amortization: end of period (EoP) balance due

11
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Bond pricing

Bond pricing represents another application of present value analysis. A standard bond whose
principal (face value) will be repaid at time T' consists in a sequence of coupons ¢, priced
according to a coupon rate j (k) on a principal C. Equation 6 expresses the present value of
a bond.

Bt = Cta(k)m + C’UT (6)

Examples follow showing how lifecontingencies package functions can be used to perform
bond pricing.

R> #define a function to compute bond market value

R> bond<-function(faceValue, couponRate, couponsPerYear, yield,maturity)

{
out=NULL
numberOf CF=maturity*couponsPerYear #determine the number of CF
CFs=numeric (number0fCF)
payments=couponRate*faceValue/couponsPerYear #determine the coupon sum
cf=payments*rep (1,number0fCF)
cf [numberO0fCF]=faceValue+payments #set the last payment amount
times=seq.int (from=1/couponsPerYear, to=maturity, by=maturity/number0fCF)
out=presentValue (cashFlows=cf, interestRates=yield, timeIds=times)
return(out)

+ + + + + + + + + + +
MMM T M M Y T oM

}

R> #coupon rate 67, two coupons per year, face value 1000,
R> #yield 5),, three years to maturity

R> bndEx1<-bond(1000,0.06,2,0.05,3)

R> #coupon rate 3J,, one coupons per year,

R> #face value 1000, yield 3J,, three years to maturity

R> bndEx2<-bond(1000,0.06,1,0.06,3)

R> c(bndEx1, bndEx2)

[1] 1029.25 1000.00

Last financial mathematics examples show how duration and convexity of cash flows can be
estimated by lifecontingencies package functions.

R> #set cash flows, times and interest rates

R> cashFlows=c(100,100,100,600,500,700)

R> timeVector=seq(1:6)

R> interestRate=0.03

R> #dollar duration

R> duration(cashFlows=cashFlows, timeIds=timeVector,

+ F i=interestRate, k = 1, macaulay = FALSE)

[1] 4.563124
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R> #Macaulay duration
R> duration(cashFlows=cashFlows, timelds=timeVector,
+ F i=interestRate, k = 1, macaulay = TRUE)

[1] 4.430218

R> #convexity
R> convexity(cashFlows=cashFlows, timelds=timeVector,
+ F i=interestRate, k = 1)

[1] 25.74647

13
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4.2. Lifetables and actuarial tables analysis

lifetable and actuarialtable classes are designed to handle demographic and actuarial
mathematics calculations. A actuarialtable class inherits from lifetable class. It has one
more slot dedicated to the rate of interest. Both classes have been designed using the S4 R
classes framework.

Following examples show how to initialize these classes, basic survival probabilities and life
table analysis.

Creating lifetable and actuarialtable objects

Lifetable objects can be created by raw R commands or using existing data.frame objects.
However, to build a 1ifetable class object three components are needed:

1. The years sequence, that is an integer sequence 0, 1,...,w. It shall start from zero and
going to the terminal, w, age (the age x that p, = 0).

2. The I, vector, that is the number of subjects living at the beginning of age x, i.e. the
number of subject at risk to die between year x and x + 1.

3. The name of the life table.

There are three main approaches to create a 1ifetable object:
1. directly from the x and [, vector.
2. importing x and [, from an existing data.frame object.
3. from raw survival probabilities.

To create a lifetable object directly we can do as code below shows

R> x_example=seq(from=0,to=9, by=1)

R> 1x_example=c (1000, 950,850,700,680,600,550,400,200,50)

R> exampleLt=new("lifetable",x=x_example, lx=1x_example, name="example lifetable")
while print and show methods tabulate the x, 1x, px and ex values for a given life table.

R> print(exampleLt)

Life table example lifetable

x 1x px ex
1 0 1000 0.9500000 4.742105
2 1 950 0.8947368 4.241176
3 2 850 0.8235294 4.042857
4 3 700 0.9714286 3.147059
5 4 680 0.8823529 2.500000
6 5 600 0.9166667 1.681818
7 6 550 0.7272727 1.125000
8 7 400 0.5000000 0.750000
9 8 200 0.2500000 0.500000
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head and tail methods for data.frame S3 classes have also been implemented on 1lifetable
classes, as shown below.

