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1 Introduction

Genetic epidemiologists have long sought the identification of genetic markers

that are associated with disease. Models predict that there should be many

such risk variants, and predicted effect size distributions show that the number

of risk variants increases quickly as the effect size decreases. Past genetic

association studies have identified many of the large effect size variants, yet

the remaining variants with low effect size have not been identified. The cost

of increasing sample sizes and large-scale collaborations has caused many to

abandon the search, and so there is need for methods that can identify low-

effect variants without these costs. The ldlasso package implements a method

that uses the well-known LASSO methodology of Tibshirani et al. to identify

the presence of weak genetic associations [1].

2 Genetic Association

A common measure of genetic association to disease is the increase in relative

risk between subjects with the genetic variant and subjects without the genetic

variant, approximated in a case-control study by the odds ratio. In the case of

genetic association we commonly have data for a dense set of di-allelic markers,

known as SNPs. If f0 is the frequency of the minor allele in the controls, and

f1 the frequency in the cases, then the odds ratio is OR = f1/(1−f1)
f0/(1−f0) . The odds

ratio can also be computed in a logistic regression setting with genotype values

coded in an additive fashion and a test for a nonzero log odds ratio is often used

to identify SNPs that are associated with disease. Under an additive model
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the p-value computed is equivalent to the p-value that results in a χ2 test for

independence of alleles and disease status. Methods for identification of dis-

ease associated SNPs have been implemented in the R package GenABEL [2].

The GenABEL package was designed for use in large scale genetic associations

studies in which hundreds of thousands of SNPs are interrogated across the

entire genome. These studies are known as genome-wide association studies,

or GWAS. GenABEL is designed to accommodate large data sets and uses

binary compression to reduce the size of the resulting R objects. The pack-

age ldlasso accepts objects of class ‘gwaa.data’ from the GenABEL package.

Methods such as the χ2 allelic test of association consider SNPs in isolation.

In the search for weak genetic association signals, a one-at-a-time approach

such as this is doomed for failure. We improve on this approach by consid-

ering an entire set of SNPs simultaneously and by imposing restrictions on

the solutions that incorporate two basic characteristics of genetic association,

namely linkage disequilibrium and haplotype block structure.

2.1 Linkage Disequilibrium & Haplotype Blocks

Before the transmission of genetic material from parent to offspring, homol-

ogous chromosomes in each parent combine to form a distinct chromosome

that is then passed on to the offspring. The mechanics of the recombination

are complicated, but it is well established that sites on a chromosome that

are physically close together are likely to both be included on the chromo-

some that is transmitted to the offspring. This concept is known as linkage

disequilibrium, or LD. Due to LD, when SNPs are densely spaced we observe
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are large amount of correlation among the SNPs. The degree to which LD

occurs is not constant throughout the genome. There are known to be regions

in which there is a great deal of correlation due to LD, punctuated by regions

in which there is very little LD. These boundaries create what are known as

haplotype blocks, which are large segments of the genome that are inherited to-

gether. The ldlasso package was written to use the Markov chain Monte Carlo

methods incorporated in the R package MATILDE to identify the boundaries

of haplotype blocks, and these boundaries are used to help identify weak ge-

netic associations [3]. It is not necessary to use MATILDE to generate the

haplotype block boundaries, and ldlasso will run without any boundaries, or

with a user-defined block boundary vector.

