
The Jaatha HowTo

Lisha Mathew, Paul R. Staab and Dirk Metzler

Version 2.0.1

1 Introduction

Jaatha is a fast composite likelihood method to estimate model parameters of
the evolutionary history of (at the moment) two related species or populations.
To do so, it uses SNP data from multiple individuals from both species and –
optionally but highly recommended – one or more outgroup sequences. This
HowTo describes the method and gives an example of using its implementation
as an R package jaatha.

The package itself can be obtained from CRAN using

> install.packages('jaatha')

or downloaded from http://evol.bio.lmu.de/_statgen/software/jaatha.
Jaatha runs on all operating systems supported by R – namely Windows, OS X
(Mac) and Linux – with the following restriction: On Windows the paralleliza-
tion and finite sites simulation using seq-gen is currently not working.

A more detailed description of the algorithm can be found in Mathew et˜al.
[2012]. Further information about the R functions used in this document can be
obtained by calling help() with the functions name as argument.

Please cite the above paper when using Jaatha in a publication.

2 A demographic model

Before we can apply Jaatha to estimate parameters, we first need to create a
model of the evolutionary history of the two species. Jaatha cannot account for
the effects of selection, hence we assume a neutral evolution. It can estimate
the effects that either “demographic” events – like an expansion of the size of
one population or migration between the two populations – or molecular events
– like mutation or recombination – have on the genome of the populations.
To emphasize that we can not include selection, we refer to a scenario of the
evolution of the two species under such events as a “demographic model”.

For now, assume that we know that our two species are closely related; hence
they must have separated at a certain time in the past. There may still be gene
flow ongoing between them to which we will refer to as migration from one
population into the other. Hence, we could propose the simple demographic
model described in Figure˜1.

To specify that model in R, we first need to load jaatha.

> library(jaatha)

1

http://evol.bio.lmu.de/_statgen/software/jaatha


Figure 1: A simple demographic model: The ancestral population splits into
two populations τ time units ago, and afterwards individuals migrated from one
population to the other with a migration rate M . Mutations are occurring with
rate θ and recombination with a known rate ρ.

We can now create an ’empty’ demographic model dm using the
dm.createDemographicModel() function:

> dm <- dm.createDemographicModel(sample.sizes=c(12,14),

+ loci.num=50,

+ seq.length=1000)

The parameter sample.sizes here corresponds to the number of individuals
we have sampled from the first population and second population respectively.
The second argument loci.num states that we are using data from 70 loci while
seq.length gives the (average) length of each loci1.

We can now successively add the other assumptions of our model:

> dm <- dm.addSpeciationEvent(dm, .1, 5, new.time.point.name='tau')

> dm <- dm.addSymmetricMigration(dm, .01, 5, new.par.name='M')

> dm <- dm.addMutation(dm, 1, 20, new.par.name='theta')

> dm <- dm.addRecombination(dm, fixed=20)

The first parameter is the demographic model to which we want to add an
assumption/feature. The two following numbers represent the range for the
corresponding parameter. The lower border has to be strictly greater the zero,
as we are using a logarithmic transformation of the parameter space. The pa-
rameters are scaled as in the popular simulation program ms [Hudson, 2002]
that we use for simulations:

� The parameter for the speciation event is the split time τ , which states how
many generations ago the split of the population has occurred. As usual in
population genetics, it is measured in units of 4N1 generations ago, where
N1 is the (diploid) effective population size of the first population.

1This is only used when a finite sites model is assumed or if intra-locus recombination is
included.

2



� The parameter for the (symmetric) migration is the scaled migration rate
M , which is given by M = 4N1m, where m is the fraction of individu-
als of each population which are replaced by immigrants from the other
population each generation.

� The mutation parameter θ is 4N1 times the neutral mutation rate per
locus.

� Finally, the recombination parameter ρ is 4N1 times the probability of
recombination between the ends of the locus per generation.

Keep in mind that a ‘good’ model – which is one that approximates the real
demographic history but is also as simple as possible – is crucial for obtaining
meaningful estimates in the end. Jaatha will always try to find the parameters
that make the model fit best to your data. If the model does not fit to the data
at all, Jaatha will still return estimates, but they will not be meaningful.

3 Theoretical Background

It is important to understand the key concepts behind Jaatha before we can
apply it. Like many estimation methods that rely on simulations, Jaatha tries
to find the parameters that best fits 2 to your data by simulating artificial data
for many different parameter combinations. It uses a learning algorithm to
determine how the different parameter values influence the simulated data and
uses that knowledge to find the best parameter combination for your data.