R> #head method
R> head(exampleLt)

1x
1000
950
850
700
680
600

O WN -
O W N = O N

Nevertheless the easiest way to create a lifetable object is to start from a suitable existing
data.frame. It would be also the most real concrete approach an actuary would use to handle
lifetable objects. In the following example the US Social Security life table for males and
females as long as the Italian IPS55 tables series are loaded from the existing demoUsa and
demoIta datasets bundled in the lifecontingencies package.

R> #load USA Social Security LT

R> data(demoUsa)

R> usaMaleO7=demoUsal,c("age", "USSS2007M")]
R> usaMale0OO=demoUsal,c("age", "USSS2000M")]
R> #coerce from data.frame to lifecontingencies
R> #requires x and lx names

R> names (usaMale07)=c("x","1x")

R> names (usaMale00)=c("x",6"1x")

R> #apply coerce methods and changes names
R> usaMaleO7Lt<-as(usaMaleO7,"lifetable")

R> usaMaleO7Lt@name="USA MALES 2007"

R> usaMaleOOLt<-as (usaMale00,"lifetable")

R> usaMaleOOLt@name="USA MALES 2000"

R> #compare expected lifetimes

R> c(exn(usaMaleOOLt,0),exn(usaMaleO7Lt,0))

[1] 73.52997 74.88162

R> #load Italian IPS55 tables

R> ##males

R> 1xIPS55M<-with(demoIta, IPS55M)

R> pos2Remove<-which (1xIPS55M 7inj c(0,NA))
R> 1xIPS55M<-1xIPS55M[-pos2Remove]

R> xIPS55M<-seq(0,length(1xIPS55M)-1,1)

R> ##females

R> 1xIPS55F<-with(demoIta, IPS55F)
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R> pos2Remove<-which (1xIPS55F 7inj, c(0,NA))

R> 1xIPS55F<-1xIPS55F [-pos2Remove]

R> xIPS55F<-seq(0,length(1xIPS55F)-1,1)

R> #finalize the tables

R> ipsb55M=new("lifetable",x=xIPS55M, 1x=1xIPS55M,

+ F name="IPS 55 Males")
R> ips55F=neW("lifetable",X=XIPSS5F, 1x=1xIPS55F,
+ F name="IPS 55 Females")

R> #compare expected lifetimes
R> c(exn(ips55M,0),exn(ips55F,0))

[1] 84.32625 88.22466

The last way a lifetable object can be created is from one year survival or death probabili-
ties. This feature is useful when used in conjunction with the results of a mortality projection
method (e.g. Lee - Carter).

R> #use 2002 Italian males life tables
R> data(demoIta)

R> itaM2002<-demoItal[,c("X","SIM92")]
R> names (itaM2002)=c("x","1x")

R> itaM2002Lt<-as(itaM2002, "lifetable")

removing NA and Os

R> itaM2002Lt@name="IT 2002 Males"

R> #reconvert in data frame

R> itaM2002<-as(itaM2002Lt, "data.frame")

R> #add gx

R> itaM2002$qx<-1-itaM2002$px

R> #reduce to 20J, one year death probability for ages between 20 and 60

R> for(i in 20:60) itaM2002$qx[itaM2002$x==1]=0.2*itaM2002$qx[itaM2002$x==1]
R> #otbain the reduced mortality table

R> itaM2002reduced<-probs2lifetable(probs=itaM2002[, "qx"], radix=100000,

+ F type="qx",name="IT 2002 Males reduced")

An actuarialtable can be easily created from a lifetable existing object.

R> #assume 3J, interest rate
R> exampleAct=new("actuarialtable",x=exampleLt@x, lx=exampleLt@lx, interest=0.03,
+ F name="example actuarialtable")

Method getOmega for actuarialtable classes provides the terminal age, w.