3 The LD LASSO Algorithm

Because we have densely spaced SNPs, which are highly correlated, we expect

there to be signals present at sites other than the causal variant. It is also

likely that regions of the genome that contain genetic variants that increase

susceptibility to disease by a small amount will contain multiple variants that

do so independently. We also expect that the large number of SNPs in even

a moderately sized candidate region will result in signal which is nonetheless

sparse. The genetic association signal we expect to observe will have breadth,

due to both correlation and multiple disease variants. However, due to hap-

lotype block boundaries we expect there to be an abrupt absence of signal

as well as low frequency SNPs that do not exhibit the signal. To begin we
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consider a non-parametric regression model with yj, the normalized log odds

ratio for SNP j and β is the mean vector, which represents the association

signal, which has blocks of nonzero signal, with point-wise gaps.

yj = βj + εj (1)

The density of our SNP data is such that the error terms, εi and εj are de-

pendent. The LASSO is a penalized least squares estimator in which an l1

penalty creates estimates that are identical to zero, and is ideal as a subset

selector for sparse solutions [1]. LASSO regression may be expressed as the

convex optimization problem with LASSO parameter s1.

β̂LASSO = argmin
β∈Rp

{
p∑
j=1

(yj − βj)2
}
,

p∑
j=1

|βj| ≤ s1 (2)

A variant of the LASSO, the fused LASSO adds an additional constraint to the

optimization problem,
∑
|βj − βj+1| < s2, which encourages a flat and block-

like solution, ideal when the true signal is expected to be constant across a

series of consecutive ordered predictor variables [4]. In the case of genetic

association we do not expect our signal to be flat, but we do expect it to

exhibit a block structure. In place of the constraint from the fused LASSO,

we choose a set of constraints defined for a collection of groups of SNPs, or

blocks. For the LD LASSO we define the blocks in terms of a haplotype block

map, B, although any method of block definition is acceptable here.

B = {(i, j); SNP i and j are in the same block } (3)
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Since we are concerned with SNP selection and not effect size estimation, we

regress only as a means of subset selection and not parameter estimation.

Furthermore, the direction of the effect is defined arbitrarily in terms of the

minor allele, and so we allow for a change in the sign of β. We do so by defining

the LD LASSO constraint in terms of |β|.

β̂LD = argmin
β∈Rp

{∑
(yj − βj)2

}
,
∑
|βj| ≤ s1, ||βi| − |βj|| ≤ ϕ(r2ij) (4)

The constraint function, ϕ, is defined below in terms of the LD LASSO pa-

rameter, s2 and a minimum value of correlation, r2cut.

ϕ(r2ij) =


−s2 log r2ij + δ , if r2ij > r2cut and (i, j) ∈ B

∞ , otherwise

(5)

with δ = 10−10 to allow for computer precision when r2ij = 1. To find a solu-

tion using the parameter selection algorithm described below use the function

ld lasso method.

> ld_lasso_method(block.obj, block.cood)

3.1 Parameter Selection

To find the LD LASSO estimate we solve the corresponding convex optimiza-

tion problem using the R package quadprog which applies the method of Gold-

farb and Idnani [5]. The optimization problem is defined with linear constraints

and the size of the constraint matrix must be considered when choosing the

6



parameters. If the block map has size b, then the constraint matrix has dimen-

sion 3p× (3p + 2b + 1), where p is the number of SNPs. If p or b is large the

algorithm may be prohibitively slow and so we place a limit of the size of the

constraint matrix by finding the value of r2cut necessary to reduce the size of

B. We choose r2cut to be the minimum value that corresponds to a constraint

matrix with no more than 5,000 columns.

3.1.1 Haplotype Block Map

To estimate the positions of block boundaries we use the Markov Chain Monte

Carlo method implemented in the R package MATILDE [3]. This package

is not available at the CRAN repository. To find this package see the link

given in the help page for ldlasso. Here we may choose a cutoff value for the

probability necessary to deem the interval between SNPs a haplotype block

boundary. We prefer to have large blocks, for small blocks will result in SNPs

that are unconstrained by the LD LASSO, as constraints are finite only when

SNP-pairs occur within the same block. Thus we choose a high value for this

cutoff of 95% and implement the function find.bounds given in the help page

for ldlasso. Note that this function is not inherent to the ldlasso package and

is dependent on the package MATILDE.

