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Abstract

The R package isocir provides a set of functions for making isotonic inference for
circular data. In this setting, the standard statistical methods cannot be used to make
inferences due to the geometry of the circle and restrictions, estimators and hypotheses
tests have to be properly defined to cope with the peculiarities of circular data. Rueda
et al. (2009) considers the estimation problem and solves it for the appropriate circular
orderings among which the isotropic order is the most suitable for applications. Fernandez
et al. (2011) provides a methodology for dealing with isotropic testing problems.

In this paper we generalize the estimation and testing results obtained in those papers
and implement the corresponding procedures in R language. Since one of the main fields
where circular data are relevant is cell biology we illustrate the package with cell cycle
data examples. However, we want to stress its usefulness in any context where circular
data may appear.
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1. Introduction

In this paper we describe the use of isocir package within the R statistical environment, R
Development Core Team (2004), which is available from the Comprehensive R archive Network
at http://CRAN.R-project.org. The package isocir provides functions that carry out the
methodology for the analysis of circular data under restrictions.

Circular data arise in a wide range of contexts, such as in geography, cell biology, circadian bi-
ology, endocrinology, ornithology, etc (see Zar (1999), Mardia et al. (2008) or Berens (2009)).
Unlike the Euclidean space, the points are wrapped around on a unit circle. That is, starting
at a point “P”, by traveling around the circumference of the circle one would return to the
point “P”. As a consequence a circle can never be linearized and hence methods developed for
Euclidean space data are not applicable to circular data. The starting point “P” is said to be
the pole of the circle and we use the standard convention of traveling in the counter-clockwise
direction. Thus the angles are measured between [0, 2π]. General methodology for circular
data can be found in the book Mardia and Jupp (2000), among others.

http://CRAN.R-project.org
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It is frequent that in some statistical applications, additional information is available to the
researchers. In the case of Euclidean space data, the simple order restriction on population
parameters is an important inequality constraint that is widely noted in practice (cf Ped-
dada et al. (2007)). According to this constraint the experimenter knows a priori the relative
order among all population parameters under consideration. Estimation of the population
parameters under the simple order constraint is known as the isotonic regression. A popu-
lar algorithm for solving this problem is the pool-adjacent violators algorithm (PAVA). See
Robertson et al. (1988) for details.

For circular parameter space, the standard notion of simple order needs to be modified to ac-
count for the fact that the parameters wrap around the circle. Furthermore, as a consequence
of this characteristic of a circle, the PAVA for Euclidean space data is not directly applicable
to circular data. Rueda et al. (2009) introduced an order restriction on a unit circle called
the isotropic order. They also extended the notion of isotonic regression estimator to circular
parameter space, known as the circular isotonic regression estimator (CIRE) and developed
an estimation procedure which is a generalization of PAVA. In Section 2 we describe the
isotropic order and CIRE in detail.

The initial motivation for developing constrained inference methods for circular data was the
analysis of cell-cycle gene expression data. Since the normal cell cycle is a well orchestrated
process consisting of four major phases, namely, G1, S, G2 and M, of distinct biological func-
tions, cell biologists have long been interested in determining the phase associated with each
cell cycle gene (cf Oliva et al. (2005), Rustici et al. (2004)). The current understanding is
that a cell cycle gene would attain its peak expression during the phase corresponding to
its biological function. For a given subset of cell cycle genes, a cell biologist may also be
interested in inferring whether the relative order of peak expression among these cell cycle
genes is conserved across multiple species. Until now there did not exist a formal statistical
methodology for answering such questions. Recently, using the estimators derived in Rueda
et al. (2009), Fernandez et al. (2011) developed a formal statistical theory and methodology
for testing the isotropic order among a subset of cell cycle genes. Using this methodology,
Fernandez et al. (2011) concluded that the isotropic order among a large subset of cell cycle
genes is conserved between two species of yeasts, namely, the budding yeast and the fission
yeast. They also inferred that fewer cell cycle genes were conserved between humans and
fission yeast. Results such as these provide important insights into evolutionary biology since
cell division is fundamental to growth and development of every organism.