R> getOmega (exampleAct)
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Method print behaves differently between lifetable objects and actuarialtable objects.
One year survival probability and complete expected remaining life until deaths is reported
when print method is applied on a lifetable object. Classical commutation functions (D,
N, Cy, My, R,) are reported when print method is applied on an actuarialtable object.
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R> #apply method print applied on a life table
R> print (exampleLt)

Life table

1x
1000
950
850
700
680
600
550
400
200

© 00 NO O W N -
00 N O O W N~ O N
O O O O O O O o o

example lifetable

px
.9500000
.8947368
.8235294
.9714286
.8823529
.9166667
L7272727
.5000000
.2500000

OO R EFL, N WHN DD

ex

. 742105
.241176
.042857
.147059
.500000
.681818
.125000
. 750000
.500000

R> #apply method print applied on an actuarial table
R> print(exampleAct)

Actuarial table

(]
»

1000
950
850
700
680
600
550
400
200

SQDOO\IOBCﬂnb(D[\)H
©O© 00 N O O WN P O X

o4
o

Finally a plot method can be

Dx
00000
33010
20652
59916
17119
56527
61634
23660
88185
32084

1000.
922.
801.
640.
604.
517.
460.
325.
157.

38.

Nx
92787
92787
59778
39125
79209
62090
05563
43929
20268
32084

5467 .
4467 .
3545.
2744 .
2103.
1499.
982.
521.
196.
38.

48.
94.
137.
17.
69.
41.
121.
157.
114.
37.

Cx
54369
25959
27125
76974
00870
87421
96373
88185
96251
20470

840.
792.
697.
560.
542.
473.
432.
310.
152.

37

example actuarialtable interest rate

Mx
7400
1963
9367
6654
8957
8870

0491
1672
.2047

4839.
3999.
3206.
2508.
1948.
1405.
0128 931.
499.
189.
37.

A

Rx
7548
0148
8185
8819
2164
3207
4337
4210
3719
2047

applied to a 1lifetable or actuarialtable object. Figure 2
plots the survival function (i.e. the plot of x vs I;) of the SOA illustrative life table.
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life table SOA2008

population at risk
6e+06 8e+06  1le+07
| | |

4e+06
|

2e+06
|

0Oe+00
l

I I I I I I
0 20 40 60 80 100

X values

Figure 2: Society of Actuaries illustrative lifetable underlying survival distribution function
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Basic demographic analysis

Basic demographic estimations can be performed on valid 1ifetable or actuariatable ob-
jects. Code below shows how (p., tq, and é,.7 can be obtained.

R> #using ipsb5M life table
R> #probability to survive one year, being at age 20
R> pxt(ips55M,20,1)

[1] 0.9995951

R> #probability to die within two years, being at age 30
R> gxt(ipsb5M,30,2)

[1] 0.001332031

R> #expected (curtate) life time between 50 and 70 years
R> exn(ips55M, 50,20)

[1] 19.43322

Fractional survival probabilities can also be calculated according with linear interpolation
(default value), constant force of mortality and hyperbolic Balducci’s assumption, as Bowers
et al. (1997) details. We will show these concepts on the Society of Actuaries illustrative life
table, assuming insured age to be 80 years old.

R> data(soa08Act)

R> pxtLin=pxt (soa08Act,80,0.5,"linear") #linear interpolation

R> pxtCnst=pxt (soa08Act,80,0.5,"constant force") #constant force of mortality
R> pxtHyph=pxt (s0a08Act,80,0.5, "hyperbolic") #hyperbolic assumption

R> c(pxtLin,pxtCnst,pxtHyph)

[1] 0.9598496 0.9590094 0.9581701

Two heads survival probabilities calculations can be performed also. Code below shows
how joint survival probabilities, last survival probabilities and expected joint lifetime can be
evaluated using lifecontingencies functions.

R> jsp=pxyt(ips55M, ips55F,x=65, y=63, t=2) #joint survival probability

R> 1sp=pxyt(ips55M, ipsb5F,x=65, y=63, t=2,status="last") #last survival probability
R> jelt=exyt(ips55M, ips55F, x=65,y=63, status="joint") #joint expected lifetime
R> c(jsp,1sp,jelt)

[1] 0.9813187 0.9999275 19.1982972
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4.3. Classical actuarial mathematics examples

Classical actuarial mathematics examples on life contingencies are presented. The SOA illus-
trative life table assuming a 6% interest rates (the same used in most Bowers et al. (1997)
examples) will be used, unless otherwise stated. Similarly, the insured amount (or the annuity
term payment) will be $1, unless otherwise stated.