You can imagine Jaatha as a method that runs through the parameter space
– the space of all possible parameter combinations, in our example a cube with
borders from 0.1 to 5, 0.01 to 5 and 1 to 20 – simulating in a small part of the
parameter space around the current position (we call this area a block). It then
searches the new maximum of the current blocks and moves to it, builds a new
block around it and so on. The search finally stops when the likelihood cannot
be improved anymore or a maximal number of steps has been reached.

To compare the simulated data to the real one, Jaatha uses summary statis-
tics of the data. As default, it calculates the Joint Site Frequency Spectrum
(JSFS) of the data and further summarizes it by evaluating different sums over
the JSFS. Please refer to Naduvilezhath et˜al. [2011] for a detailed description.

4 Importing Your Data

To run Jaatha, you need to calculate the JSFS of your data. To do so, you can
use the function calculateJsfs(). This function accepts data imported with
the read.dna() function from the package ape. It assumes that you provide
a joined, aligned data set with multiple samples from two populations and –
optional but highly recommended – one or more outgroup sequences. Addition-
ally, you must provide the numbers of the sequences in the dataset that belong
to population one, population two, and the outgroup, respectively.

Please consult the documentation of ape in order to get more information
about read.dna(). For example, the import of the data could look like this:

2for Jaatha, the ’best’ parameter combination is the one with the highest composite like-
lihood

3



> library(ape)

> # The path to the data

> sample.file <- system.file('example_fasta_files/sample.fasta',

+ package='jaatha')

> # Reading the data

> sample.data <- read.dna(sample.file, format='fasta',

+ as.character=TRUE)

> # Calculating the JSFS

> sample.jsfs <- calculateJsfs(sample.data,

+ pop1.rows=3:7,

+ pop2.rows=8:12,

+ outgroup.row=1:2)

> sample.jsfs

[,1] [,2] [,3] [,4] [,5] [,6]

[1,] 1 0 0 0 0 0

[2,] 1 1 1 0 0 0

[3,] 2 0 1 0 0 0

[4,] 1 1 0 2 0 1

[5,] 1 0 0 0 3 0

[6,] 1 0 0 0 0 0

For the purpose of this HowTo, we will use a simulated JSFS, for which we know
the real parameters:

> # Real parameters: M = 1, tau = 1 and theta = 10

> real.pars <- c(1,1,10)

> # Simulate a JSFS with this parameters

> jsfs <- dm.simSumStats(dm, real.pars)

> # Print the upper left part of the JSFS

> jsfs[1:10, 1:10]

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]

[1,] 0 530 186 146 101 91 63 28 23 24

[2,] 558 55 25 21 14 21 18 12 5 4

[3,] 245 32 14 21 9 13 14 6 11 14

[4,] 111 35 17 9 13 7 13 2 13 8

[5,] 101 29 16 6 8 9 8 5 3 4

[6,] 68 15 18 6 16 3 5 10 2 2

[7,] 39 8 8 4 5 8 10 3 3 2

[8,] 18 7 4 4 3 5 1 2 3 0

[9,] 25 10 5 3 5 4 2 4 3 3

[10,] 14 13 5 8 0 3 3 2 5 1

5 Running Jaatha

Jaatha is divided into two parts. First we find good starting positions by simu-
lating very coarsely across the entire parameter space. We call this part initial
search. Afterwards a more thorough refined search is performed starting from

4



the best positions of the first step. Before starting the search, we need to set
some options like our demographic model, the summary statistics of the real
data, and a seed to ensure repoducibilty:

> jaatha <- Jaatha.initialize(dm, jsfs=jsfs, seed=12345)

For more options refer to ?Jaatha.initialize or the Jaatha manual.

5.1 The Initial Search

For the initial search, we divide the parameter space into equally-sized blocks
by dividing each of the n parameters ranges into blocks.per.par intervals such
that we obtain (blocks.per.par)n blocks. Within each block we simulate sim

data sets with – on a logarithmic scale – uniformly drawn parameter values
within each block. To ensure a better sampling of the edges, we simulate in
addition data sets for all corner points of each parameter block.

For these data sets we then fit the GLMs and estimate the parameter com-
bination with the maximal score3. Each of the blocks provides a single best
parameter combination.

In R, the initial search is performed with the command

> jaatha <- Jaatha.initialSearch(jaatha,

+ sim=100,

+ blocks.per.par=3)

externalTheta set to TRUE for initial search.

