
The Jaatha HowTo

Lisha Mathew, Paul R. Staab and Dirk Metzler

Version 2.3

1 Introduction

Jaatha is a fast composite likelihood method to estimate model parameters of
the evolutionary history of (at the moment) two related species or populations.
To do so, it uses SNP data from multiple individuals from both species and �
optionally but highly recommended � one or more outgroup sequences. This
HowTo describes the method and gives an example of using its implementation
as R package jaatha.

The package itself can be obtained from CRAN using

install.packages("jaatha")

or downloaded from http://evol.bio.lmu.de/_statgen/software/jaatha.
Jaatha runs on R under Windows, OS X (Mac) and Linux with the following
restrictions: On Windows the parallelization and �nite sites simulation using
Seq-Gen is currently not supported.

A more detailed description of the algorithm can be found in Mathew et al.
[2013]. Further information about the R functions used in this document can be
obtained by calling help() with the functions name as argument.

We kindly ask you to cite the above paper when using Jaatha in a publica-
tion.

2 A demographic model

Before we can apply Jaatha to estimate parameters, we �rst need to create a
model of the evolutionary history of the two species. Jaatha cannot account for
the e�ects of selection, hence we assume a neutral evolution. It can estimate
the e�ects that either �demographic� events � like an expansion of the size of
one population or migration between the two populations � or molecular events
� like mutation or recombination � have on the genome of the populations.
To emphasize that we can not include selection, we refer to a scenario of the
evolution of the two species under such events as a �demographic model�.

For now, assume that we know that our two species are closely related; hence
they must have separated at a certain time in the past. There may still be gene
�ow ongoing between them to which we will refer to as migration from one
population into the other. Hence, we could propose the simple demographic
model described in Figure 1.

To specify that model in R, we �rst need to load jaatha.

1

http://evol.bio.lmu.de/_statgen/software/jaatha

Figure 1: A simple demographic model: The ancestral population splits into
two populations τ time units ago, and afterwards individuals migrated from one
population to the other with a migration rate M . Mutations are occurring with
rate θ and recombination with a known rate ρ.

library(jaatha)

Loading required package: methods

We can now create an 'empty' demographic model dm using the
dm.createDemographicModel() function:

dm <- dm.createDemographicModel(sample.sizes = c(12,

14), loci.num = 50, seq.length = 1000)

The parameter sample.sizes here corresponds to the number of individuals
we have sampled from the �rst population and second population respectively.
The second argument loci.num states that we are using data from 70 loci while
seq.length gives the (average) length of each loci1.

We can now successively add the other assumptions of our model:

dm <- dm.addSpeciationEvent(dm, 0.1, 5, new.time.point.name = "tau")

dm <- dm.addSymmetricMigration(dm, 0.01, 5, new.par.name = "M")

dm <- dm.addMutation(dm, 1, 20, new.par.name = "theta")

dm <- dm.addRecombination(dm, fixed = 20)

The �rst parameter is the demographic model to which we want to add an
assumption/feature. The two following numbers represent the range for the
corresponding parameter. The lower border has to be strictly greater the zero,
as we are using a logarithmic transformation of the parameter space. The
parameters are scaled as in the popular simulation program ms [Hudson, 2002]
that we use for simulations:

� The parameter for the speciation event is the split time τ , which states how
many generations ago the split of the population has occurred. As usual in

1This is only used when a �nite sites model is assumed or if intra-locus recombination is

included.

2

population genetics, it is measured in units of 4N1 generations ago, where
N1 is the (diploid) e�ective population size of the �rst population.

� The parameter for the (symmetric) migration is the scaled migration rate
M , which is given by M = 4N1m, where m is the fraction of individu-
als of each population which are replaced by immigrants from the other
population each generation.

� The mutation parameter θ is 4N1 times the neutral mutation rate per
locus.

� Finally, the recombination parameter ρ is 4N1 times the probability of
recombination between the ends of the locus per generation. Jaatha uses
the JSFS as summary statistics, which is not sensitive for recombination
events. Hence, estimation of the recombination rate will fail. You should
set this to a �xed value re�ecting known estimates in your model organism.

Keep in mind that a `good' model � which is one that approximates the real
demographic history but is also as simple as possible � is crucial for obtaining
meaningful estimates in the end. Jaatha will always try to �nd the parameters
that make the model �t best to your data. If the model does not �t to the data
at all, Jaatha will still return estimates, but they will not be meaningful.