Life insurance examples

Following examples show the APV calculation (i.e. the lump sum benefit premium) for:

1. 10-year term life insurance for a subject aged 30 assuming 4% interest rate, A310~W‘

2. 10-year term life insurance for a subject aged 30 with benefit payable at the end of

month of death at 4% interest rate,(A?’lO:m)(m).

3. whole life insurance for a subject aged 40 assuming 4% interest rate, Ayg.

4. 5 years deferred 10-years term life insurance for a subject aged 40 assuming 5% interest
rate, 510A40.

5. 5 years annually decreasing term life insurance for a subject aged 50 assuming 6%

interest rate, (DA)510~E’

1

6. 20 years increasing term life insurance, age 40, (I A) 50:5]

R> #10 years term life insurance for a 40 years old insurer Q@ 4j, interest
R> linsi=Axn(soa08Act, 30,10,i=0.04)

R> #same as above but payable at the end of month of death

R> 1ins2=Axn(soa08Act, x=30,n=10,1i=0.04,k=12)

R> #whole life variation @6}, interest rate (implicit in SOA actuarial table)
R> lins3=Axn(soa08Act, 40)

R> #5-year deferred life insurance, 10 years length, 40 years old, 05/ interest rate
R> lins4=Axn(soa08Act, x=40,n=10,m=5,i=0.05)

R> #five years annually decreasing term life insurance, insured aged 50.

R> 1ins5=DAxn(soa08Act, 50,5)

R> #20 years term annually increasing life insurance, age 40

R> lins6=IAxn(soa08Act, 40,10)

R> c¢(1ins1,1ins2,1ins3,1ins4,1ins5,1ins6)

[1] 0.01577283 0.01605995 0.16132416 0.03298309 0.08575918 0.15514562
Pure endowments APV, , E,, examples are shown by following lines of code:

R> #evaluate the APV for a n year pure endowment, age x=30, n=35, i=6}
R> ex1<-Exn(soa08Act, x=30, n=35, i=0.06)

R> #the same but @ i=3}

R> ex2<-Exn(soa08Act, x=30, n=35, i=0.03)

R> c(ex1,ex2)
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[1] 0.1031648 0.2817954

Life annuities examples

Following examples show APV calculations for different annuities variations.

R> #annuity immediate

R> exl<-axn(soa08Act, x=65, m=1)

R> #annuity due

R> ex2<-axn(soa08Act, x=65)

R> #due with monthly payments of $1000 provision

R> ex3<-12*1000*axn (soa08Act, x=65,k=12)

R> #due with montly payments of $1000 provision, 20 - years term
R> ex4<-12*1000*axn (soa08Act, x=65,k=12, n=20)

R> #immediate with monthly payments of 1000 provision, 20 - years term
R> ex5<-12*1000*axn (soa08Act, x=65,k=12,n=20,m=1/12)

R> c(ex1,ex2,ex3,ex4,ex5)

[1] 8.896928e+00 9.896928e+00 1.131791e+05 1.082235e+05 1.073211e+05

Benefit premiums examples

lifecontingencies package functions can be used to evaluate benefit premium P for life contin-
gencies insurance. A (level) benefit premium is defined as the actuarial present value of the
provided coverage paid in h installments, P = ‘;‘%.

R> #Assume X, aged 30, whishes to buy a $§ 250K 35-years life insurance

R> #premium paid annually for 15 years @2.5) interest rate.