*** Starting position is being determined ***

Creating 9 initial blocks ...

*** Block 1 (lowerB: 0.1 0.01 upperB: 0.368 0.079 )

Best parameters: 0.191 0.079 1 | Score: 16658.14

*** Block 2 (lowerB: 0.1 0.079 upperB: 0.368 0.63 )

Best parameters: 0.238 0.36 1 | Score: 16702

*** Block 3 (lowerB: 0.1 0.63 upperB: 0.368 5 )

Best parameters: 0.292 0.63 1 | Score: 16732.24

*** Block 4 (lowerB: 0.368 0.01 upperB: 1.357 0.079 )

Best parameters: 0.368 0.079 1 | Score: 16534.73

*** Block 5 (lowerB: 0.368 0.079 upperB: 1.357 0.63 )

Best parameters: 0.43 0.63 1 | Score: 16787.08

*** Block 6 (lowerB: 0.368 0.63 upperB: 1.357 5 )

Best parameters: 0.759 0.835 1 | Score: 16789.69

*** Block 7 (lowerB: 1.357 0.01 upperB: 5 0.079 )

Best parameters: 1.357 0.079 1 | Score: 15018.95

3In this phase, Jaatha uses a score instead of the likelihood for computational reasons. The
likelihood is proportional to exp(score). The higher the score, the higher the likelihood.

5



*** Block 8 (lowerB: 1.357 0.079 upperB: 5 0.63 )

Best parameters: 1.501 0.63 1 | Score: 16712.76

*** Block 9 (lowerB: 1.357 0.63 upperB: 5 5 )

Best parameters: 1.357 0.826 1 | Score: 16805.35

score tau M theta

[1,] 16805.35 1.357 0.826 20

[2,] 16789.69 0.759 0.835 20

[3,] 16787.08 0.430 0.630 20

[4,] 16732.24 0.292 0.630 20

[5,] 16712.76 1.501 0.630 20

[6,] 16702.00 0.238 0.360 20

[7,] 16658.14 0.191 0.079 20

[8,] 16534.73 0.368 0.079 20

[9,] 15018.95 1.357 0.079 20

To visualise the estimates for good stating positions sorted by score, type:

> Jaatha.getStartingPoints(jaatha)

score tau M theta

[1,] 16805.35 1.357 0.826 20

[2,] 16789.69 0.759 0.835 20

[3,] 16787.08 0.430 0.630 20

[4,] 16732.24 0.292 0.630 20

[5,] 16712.76 1.501 0.630 20

[6,] 16702.00 0.238 0.360 20

[7,] 16658.14 0.191 0.079 20

[8,] 16534.73 0.368 0.079 20

[9,] 15018.95 1.357 0.079 20

Here, there is a big reduction in the scores after the first seven blocks, and a
smaller one after the first two. This is suggesting that we either use the first two
or the first seven blocks as starting positions for the refined search, depending
on how much time we want to spend. For now, we will just use the first two
points.

5.2 The Refined Search

Now we can conduct the more thorough refined search described above to im-
prove the likelihood approximations.

> jaatha <- Jaatha.refinedSearch(jaatha, best.start.pos=2, sim=100)

*** Search with starting Point in Block 1 of 2 ****

-----------------

Step No 1

Number of blocks kept: 0 / Number of blocks deleted: 0

Best parameters: 1.116 0.899 14.823 | Score: 16437.54

6



-----------------

Step No 2

Number of blocks kept: 1 / Number of blocks deleted: 0

Best parameters: 0.918 0.898 12.761 | Score: 16701.71

-----------------

Step No 3

Number of blocks kept: 1 / Number of blocks deleted: 1

Best parameters: 0.797 0.858 10.986 | Score: 16798.07

-----------------

Step No 4

Number of blocks kept: 1 / Number of blocks deleted: 1

Best parameters: 0.97 0.847 10.088 | Score: 16808.11

-----------------

Step No 5

Number of blocks kept: 1 / Number of blocks deleted: 1

Best parameters: 1.179 0.838 9.599 | Score: 16815.65

-----------------

Step No 6

Number of blocks kept: 1 / Number of blocks deleted: 1

Best parameters: 1.282 0.836 9.454 | Score: 16816.43

-----------------

Step No 7

Number of blocks kept: 1 / Number of blocks deleted: 1

Best parameters: 1.247 0.853 9.521 | Score: 16815.16

-----------------

Step No 8

Number of blocks kept: 2 / Number of blocks deleted: 0

Best parameters: 1.212 0.862 9.568 | Score: 16815.54

No sigificant score changes in the last 1 Step(s)