3 Theoretical Background

It is important to understand the key concepts behind Jaatha before we can
apply it. Like many estimation methods that rely on simulations, Jaatha tries
to �nd the parameters that best �ts 2 to your data by simulating arti�cial data
for many di�erent parameter combinations. It uses a learning algorithm to
determine how the di�erent parameter values in�uence the simulated data and
uses that knowledge to �nd the best parameter combination for your data.

You can imagine Jaatha as a method that runs through the parameter space
� the space of all possible parameter combinations, in our example a cube with
borders from 0.1 to 5, 0.01 to 5 and 1 to 20 � simulating in a small part of the
parameter space around the current position (we call this area a block). It then
searches the new maximum of the current blocks and moves to it, builds a new
block around it and so on. The search �nally stops when the likelihood cannot
be improved anymore or a maximal number of steps has been reached.

To compare the simulated data to the real one, Jaatha uses summary statis-

tics of the data. As default, it calculates the Joint Site Frequency Spectrum
(JSFS) of the data and further summarizes it by evaluating di�erent sums over
the JSFS. Please refer to Naduvilezhath et al. [2011] for a detailed description.

4 Importing Your Data

To run Jaatha, you need to calculate the JSFS of your data set. We do not
di�erentiate between loci and use the JSFS over all loci. You can either just

2for Jaatha, the 'best' parameter combination is the one with the highest composite like-

lihood

3

concatenate all loci and the calculate the JSFS for the combined sequence, or
calculate the JSFS for every loci and sum them up.

To calculate the JSFS, you can use the function calculateJsfs(). This
function accepts data imported with the read.dna() function from the pack-
age ape. It assumes that you provide a joined, aligned data set with multiple
samples from two populations and � optional but highly recommended � one or
more outgroup sequences. Additionally, you must provide the numbers of the
sequences in the dataset that belong to population one, population two, and the
outgroup, respectively.

Please consult the documentation of ape in order to get more information
about read.dna(). For example, the import of the data could look like this:

library(ape)

The path to the data

sample.file <- system.file("example_fasta_files/sample.fasta",

package = "jaatha")

We use system.file() here to get the path of an

example file included in the jaatha package. You

can just give the path to the file as string:

sample.file <- 'path/to/your/file.fasta'

Reading the data

sample.data <- read.dna(sample.file, format = "fasta",

as.character = TRUE)

Calculating the JSFS

sample.jsfs <- calculateJsfs(sample.data, pop1.rows = 3:7,

pop2.rows = 8:12, outgroup.row = 1:2)

sample.jsfs

[,1] [,2] [,3] [,4] [,5] [,6]

[1,] 0 1 0 0 0 0

[2,] 1 1 1 0 0 0

[3,] 2 0 1 0 0 0

[4,] 1 1 0 2 0 1

[5,] 1 0 0 0 3 0

[6,] 1 0 0 0 0 0

For the purpose of this HowTo, we will use a simulated JSFS, for which we know
the real parameters:

Real parameters: M = 1, tau = 1 and theta = 10

real.pars <- c(1, 1, 10)

Simulate a JSFS with this parameters

sum.stats <- dm.simSumStats(dm, real.pars)

jsfs <- sum.stats$jsfs

4

Print the upper left part of the JSFS

jsfs[1:7, 1:7]

[,1] [,2] [,3] [,4] [,5] [,6] [,7]

[1,] 0 516 216 143 108 73 54

[2,] 495 52 33 25 14 9 15

[3,] 193 39 31 19 10 6 4

[4,] 153 27 22 8 13 11 5

[5,] 64 19 8 3 3 5 4

[6,] 71 16 14 4 7 5 1

[7,] 35 21 14 3 4 1 6

5 Running Jaatha

Jaatha is divided into two parts. First we �nd good starting positions by simu-
lating very coarsely across the entire parameter space. We call this part initial
search. Afterwards a more thorough re�ned search is performed starting from
the best positions of the �rst step. Before starting the search, we need to set
some options like our demographic model, the summary statistics of the real
data, and a seed to ensure reproducibility:

jaatha <- Jaatha.initialize(dm, jsfs = jsfs, seed = 12345,

cores = 2)

For more options refer to ?Jaatha.initialize or the Jaatha manual. If you
are running on Windows, skip the cores = 2 option.

5.1 The Initial Search

For the initial search, we divide the parameter space into equally-sized blocks
by dividing each of the n parameters ranges into blocks.per.par intervals such
that we obtain (blocks.per.par)n blocks. Within each block we simulate sim
data sets with � on a logarithmic scale � uniformly drawn parameter values
within each block. To ensure a better sampling of the edges, we simulate in
addition data sets for all corner points of each parameter block.