> block.cood <- find.bounds(block.obj, prob.threshold = 0.95)

It may take considerable time for find.bounds to complete. In it all pairwise

LD estimates must be computed, and two MCMC runs completed.
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3.1.2 LASSO Parameter

The LASSO parameter, s1, controls the sparsity of the solution. For small

values of s1 many of the SNPs will have estimates equal to zero, and thus

will not be in the model. The number of SNPs allowed in the model is an

increasing function of s1. Under the null hypothesis we expect that no SNPs

are in the model; however, we expect some number of false positives. Using

a permuted phenotype vector we find the value of s1 that corresponds to a

solution with 10% of the total number of SNPs included. Thus, we have a

value for s1 that corresponds roughly to a false positive rate of 10%. To find

s1 we perform a simple bisection algorithm that approximates the root of the

function g(s1) = f(s1)− 1
10
p, where p is the total number of SNPs, and f maps

s1 to the number of SNPs included with the permuted phenotype vector. Note

that f(s1) is an integer valued function that may skip a value and increase by

two if two SNPs are in perfect correlation. There is not always a root, and so

we use an approximate solution.

3.1.3 LD LASSO Parameter

The LD LASSO parameter, s2, controls the amount of fusion present in the

solution. The package ldlasso requires the user to provide a vector of s2 values

to be considered. The ldlasso package then returns three solutions, the fused,

unfused, and intermediate solutions. The fused solution corresponds to the

smallest value of s2, the unfused solution corresponds to the largest value of s2,

and the intermediate solution that corresponds to the value of s2 that provides

the optimal solution, in which an estimate of prediction error, cp is minimized.
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The formulation of cp is similar to that of Efron et al., and estimates for the

covariance term are estimated using bootstrap sampling [6].

ĉp = ||y − β̂||2 − p? + 2

p∑
j=1

ˆcov
(
β̂j, yj

)
(6)

In the following section we demonstrate the use of ldlasso by examining the

sample data provided with the package.

4 Example

First we load ldlasso along with the example data.

> library("ldlasso")

> data("ldlasso_example")

The sample data consist of ‘block.obj’, a GenABEL object with class gwaa.data,

‘block.cood,’ a vector of block boundaries, and ‘ldlasso.obj,’ an ldlasso object.

The ldlasso object was computed using the block map defined by ‘block.cood’

along with an algorithm used for parameter selection implemented in the func-

tion ld lasso method. This method identifies three solutions based on the

choice of s2; the cp optimal solution, the fused solution, and the unfused solu-

tion as described above. Here we use B = 100 bootstrap samples for each of

the 75 s2 values considered. With parameters B = 100 and s2.vec.length = 75

the following code may take up to an hour to complete. For the sake of ex-

ample use the ldlasso object provided with the example data, ‘ldlasso.obj,’ or

decrease the values of the two parameters.
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> ldlasso.obj <- ld_lasso_method(block.obj, block.cood, B = 100,

+ s2.vec.length = 75)

With the ldlasso object in hand we may use the plot ldlasso function to cre-

ate a summary figure with four diagnostic plots presented in Figure 1. The

plot ldlasso function provides four plots. In the upper-left panel we have the

log10 p − values for the allelic test of association by physical position in kilo-

basepairs (kb). Plotted in the upper-right panel are the three solutions found

by the ld lasso method function. In black we have the cp − optimal solution,

and in red and green we have the fused and unfused solutions respectively. In

this case the cp−optimal solution overlaps almost completely with the unfused

solution. In the bottom-left panel we have a trace plot for the ldlasso solutions

with s1 fixed. In it each line represents an estimate for a SNP, and we see as

the LD LASSO parameter, s2, decreases, SNP estimates are fused together

and converge to the fused solution. Finally, in the lower-right panel we have

the estimates for cp plotted against s2. Here we see that the value of s2 that

minimizes cp is represented in the trace plot by a broken vertical line, and that

it is essentially the same as the unfused solution. However, we also note that

a value of s2 much closer to the fused solution also has a low value for s2.