Statistical methods developed in Rueda et al. (2009) and Fernandez et al. (2011) would have
wide range of applications beyond the analysis of cell cycle gene expression data. For example,
ornithologists may find these methods useful in their investigation of the migratory patterns
and directions of birds, Cochran et al. (2004). An endocrinologist may find these methods
useful when studying temporal patterns hormones in people treated for hormonal imbalances
or researchers investigating genes controlling circadian clock. Moreover, this methodology
is used in other scientific disciplines such as earth science (some feature of an earthquake),
meteorology (wind directions, Bowers et al. (2000)), physics (orbits of planets or direction
fluctuations in the atmosphere, van Doorn et al. (2000)), psychology (studies of mental maps
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or monitoring data, Kibiak and Jonas (2007)), image analysis (the orientation of ridges on
fingerprints or magnetic maps, Boles and Lohmann (2003)), medicine (the incidence of onsets
of a particular disease or investigating some disease indicator, Le et al. (2003)), neuroscience
(orientation selectivity, Maldonado et al. (1997)), political and social sciences (Haskey (1988)),
criminology (Brunsdon and Corcoran (2005)) and many more. Motivated by the wide range
of applications and the non-existance of a user friendly software, in Section 3 of this article
we introduce our R based user friendly software called isocir. In Section 4 we illustrate the
software by analyzing a cell cycle gene expression data. Concluding remarks are provided in
Section 5.

2. Circular models with parameters under restrictions

2.1. Description of the order restrictions

Let ϕik ∀i = 1, . . . , q, k = 1, . . . , ni, be angular observations from q populations with mean
directions φ1, . . . , φq. Let θ1, . . . , θq be the sample mean directions and r1, . . . , rq the sample
mean resultant lengths (check Mardia and Jupp (2000)).

As usually done, throughout this paper, angles are measured in the anti clockwise direction.
If the pole of the circle is at zero radians and pretend that the parameters are points on the
line then the usual notion of simple order would be:

CSO = {φ ∈ [0, 2π]q/0 ≤ φ1 ≤ φ2 ≤ . . . ≤ φq ≤ 2π} (1)

A problem with the above representation is that it does not acknowledge that the angle φq
is “followed by” φ1. There is a disconnect between the two parameters in the above repre-
sentation. In many practical applications, such as in cell biology (see Rueda et al. (2009),
and Fernandez et al. (2011)), such a disconnect is not meaningful. This is because, as far as
the biologist is concerned there is a relative order among all q parameters. Thus the usual
notion of simple order defined for parameters in the Euclidean space may not be appropriate
for circular parameters.

In view of this need, Rueda et al. (2009) introduced the following order restriction on a circle
which is called the isotropic order. Suppose φi, i = 1, 2, 3, are three angular parameters on a
unit circle. Then they are said to be in an isotropic order if φ1 is “followed” by φ2 which is
“followed” by φ3 which in turn us followed by φ1. We use the notation φ1 � φ2 � φ3 � φ1.
More generally, the following notation is used to describe the isotropic order among the q
angular parameters:

CIO = {φ ∈ [0, 2π]q/φ1 � φ2 � . . . � φq � φ1} (2)

Thus for all i = 1...q, φi is after φi−1 and before φi+1, φ0 ≡ φq and φq+1 ≡ φ1. The isotropic
order does not depend on the location of the pole and is rotation invariant.
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Let CISO = {0 ≤ φI ≤ φI+1 ≤ . . . ≤ φq ≤ φ1 ≤ . . . ≤ φI−1 ≤ 2π} be the simple order starting
at index I. Then the isotropic order cone is:

CIO =
⋃

1≤I≤q
CISO (3)

From a practical point of view it is also interesting to consider the following generalization
of the isotropic order. It allows taking into account possible partial order relations among
groups of parameters.

CGIO =

φ ∈ [0, 2π]q :


φ11
φ12

...
φ1l1

 �


φ21
φ22

...
φ2l2

 � . . . �


φL1
φL2

...
φLlL

 �


φ11
φ12

...
φ1l1


 , (4)

where L is the number of groups in the order, lj is the number of angular parameters in the

j level and q is the total number of parameters q =
∑L

j=1 lj .