For these data sets we then �t the GLMs and estimate the parameter com-
bination with the maximal score3. Each of the blocks provides a single best
parameter combination.

In R, the initial search is performed with the command

jaatha <- Jaatha.initialSearch(jaatha, sim = 100, blocks.per.par = 2)

*** Searching starting positions ***

Creating initial blocks ...

*** Block 1 : 0.1-0.707 x 0.01-0.224 x 1-4.472

Best parameters 0.192 0.224 4.472 with estimated log-likelihood -1847

3In this phase, Jaatha uses a score instead of the likelihood for computational reasons. The

likelihood is proportional to exp(score). The higher the score, the higher the likelihood.

5

##

*** Block 2 : 0.1-0.707 x 0.01-0.224 x 4.472-20

Best parameters 0.168 0.224 14.37 with estimated log-likelihood -223.3

##

*** Block 3 : 0.1-0.707 x 0.224-5 x 1-4.472

Best parameters 0.707 0.485 4.472 with estimated log-likelihood -1226

##

*** Block 4 : 0.1-0.707 x 0.224-5 x 4.472-20

Best parameters 0.707 1.039 11.04 with estimated log-likelihood -112.8

##

*** Block 5 : 0.707-5 x 0.01-0.224 x 1-4.472

Best parameters 1.768 0.224 4.472 with estimated log-likelihood -1501

##

*** Block 6 : 0.707-5 x 0.01-0.224 x 4.472-20

Best parameters 0.707 0.224 9.919 with estimated log-likelihood -770.5

##

*** Block 7 : 0.707-5 x 0.224-5 x 1-4.472

Best parameters 5 0.776 4.472 with estimated log-likelihood -754.2

##

*** Block 8 : 0.707-5 x 0.224-5 x 4.472-20

Best parameters 1.534 0.937 10.26 with estimated log-likelihood -100.5

##

log.likelihood tau M theta

[1,] -100.5 1.534 0.937 10.264

[2,] -112.8 0.707 1.039 11.036

[3,] -223.3 0.168 0.224 14.366

[4,] -754.2 5.000 0.776 4.472

[5,] -770.5 0.707 0.224 9.919

[6,] -1226.3 0.707 0.485 4.472

[7,] -1500.8 1.768 0.224 4.472

[8,] -1846.9 0.192 0.224 4.472

To visualise the estimates for good stating positions sorted by score, type:

Jaatha.getStartingPoints(jaatha)

log.likelihood tau M theta

[1,] -100.5 1.534 0.937 10.264

[2,] -112.8 0.707 1.039 11.036

[3,] -223.3 0.168 0.224 14.366

[4,] -754.2 5.000 0.776 4.472

[5,] -770.5 0.707 0.224 9.919

[6,] -1226.3 0.707 0.485 4.472

[7,] -1500.8 1.768 0.224 4.472

[8,] -1846.9 0.192 0.224 4.472

Here, there is a big reduction in the likelihoods after the �rst three blocks.
This is suggesting that we use the �rst three blocks as starting positions for the
re�ned search. For now, we will just use the �rst point.

6

5.2 The Re�ned Search

Now we can conduct the more thorough re�ned search described above to im-
prove the likelihood approximations.

jaatha <- Jaatha.refinedSearch(jaatha, best.start.pos = 1,

sim = 50)

*** Search with starting Point in Block 1 of 1 ****

Step No 1

Best parameters 1.534 0.937 10.26 with estimated log-likelihood -118.3

##

Step No 2

Best parameters 1.391 0.948 9.523 with estimated log-likelihood -93.12

##

Step No 3

Best parameters 1.261 0.914 9.682 with estimated log-likelihood -90.42

##

Step No 4

Best parameters 1.144 0.964 9.809 with estimated log-likelihood -87.55

##

Step No 5

Best parameters 1.11 0.942 9.984 with estimated log-likelihood -85.14

##

Step No 6

Best parameters 1.085 0.981 10.01 with estimated log-likelihood -84.95

##

Step No 7

Best parameters 0.994 0.922 10.17 with estimated log-likelihood -86.34

##

Step No 8

Best parameters 0.901 0.968 10.32 with estimated log-likelihood -87.4

##

Step No 9

Best parameters 0.994 0.983 10.21 with estimated log-likelihood -87.13

##

Step No 10

Best parameters 1.01 0.965 10.06 with estimated log-likelihood -89.99

##

7

Step No 11

Best parameters 1.101 0.982 9.937 with estimated log-likelihood -87.48

##

Step No 12

Best parameters 1.048 0.968 10.01 with estimated log-likelihood -87.16

##

Step No 13

Best parameters 0.951 0.965 10.21 with estimated log-likelihood -88.65

##

Step No 14

Best parameters 0.928 0.957 10.19 with estimated log-likelihood -86.97

##

Step No 15

Best parameters 0.842 1.004 10.7 with estimated log-likelihood -90.94

##

*** Finished search ***

Seems we can not improve the likelihood anymore.