-----------------

Step No 9

Number of blocks kept: 3 / Number of blocks deleted: 0

Best parameters: 1.215 0.86 9.537 | Score: 16815.57

No sigificant score changes in the last 2 Step(s)

-----------------

Step No 10

Number of blocks kept: 4 / Number of blocks deleted: 0

Best parameters: 1.236 0.853 9.51 | Score: 16815.45

No sigificant score changes in the last 3 Step(s)

-----------------

7



Step No 11

Number of blocks kept: 5 / Number of blocks deleted: 0

Best parameters: 1.222 0.853 9.539 | Score: 16815.35

No sigificant score changes in the last 4 Step(s)

-----------------

Step No 12

Number of blocks kept: 6 / Number of blocks deleted: 0

Best parameters: 1.202 0.854 9.573 | Score: 16815.43

No sigificant score changes in the last 5 Step(s)

*** Finished search ***

Score has not change much in the last 5 steps.

Seems we have converged.

Calulating log-composite-likelihoods for best estimates:

* Parameter combination 1 of 10

* Parameter combination 2 of 10

* Parameter combination 3 of 10

* Parameter combination 4 of 10

* Parameter combination 5 of 10

* Parameter combination 6 of 10

* Parameter combination 7 of 10

* Parameter combination 8 of 10

* Parameter combination 9 of 10

* Parameter combination 10 of 10

*** Search with starting Point in Block 2 of 2 ****

-----------------

Step No 1

Number of blocks kept: 0 / Number of blocks deleted: 0

Best parameters: 0.624 0.842 14.823 | Score: 16618.06

-----------------

Step No 2

Number of blocks kept: 1 / Number of blocks deleted: 0

Best parameters: 0.513 0.823 12.761 | Score: 16758.76

-----------------

Step No 3

Number of blocks kept: 1 / Number of blocks deleted: 1

Best parameters: 0.624 0.815 10.986 | Score: 16792.55

-----------------

Step No 4

Number of blocks kept: 1 / Number of blocks deleted: 1

Best parameters: 0.759 0.844 10.491 | Score: 16802.23

-----------------

Step No 5

8



Number of blocks kept: 1 / Number of blocks deleted: 1

Best parameters: 0.923 0.837 10.124 | Score: 16807.31

-----------------

Step No 6

Number of blocks kept: 1 / Number of blocks deleted: 1

Best parameters: 1.122 0.854 9.666 | Score: 16814.14

-----------------

Step No 7

Number of blocks kept: 1 / Number of blocks deleted: 1

Best parameters: 1.227 0.852 9.53 | Score: 16815.27

-----------------

Step No 8

Number of blocks kept: 1 / Number of blocks deleted: 1

Best parameters: 1.211 0.847 9.616 | Score: 16814.37

No sigificant score changes in the last 1 Step(s)

-----------------

Step No 9

Number of blocks kept: 2 / Number of blocks deleted: 0

Best parameters: 1.196 0.844 9.619 | Score: 16815.33

No sigificant score changes in the last 2 Step(s)

-----------------

Step No 10

Number of blocks kept: 3 / Number of blocks deleted: 0

Best parameters: 1.242 0.843 9.528 | Score: 16816.04

No sigificant score changes in the last 3 Step(s)

-----------------

Step No 11

Number of blocks kept: 4 / Number of blocks deleted: 0

Best parameters: 1.246 0.838 9.51 | Score: 16815.3

No sigificant score changes in the last 4 Step(s)

-----------------

Step No 12

Number of blocks kept: 5 / Number of blocks deleted: 0

Best parameters: 1.236 0.837 9.53 | Score: 16815.43

No sigificant score changes in the last 5 Step(s)

*** Finished search ***

Score has not change much in the last 5 steps.

Seems we have converged.