> plot_ldlasso(ldlasso.obj)

The choice for the optimal intermediate solution is a difficult one, and we have

provided in the ldlasso package, one method for selection, the cp − optimal

solution. We encourage investigation into other solutions and demonstrate

below how the ldlasso object may be manipulated to do so. The first constraint
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Figure 1: Plot created by plot ldlasso: Top-left: Allelic test of association;
Top-right: cp − optimal, fused, and unfused solutions (black, red, green);
Bottom-left: Trace plot with fixed s1; Bottom-right: cp estimates vs. s2

of the ldlasso, s1, controls the sparsity of the solution, and we have provided a

method to select s1 based on control of the false positive rate. It is interesting,

however, to observe the relationship between the vector of solutions and s1.

To that end we would like to investigate the l1 norm of the solution vector β

and how it relates to s2. The function ld lasso method computes the ldlasso

solution over a vector of s2 values in order to identify the value that minimizes

cp, and these are stored in the matrix beta0.mat. Each row of this matrix
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corresponds to the ldlasso solution for the corresponding s2 value from the s2

vector. Thus, to find
∑
|βj| we simply have to find row sums as follows.

> size.vec <- rowSums(abs(ldlasso.obj$cp.obj$beta0.mat))

> ldlasso.obj$s1

[1] 5.9375

We then plot size.vec in the top-left panel of Figure 2. It is important to note

here that the scale of the vertical axis is on the order of 10−13. Thus, what

we see is that for large values of s2 the l1 is constant and equal to s1, but

at a critical value of s2 numerical instability arises, and the l1 norm becomes

unstable. By examination of the trace plot presented in Figure 1 it appears

that as s2 decreases all but one block of identical estimates remains in the

fused solution. To investigate this we would like to display the number of

nonzero SNP estimates as a function of s2. Intuitively, we expect that only

s1 will affect the number of nonzero SNP estimates, and to investigate it we

must compute
∑

j I|βj |>10−6 .

> p.vec <- rowSums(abs(ldlasso.obj$cp.obj$beta0.mat) > 1e-06)

In the top-right panel of Figure 2 we display p.vec plotted against s2, and

see that as s2 decreases the number of SNPs with nonzero estimates increases

monotonically, and thus the fused solution in fact contains SNPs with very

small nonzero estimates. As we decrease the value of s2 we encourage SNP

estimates to fuse together. We are interested in an intermediate solution for

which the value of s2 that is used is such that the fusion identifies a weak
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signal with breadth without forcing SNPs to be fused together, unnecessarily

resulting in a weakening of the apparent signal strength. Thus we would like

to create a third diagnostic plot in which we investigate the amount of fusion

taking place. To do so we would like to compute
∑

(i,j)∈B ||βi| − |βj||. This

represents the total difference between SNP estimates that are affected by the

fusion constraint s2. To do so we define the function d.fn in terms of the block

map defined by block.cood.

> d.fn <- function(beta, block.cood) {

+ d.mat <- abs(outer(abs(beta), abs(beta), FUN = "-"))

+ block.mat <- block.map.matrix(block.cood)

+ tri.mat <- lower.tri(matrix(1, ncol(d.mat), ncol(d.mat)))

+ sum(d.mat[block.mat & tri.mat])

+ }

We then apply this function iteratively to the matrix bet0.mat and plot the

results in the bottom-left panel of Figure 2. We again observe a critical value

of s2 for which
∑

(i,j)∈B ||βi|− |βj|| departs from a constant value and abruptly

begins to decrease. The lower-right panel of Figure 2 is the solution using

this value of s2 denoted by s′2. Using the trace plot, the three basic solutions

provided by ld lasso method, as well as the solution presented in Figure 2, we

have an idea of how the ldlasso solution behaves in this region. It is difficult,

