
Basics

RStudio® is a trademark of RStudio, Inc. • CC BY SA Koen Derks • K.Derks@nyenrode.nl • https://koenderks.github.io/jfa • Learn more at webpage or vignette • package version 0.5.0 • Updated: 2020-12

jfa is an R package that is developed to
facilitate planning, selection, and
evaluation of statistical audit samples in
both its Bayesian and classical
manifestations.

The package provides five main functions
that can be used in order to facilitate an
efficient audit sampling workflow.

Audit sampling with jfa: : CHEAT SHEET

This function creates a prior distribution for Bayesian audit sampling in which several
different types of audit information can be incorporated.

• likelihood: Specifies the family of the prior probability distribution.

auditPrior(materiality = 0.05,
method = "none",
likelihood = "binomial“, ...)

Create a prior probability distribution (optional)
jfa::auditPrior()

Given the allocated performance materiality or the minimum precision, this function
calculates the required sample size for an audit, based on the Poisson, binomial, or
hypergeometric likelihood. A prior can be specified to perform Bayesian
planning.

• expectedError: A fraction specifying the expected errors in the sample.

Calculate the required sample size
jfa::planning()

This function takes a data frame and performs sampling according to one of three
popular algorithms: random sampling, cell sampling, or fixed interval sampling.
Sampling is done in combination with one of two sampling units: records or
monetary units.

Select the required transactions from the data
jfa::selection()

This function takes a data frame (using sample, bookValues, and auditValues)
or summary statistics (using nSumstats and kSumstats) and calculates the most
likely error and upper confidence bound on the misstatement according to the
specified method.

• prior: An object returned by the auditPrior() function that specifies the prior.

Evaluate the audited transactions
jfa::evaluation()

This function takes an object of class jfaEvaluation, creates a report containing
the results, and saves the report to a file in your working directory.

Create a report of the results
jfa::report()

planning(materiality = 0.05,
expectedError = 0.01,
likelihood = "binomial",
prior = FALSE, ...)

selection(population = BuildIt,
sampleSize = 93,
units = "records",
algorithm = "interval“, ...)

evaluation(sample = selectionResult,
bookValues = "bookValue",
auditValues = "auditValue",
method = "stringer",
materiality = 0.05, ...)

report(object = evaluationResult,
file = "report.html“, ...)

Installation
Installing the package can be done via:
install.packages("jfa")

Loading the package can be done via:
library(jfa)

Example
The blue code blocks next to the function
descriptions provide a working example of
the intended workflow.

The data for this example can be loaded via:
data("BuildIt")

https://creativecommons.org/licenses/by-sa/4.0/
https://koenderks.github.io/jfa

	Audit sampling with jfa: : CHEAT SHEET