R> Pa=100000*Axn (s0a08Act, x=30,n=35,i=0.025)/axn(soa08Act, x=30,n=15,i=0.025)

R> #while if the premium is paid on a montly basis the flat benefit premium

R> Pm=100000%Axn (soa08Act, x=30,n=35,i=0.025)/axn(s0a08Act, x=30,n=15,i=0.025,k=12)
R> c(Pa,Pm)

[1] 921.5262 932.9836

R> #level semiannual premium for an endowment insurance of 10000
R> #insured age 50, insurance term is 20 years

R> APV=10000* (Axn(s0a08Act,50,20)+Exn (soa08Act,50,20))

R> P=APV/axn(soa08Act,50,20,k=2)

R> P

[1] 325.1927

Benefit reserves examples

The (prospective) benefit reserve consists in the difference between the APV of future insur-
ers’ benefits payments obligations and the APV of projected inflows (remaining scheduled
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premiums). It represents the outstanding insurer’s obligation to the policyholder for the un-
derwritten insurance policy. An example will better exemplify this concept.

We will evaluate the benefit reserve for a 25 years old 40 years duration life insurance of
$ 100,000, whith benefits payable at the end of year of death, whith level benefit premium
payable at the beginning of each year. Assume 3% of interest rate and SOA life table to
apply.

The benefit premium P is determined by equation Pdys.z5 = 10000014215:@, while the ben-

efit reserve is determined by equation kV251+t:m = 100000A251+t.m — Py, q5—7 for
t=0...40.

R> P=100000*Axn (s0a08Act,x=25,n=40,i=0.03) /axn(so0a08Act,x=25,n=40,i=0.03)
R> reserveFun=function(t) return(100000*Axn (soa08Act,x=25+t,n=40-t,i=0.03)-P*

+ F axn (soa08Act,x=25+t,n=40-t,i=0.03))
R> for(t in 0:40) {if(t}5==0) cat("At time ",t,
+ F " benefit reserve is ", reserveFun(t),"\n")}

At time O Dbenefit reserve is O

At time 5 Dbenefit reserve is 1575.179

At time 10 ©benefit reserve is 3221.986
At time 15 ©benefit reserve is 4848.873
At time 20 Dbenefit reserve is 6290.505
At time 25 ©benefit reserve is 7258.187
At time 30 Dbenefit reserve is 7250.61

At time 35 ©benefit reserve is 5380.243
At time 40 Dbenefit reserve is O

R>
R>

Figure 3 shows the benefit reserve for a whole life annuity due with level annual premium as

kV (n)dz). It is equal to )z — P(n)Gz)ay g0 When @ ... n, G, 1k otherwise. Figure 3 displays
benefit reserve for a 65 years old insured annuity immediate, with 40 years of deferral.

Insurance and annuities on two heads

Lifecontingencies package provides functions to evaluate life insurance and annuities on two
lifes. Following examples check the equality azy = a; + ay — azy.

R> axn(soa08Act, x=65,m=1)+axn(soa08Act, x=70,m=1)-
+ F axyn(soa08Act,soal08Act, x=65,y=70,status="joint",m=1)

[1] 10.35704
R> axyn(soa0O8Act,soa08Act, x=65,y=70, status="last",m=1)

[1] 10.35704
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Figure 3: Benefit reserve for dgs

Reversionary annuities (annuities payable to life y upon death of x), Agly = Gy — Agy can also
be evaluate combining lifecontingencies functions.

R> #assume x aged 65, y aged 60
R> axn(soa08Act, x=60,m=1)-axyn(soa08Act,soa08Act, x=65,y=60,status="joint",m=1)

[1] 2.695232
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4.4. Stochastic analysis

This last section illustrates some stochastic analysis that can be performed by our package,
both in demographic analysis and life insurance evaluation.

Demographic examples

The age-until-death, both in the continuous, T, or curtate form, K, is a stochastic variable
whose distribution is intrinsic in the deaths within a life table. The code below shows how to
sample values from the age-until-death distribution implicit in the SOA life table.

R> data(soa08Act)

R> #sample 10 numbers from the Tx distribution

R> samplel<-rLife(n=10,object=soa08Act,x=0,type="Tx")
R> #sample 10 numbers from the Kx distribution

R> samplel<-rLife(n=10,object=soa08Act,x=0, type="Kx")

while code below shows how the mean of the sampled distribution is statistically equivalent
to the expected life time, e,.