Calculating log-composite-likelihoods for best estimates:

* Parameter combination 1 of 10

* Parameter combination 2 of 10

* Parameter combination 3 of 10

* Parameter combination 4 of 10

* Parameter combination 5 of 10

* Parameter combination 6 of 10

* Parameter combination 7 of 10

* Parameter combination 8 of 10

* Parameter combination 9 of 10

* Parameter combination 10 of 10

##

##

Best log-composite-likelihood values are:

log.cl block tau M theta

9 -84.36 1 0.9281 0.9568 10.188

1 -85.51 1 1.0482 0.9678 10.008

8 -86.04 1 0.9941 0.9826 10.215

10 -86.37 1 1.1013 0.9824 9.937

3 -86.62 1 1.1439 0.9636 9.809

Here we use just one starting position for the sake of simplicity (e.g. best.start.pos
is set to one). In a real analysis, it is recommended to start independent search
from multiple starting positions (use a value greater than one), to avoid getting
stuck in local maxima.

During the search, we build a block with half.block.size in each direction
(on a logarithmic scale) at each step, and perform simulations for sim random
parameter combinations within this block (plus one for very corner). We use this
information to estimate the composite maximum likelihood parameters within

8

this block and take this value as new starting position for the next step.
The algorithm stops when the score has not changed more than epsilon for

�ve consecutive steps or step max.steps is reached. To avoid getting stuck in
local maxima, the weight option decreases the weight of simulations of previous
blocks.

Finally the log composite likelihoods for the best ten parameter combinations
are approximated using sim.final simulations. These are values printed at the
end of the search. This matrix can also be accessed via

likelihoods <- Jaatha.getLikelihoods(jaatha)

print(likelihoods[1:3,])

log.cl block tau M theta

9 -84.36 1 0.9281 0.9568 10.19

1 -85.51 1 1.0482 0.9678 10.01

8 -86.04 1 0.9941 0.9826 10.22

6 Parallelization

On Linux and OS X, Jaatha can distribute the simulations on multiple CPU
cores. To use this feature, set the cores option during initialization. The
value of the option speci�es the number of cores you want to use. Jaatha will
distribute its simulation evenly this cores. Since version 2.2 the number of cores
no longer a�ects Jaatha's seeding system, e.g. you will get the same results for
the same seed no matter how many cores you use.

There is known problem with our parallelization approach on OS X. If you
get errors like

The process has forked and you cannot use this CoreFoundation

functionality safely. You must exec().

use the plain command line version of R instead of the GUI.

7 Finite sites models

As described in Mathew et al. [2013], you can use �nite sites mutation mod-
els in Jaatha. However, this currently only works on Linux and OS X and
requires that Seq-Gen [Rambaut and Grassly, 1997] is installed on your sys-
tem. On Debian GNU/Linux and it's derivates (Ubuntu, Mint) you can install
it running apt-get install seq-gen as root. Otherwise download the cur-
rent version from http://tree.bio.ed.ac.uk/software/seqgen and compile
it according to the instruction within the package. Jaatha will search for the
Seq-Gen executable using your PATH variable. If you get an error that it
is not able to �nd it, you can specify the path to the executable using the
Jaatha.setSeqgenExecutable function.

To create a �nite sites model, you must specify a mutation model using
the dm.setMutationModel function and add an outgroup to your model using
dm.addOutgroup. Optionally, you can than add a mutation rate heterogeneity
to your model using dm.addMutationRateHeterogenity.