however, to identify how the solution changes over varying values of s2. We

have presented methods for choosing solutions but to understand the solution

space more fully we construct a map of the solution space using the function

in the ldlasso package ‘heatmap.’ In Figure 3 a grid is presented with the s2

13



●

●●
●●

●
●●

●

●

●

●

●

●

●

●●
●●

●

●

●

●

●

●

●

●

●
●
●●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

s2

5e−03 1e−01 5e+00

5.
93

75

●●●●●
●●●●●

●
●●●●●●●●●●●●

●●
●●●●●●

●
●●

●
●●●●●●

●

●●●●
●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●

5e−03 1e−01 5e+00

10
15

20
25

30

s2

●●●●●●●●●●
●●●●●●●●●●●●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●

●

●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

5e−03 1e−01 5e+00

5
15

25
35

s2

●● ●●●●●●●●●●●●

●

●●●●●●

●

●●

●
●

● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●

●

●

●

●

●●

●

● ●

●

●● ●
●●

●●●●●●●●●●●

0 20 40 60 80 100

0.
0

0.
4

0.
8

1.
2

kB

|b
et

a|

Figure 2: Top Left: ||β||1 vs. s2 (note that the vertical axis has length on the
order of 10−13) Top Right:

∑
j I|βj |>10−6 Lower Left:

∑
(i,j)∈B ||βi| − |βj|| with

a vertical line drawn at s′2 Lower Right: LD LASSO solution for s′2

considered along the vertical axis and SNP indices along the horizontal axis.

Each element in the grid is colored a shade of gray ranging from white to

black in increasing size of the magnitude of the SNP estimate. By default

the ‘heatmap’ function plots a horizontal broken line at the value of s2 that

corresponds to the cp − optimal solution. To include a line at s′2 found above

we simply include it as the s2.indx.

> heatmap(ldlasso.obj, s2.indx = s2.indx)

14



20 40 60 80

Figure 3: Heat Map for LD LASSO solutions. Vertical axis represents s2 ∈
(5× 10−3, 50), horizontal axis is the SNP index. Horizontal broken lines at s2
corresponding to the cp − optimal solution and s′2.
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In Figure 3 we see that for the largest value of s2, the solution has a band

of three SNPs with estimates that are much darker than the rest, and this

corresponds to the unfused solution of the ldlasso. At the bottom of this

figure we see the fused solution in which the initial block of three SNPs has

been extended to seven SNPs with equal estimates, all much lighter than the

original, and this represents the fused solution displayed in red in Figure 1.

Intermediate to those solutions are the cp−optimal solution and the s′2 solution.

The dotted line corresponds to the cp − optimal solution and the dashed line

corresponds to the s′2 solution. We see that initially two SNPs to the right of

the band are included, but with only a weak signal, and that these SNPs are

separated from the original signal by gaps where the signal is absent. If we

follow this down to the cp−optimal solution we see that this solution occurs at

the height at which the gaps are filled. We conclude that the region spanned by

the seven SNPs is likely to contain a SNP or SNPs that are weakly associated

with disease, but that to continue to fuse SNPs by decreasing s2 is detrimental

to the predictive ability of the SNP subset.

5 Discussion

Here we have presented the R package ldlasso which allows the user to apply

the modified LASSO methodology presented in Younkin et al. An object of

class ‘gwaa.data’ created in the package GenABEL is accepted for input and

diagnostic plots are easily generated. The package ldlasso computes three

solutions and displays these, along with diagnostic plots for examination. The
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complete space of solutions is displayed as a heat map, and with it choices

about what regions are candidates for further study are easily made. In the

example data discussed here we see two striking features. First, that the

optimal solution is found when the gaps in the signal are filled in, and that to

fuse further is detrimental. Also, we see that an entire interval of SNPs from

SNP index 35 to 55 shows a complete absence of signal. We expect that some

small presence of signal should exist here, and its absence is cause for further

study. It is likely, that we will find here SNPs associated with diease which

were not included in this data set. For these reasons the region spanned by

SNPs with index from 55 to 65 should be considered as a strong candidate

region for future sequencing.
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