R> #assume an insured aged 29

R> #his expected integer number of years until death is

R> exn(soa08Act, x=29,type="curtate")

[1] 45.50066

R> #check if we are sampling from a statistically equivalent distribution
R> t.test(x=rLife(2000,s0a08Act, x=29,type="Kx"),

+ F mu=exn (soa08Act, x=29,type="curtate"))$p.value

(1] 0.7143122

R> #statistically not significant

Finally, Figure 4 shows the deaths distribution implicit in the ipsb5M life table.
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IPS55M table Kx distribution

20 40 60 80 100

Age until death

Figure 4: IPS55 deaths distribution function
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Actuarial mathematics examples

The APV is the present value of a random variable, Z. Z represents a composite function
between the discount amount and indicator variables regarding the life status of the insured.
We call Z the present value of benefits random variable, Z.

Life contingencies evaluation functions return the APV as default value, since the type pa-
rameter has "EV” (expected value) as default value. However most life contingencies actuarial
mathematics functions are provided with a ”ST” (stochastic) argument for type parameter.
The ”ST” argument allows to obtain a sample of size one from the underlying Z distribution.
However, when samples of greater dimension are required, the most straightforward approach
is to use the rLifeContingencies function.

Code below will show Z variates generation from term life insurances, increasing life term
insurances, temporary annuity,and endowment insurances respectively. For each simulation,
the unbiaseness is verified by comparing the mean of simulated variates with the theoretical
APV. All simulations are referred to an individual aged 20 years old for an insurance duration
of 40 years. Figure 5 shows the resulting Z distributions.

R> numSim=50000

R> #term life insurance

R> APVAxn=Axn(soa08Act,x=25,n=40, type="EV")
R> APVAxn

[1] 0.0479709

R> sampleAxn=rLifeContingencies(n=numSim, lifecontingency="Axn",
+ F object=soa08Act,x=25,t=40,parallel=TRUE)
R> t.test (x=sampleAxn,mu=APVAxn)$p.value

[1] 0.8255769

R> #increasing life insurance

R>

R> APVIAxn=IAxn(soa08Act,x=25,n=40,type="EV")
R> APVIAxn

[1] 1.045507

R> sampleIAxn=rLifeContingencies(n=numSim, lifecontingency="IAxn",
+ F object=s0a08Act,x=25,t=40,parallel=TRUE)
R> t.test(x=sampleIAxn,mu=APVIAxn)$p.value

[1] 0.9092557

R> #temporary annuity due

R>

R> APVaxn=axn (soa08Act,x=25,n=40,type="EV")
R> APVaxn
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[1] 15.46631
R> sampleaxn=rLifeContingencies(n=numSim, lifecontingency="axn",

+ F object=s0a08Act,x=25,t=40,parallel=TRUE)
R> t.test(x=sampleaxn,mu=APVaxn)$p.value

[1] 0.5544886

R> #endowment insurance

R> APVAExn=AExn (soa08Act,x=25,n=40, type="EV")

R> APVAExn

[1] 0.1245488

R> sampleAExn=rLifeContingencies (n=numSim, lifecontingency="AExn",
+ F object=s0a08Act,x=25,t=40,parallel=TRUE)

R> t.test (x=sampleAExn,mu=APVAExn)$p.value

[1] 0.941521
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The final example shows how the stochastic functions bundled in lifecontingencies can be
used to make an actuarial appraisal of embedded benefits.

Suppose a corporation grants its employees a life insurance benefit equal to the annual salary,
payable at the month of death. Suppose moreover that:

1. The expected value and the standard deviation of the salary are $ 50,000 and $ 15,000
respectively and salary distribution follows a log-normal distribution.

2. The employees distribution is uniform in the range 25 - 65. Assume 65 to be retirement
age.

3. The SOA illustrative table represents an unbiased description of the population mor-
tality.

4. Assume no lapse to hold.

5. The policy length is annual.

We evaluated the best estimate, i.e. the fair value of the insured benefits according to TAS
19 accounting standards (another word for benefit premium), and a risk margin measure. As
risk margin measure we are using the difference between the 75th percentile and the best
estimate. IFRS standards, Post, Grndl, Schmidl, and Dorfman (2007), define the fair value of
an insurance liability as the sum of its best estimate plus its risk margin. We have used parallel
computation facilities bundled made available by package parallel due the computationally
intensive calculation. Code has been adapted from examples of McCallum and Weston (2011)
book.