9

http://tree.bio.ed.ac.uk/software/seqgen

8 Con�dence Intervals

From Version 2.2 on, Jaatha also o�ers the function Jaatha.confidenceIntervals
to calculate parametric bootstrap con�dence intervals for the estimated param-
eters. Bootstrapping requires to rerun the complete analysis multiple times, in
the case of parametric bootstrapping on simulated data. This means that in
order to get con�dence intervals, you need to execute about 50 to 100 Jaatha
runs, which can be quite time consuming. Therefore, we recommend doing this
only on a Linux/Mac multicore system (the more cores the better), where the
runs can be executed at least partially in parallel. Set the cores option to the
number of cores you want to use (the individual Jaatha runs will always run on
the single core). We usually use up to 32 cores on powerful computation servers
for this. The con�dence intervals are bias-correct and accelerated (BCa), as
described in Chapter 14.3 of Efron and Tibshirani [1994].

9 More on Demographic Models

The demographic model system can also deal with population size changes.
There are two functions that add a change in the size of a population to the
model, dm.addSizeChange and dm.addGrowth. 'SizeChanges' are instantaneous
changes in the population size, while 'Growth' refers to an exponential increase
or decrease in population size over time. Please keep in mind that models are
always speci�ed looking backwards in time. Hence a size change a�ects the
time from the size changes time point on further backwards into the past. The
parametrisation of a model including both growth and time changes can be quite
challenging. As an example, here is the code for model S1.1 in Mathew et al.
[2013]:

nLoci <- 100

rho <- 5

dm <- dm.createDemographicModel(c(25, 25), nLoci, 1000)

dm <- dm.addMutation(dm, 5, 20, new.par.name = "theta")

dm <- dm.addSpeciationEvent(dm, 0.017, 20, new.time.point.name = "tau")

dm <- dm.addSymmetricMigration(dm, 0.005, 5, new.par.name = "m")

Everything but a fixed recombination rate does

not make sense

dm <- dm.addRecombination(dm, fixed = rho)

'SizeChange's are instanious sizes changes (ms'

-n, -N, -en and -eN)

dm <- dm.addSizeChange(dm, 0.05, 10, population = 2,

at.time = "0", new.par.name = "q")

Parameters s1 + s2 have to be created separately,

because they are no direct parameters of any

command

dm <- dm.addParameter(dm, par.name = "s1", 0.05, 10)

dm <- dm.addParameter(dm, par.name = "s2", 0.05, 10)

10

dm <- dm.addSizeChange(dm, par.new = FALSE, parameter = "s1+s2",

population = 1, at.time = "tau")

Growth is an exponential population expansion

over time (e.g. ms' -g, -G, -eg and -eG)

dm <- dm.addGrowth(dm, par.new = FALSE, parameter = "log(1/s1)/tau",

population = 1)

dm <- dm.addGrowth(dm, par.new = FALSE, parameter = "log(q/s2)/tau",

population = 2)

Forwards in time, this model consists of an ancestral population of relative size
s1+ s2, which splits into two population at time τ . These population have size
s1 and s2, and grow to their present relative sizes 1 and q.

References

Bradley Efron and Robert Tibshirani. An introduction to the bootstrap. Chap-
man & Hall, New York, 1994. ISBN 0412042312 9780412042317.

Richard R. Hudson. Generating samples under a wright-�sher neutral model
of genetic variation. Bioinformatics, 18(2):337 �338, February 2002. doi:
10.1093/bioinformatics/18.2.337.

Lisha A. Mathew, Paul R. Staab, Laura E. Rose, and Dirk Metzler. Why
to account for �nite sites in population genetic studies and how to do this
with jaatha 2.0. Ecology and Evolution, 2013. doi: 10.1002/ece3.722. URL
http://onlinelibrary.wiley.com/doi/10.1002/ece3.722/abstract.

Lisha Naduvilezhath, Laura E Rose, and Dirk Metzler. Jaatha: a fast composite
likelihood approach to estimate demographic parameters. Molecular Ecology,
20(13):2709�2723, July 2011. doi: 10.1111/j.1365-294X.2011.05131.x.

Andrew Rambaut and Nicholas C Grassly. Seq-gen: An application for
the monte carlo simulation of DNA sequence evolution along phylogenetic
trees. Comput Appl Biosci, 13(3):235�238, January 1997. doi: 10.1093/
bioinformatics/13.3.235. URL http://bioinformatics.oxfordjournals.

org/content/13/3/235.

11

http://onlinelibrary.wiley.com/doi/10.1002/ece3.722/abstract
http://bioinformatics.oxfordjournals.org/content/13/3/235
http://bioinformatics.oxfordjournals.org/content/13/3/235

	Introduction
	A demographic model
	Theoretical Background
	Importing Your Data
	Running Jaatha
	The Initial Search
	The Refined Search

	Parallelization
	Finite sites models
	Confidence Intervals
	More on Demographic Models