Calulating log-composite-likelihoods for best estimates:

* Parameter combination 1 of 10

* Parameter combination 2 of 10

9



* Parameter combination 3 of 10

* Parameter combination 4 of 10

* Parameter combination 5 of 10

* Parameter combination 6 of 10

* Parameter combination 7 of 10

* Parameter combination 8 of 10

* Parameter combination 9 of 10

* Parameter combination 10 of 10

Best log-composite-likelihood values are:

log.cl block tau M theta

2 -79.65989 2 1.246475 0.8383166 9.509682

7 -79.73547 2 1.227155 0.8516747 9.530497

8 -79.79661 2 1.211300 0.8471184 9.616227

3 -79.80292 1 1.202239 0.8537882 9.572698

3 -80.07669 2 1.235692 0.8367034 9.530073

Hence we perform two independent searches, starting in the best.start.pos

best starting positions we choose before and according to the general options
we choose during initialization, which are stored in the jaatha object. In each
step, we build a block with half.block.size in each direction (on a logarithmic
scale) and perform simulations for sim random parameter combinations within
this block (plus one for very corner). We use this information to estimate the
composite maximum likelihood parameters within this block and take this value
as new starting position for the next step.

The algorithm stops when the score has not changed more than epsilon for
five consecutive steps or step max.steps is reached. To avoid getting stuck in
local maxima, the weight option decreases the weight of simulations of previous
blocks.

Finally the log composite likelihoods for the best ten parameter combinations
are approximated using sim.final simulations. These are values printed at the
end of the search. This matrix can also be accessed via

> likelihoods <- Jaatha.getLikelihoods(jaatha)

> print(likelihoods[1:3, ])

log.cl block tau M theta

2 -79.65989 2 1.246475 0.8383166 9.509682

7 -79.73547 2 1.227155 0.8516747 9.530497

8 -79.79661 2 1.211300 0.8471184 9.616227

6 Parallelization

On Linux and OS X, Jaatha can distribute the simulations on multiple CPU
cores. To use this feature, set the cores option during initialization. The value
of the option specifies the number of cores you want to use. As default, Jaatha
will execute ’packages’ of 10 simulation on a core in a row to reduce the overhead
created by inter-process communication. This is fine for demographic models
that can be quickly simulated. However, if you have simulations that takes

10



multiple seconds and/or many cores available, you may want smaller packages.
This can be archived by setting sim.package.size = 1.

The use of the cores option does affect the seeding system. A run without
cores will give different results as the identical run with the option set at a
value greater than one, even when using the same seed. However, if you use
cores, the actual number of cores you use does not change the results.

7 Finite sites models

As described in Mathew et˜al. [2012], you can use finite sites mutation mod-
els in Jaatha. However, this currently only works on Linux and OS X and
requires that seq-gen [Rambaut and Grassly, 1997] is installed on your sys-
tem. On Debian/Ubuntu can install it running apt-get install seq-gen as
root. Otherwise download the current version from http://tree.bio.ed.ac.

uk/software/seqgen and compile it according to the instruction within the
package. Jaatha will search for the seq-gen executable using your PATH vari-
able. If you get an error that it is not able to find it, you can specify the path
to the executable using the Jaatha.setSeqgenExecutable function.

To create a finite sites model, you must specify a mutation model using
the dm.setMutationModel function and add an outgroup to your model using
dm.addOutgroup. Optionally, you can than add a mutation rate heterogeneity
to your model using dm.addMutationRateHeterogenity.

References

Richard˜R. Hudson. Generating samples under a Wright–Fisher neutral model
of genetic variation. Bioinformatics, 18(2):337 –338, February 2002. doi:
10.1093/bioinformatics/18.2.337.

Lisha Mathew, Paul˜R. Staab, Laura˜E Rose, and Dirk Metzler. A composite
likelihood approach to distinguish gene flow from violations of the infinite-sites
model. Submitted., December 2012.

Lisha Naduvilezhath, Laura˜E Rose, and Dirk Metzler. Jaatha: a fast composite
likelihood approach to estimate demographic parameters. Molecular Ecology,
20(13):2709–2723, July 2011. doi: 10.1111/j.1365-294X.2011.05131.x.

Andrew Rambaut and Nicholas˜C Grassly. Seq-gen: An application for the
monte carlo simulation of DNA sequence evolution along phylogenetic trees.
Computer applications in the biosciences : CABIOS, 13(3):235–238, June
1997. ISSN 1367-4803, 1460-2059. doi: 10.1093/bioinformatics/13.3.235. URL
http://bioinformatics.oxfordjournals.org/content/13/3/235.

11

http://tree.bio.ed.ac.uk/software/seqgen
http://tree.bio.ed.ac.uk/software/seqgen
http://bioinformatics.oxfordjournals.org/content/13/3/235

	Introduction
	A demographic model
	Theoretical Background
	Importing Your Data
	Running Jaatha
	The Initial Search
	The Refined Search

	Parallelization
	Finite sites models