R> #set the various parameters

R> employees=500

R> salaryDistribution=rlnorm(n=employees,m=10.77668944,s=0.086177696) #log-normal distribt
R> ageDistribution=round (runif (n=employees,min=25, max=65))

R> policyLength=sapply(65-ageDistribution, min,1)

R> #function to obtain the type of benefit

R> getEmployeeBenefit<-function(index,type="EV") {

+ F out=numeric (1)

+ F out=salaryDistribution[index]*Axn(actuarialtable=soa08Act,

+ F x=ageDistribution[index],n=policyLength[index],
+ F i=0.02,m=0,k=1, type=type)

+ F return (out)

+ F }

R> #configure the parallel library

R> #environment

R> require(parallel)

R> ¢l <- makeCluster(detectCores())

R> worker.init <- function(packages) {

+ F for (p in packages) {

+ F library(p, character.only=TRUE)



30 A package to evaluate actuarial present values

+ F }

+ F invisible (NULL)

+ F }

R> clusterCall(cl,

+ F worker.init, c('lifecontingencies'))

[[1]1]
NULL

[[2]1]
NULL

R> clusterExport(cl, varlist=c("employees","getEmployeeBenefit",

+ F "salaryDistribution", "policyLength",
+ F "ageDistribution", "soa084ct"))

R> #determine the best estimate of employees benefit

R> employeeBenefits=numeric(employees)

R> employeeBenefits<- parSapply(cl, 1:employees,getEmployeeBenefit, type="EV")
R> employeeBenefit=sum(employeeBenefits)

R> #determine the risk margin

R> nsim=100 #use 100 simulations

R> benefitDistribution=numeric (nsim)

R> yearlyBenefitSimulate<-function(i)

+ F {

+ F out=numeric (1)

+ F expenseSimulation=numeric (employees)

+ F expenseSimulation=sapply(1:employees, getEmployeeBenefit, type="ST")
+ F out=sum(expenseSimulation)

+ F return (out)

+ F }

R> benefitDistribution <- parSapply(cl, 1:nsim,yearlyBenefitSimulate )

R> stopCluster(cl)

R> #summarize results

R> riskMargin=as.numeric(quantile(benefitDistribution, .75)-employeeBenefit)
R> totalBookedCost=employeeBenefit+riskMargin

R> employeeBenefit

[1] 141205.6

R> riskMargin

[1] 41337.51

R> totalBookedCost

[1] 182543.1
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5. Discussion

5.1. Advantages and limitations

The lifecontingencies package allows actuaries to perform demographic, financial and actuarial
mathematics calculations within R software. Pricing, reserving and stochastic evaluations of
life insurance contract can be therefore performed using R. Moreover, an original feature
of lifecontingencies is the ability to generate samples variates from both life tables and life
insurances stochastic distributions.

One of the most important limitations of lifecontingencies is that it handles only single decre-
ment tables. Another limitation is that currently it does not allow continuous time life
contingencies to be modelled.

We expect to remove such limitations in the future. Similarly, we expect to to provide coerce
methods toward packages specialized in demographic analysis, like demography and LifeTa-
bles packages. Communication with interest rates modelling packages, as termstrcR will be
also explored.

5.2. Accuracy

The accuracy of calculation have been verified by checkings with numerical examples re-
ported in Bowers et al. (1997) and in the lecture notes of Actuarial Mathematics the author
attended years ago at Catholic University of Milan, Mazzoleni (2000). The numerical results
are identical to those reported in the Bowers et al. (1997) textbook for most function, with the
exception of fractional payments annuities where the accuracy leads only to the 5th decimal.
The reason of such inaccuracy is due to the fact that the package calculates the APV by
directly sum of fractional survival probabilities, while the formulas reported in Bowers et al.
(1997) textbook uses an analytical formula.

Finally, it is worth to remember that the package and functions herein are provided as is,
without any guarantee regarding the accuracy of calculations. The author disclaims any lia-
bility arising by eventual losses due to direct or indirect use of this package.
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