In this case, we assume that each of the parameters in group j, {φj1, . . . , φjlj} follow the ones
in group j − 1 and are followed by the ones in group j + 1 but we do not assume any order
among the parameters inside each group. This generalized isotropic order plays an important
role in cell biology when a biologist is investigating a large number of cell cycle-genes. In such
situations, it may be difficult for a biologist to ascertain the exact order among all cell-cycle
genes under consideration.

Figure 1: Graphical example

However, the biologist may be able order groups of
genes based on their known biological functions. In
such situations the proposed generalized isotropic order
can be a natural constraint on the parameter space.

Figure 1 is a graphical example where data follow this
general isotropic order. Each group is a set of parame-
ters. In this example of the general isotropic order, there
are 13 parameters divided in four groups, L = 4. There
is a different number of elements in each group: l1 = 4;
l2 = 4; l3 = 2; l4 = 3, so q =

∑L
l lj = 13.

2.2. CIRE (Circular Isotonic Regression Estimator)

Solutions to a wide class of order restricted estimation problems in the Euclidean space can
be obtained using isotonic regression. The circular version of this procedure is called the
Circular Isotonic Regression Estimator (CIRE) and is described in Rueda et al. (2009). The
CIRE of φ, under the constraint φ ∈ C, is given by:

θ̃ = arg min
α∈C

SCE(α, θ), (5)
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where SCE is the sum of circular error, which is a circle analog of sum of squares error (SSE)
used for Euclidean data and is defined as follows:

SCE(θ, φ) =

q∑
i=1

ri(1− cos(θi − φi)) (6)

Although, on the face, the above minimization problem appears to be simple, it is a challenging
problem as demonstrated in Rueda et al. (2009)). In the case of simple order in Euclidean
space it is common to use the pool adjacent violators algorithm (PAVA) (cf Robertson et al.
(1988)) to derive the isotonic regression estimator which minimizes the SSE. However, in the
case of circle the PAVA cannot be used to derive CIRE. To apply PAVA it is essential that
the Cauchy mean value property is fulfilled (cf. Robertson and Wright (1980)). According
to this property, the mean value of two real numbers is strictly between the two numbers.
This is not true in the case of circle. For this reason, Rueda et al. (2009)) developed an
alternate computationally simple algorithm to derive CIRE. For more details regarding the
existence, uniqueness and other properties of CIRE we refer the reader to Rueda et al. (2009)).
The algorithm is implemented in R within the function CIREi in the package isocir which is
illustrated in Section 3.

2.3. Inferences in von Mises models

From the point of view of statistical inference, perhaps the most useful and popular distribu-
tion on the circle is the von Mises distribution. This distribution is analogous to the Normal
distribution on a real line.

Let θ1, . . . θq be sample mean directions of the q independent populations. From now on, we
use the notation θi ; VM(φi, κ), where φi is the mean direction of the population i and κ is
the common concentration parameter of the von Mises distributions. The probability density
function is given by:

f(φ, µ, k) =
1

2πI0(k)
eκ cos(φ−µ), (7)

for 0 ≤ φ ≤ 2π, with 0 ≤ µ ≤ 2π and κ ≥ 0. Where I0 denotes the modified Bessel function
of the first kind and order 0.

Under this probability model Rueda et al. (2009) show that CIRE is the Restricted Maximum
Likelihood Estimator (RMLE).

Recently, motivated by a problem in cell biology, Fernandez et al. (2011) tested the hypothe-
ses given below for the isotropic order cone (CIO). In the present paper, we extend those
procedures to the case of testing the general isotropic order cone (CGIO).

H0 : The parameters φi i = 1 . . . q follow a known (general) isotropic order
(i.e. φ ∈ C where C is the order cone).

H1 : H0 is not true (i.e. φ /∈ C).
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If κ is known, the likelihood ratio statistic for these hypotheses is:

T = 2κSCE(θ, θ̃), (8)

where θ̃ is the CIRE computed under the isotropic order set in H0.

Due to computational issues related to the derivation of the critical values of the likelihood
ratio test Fernandez et al. (2011) proposed the following asymptotic α level conditional test.

This test is a modification of the likelihood ratio test which benefits from increased statistical
power for interesting alternatives and is computationally very simple:

CT: H0 is rejected whenever T ≥ c(m), (9)

where m is the number of level sets for θ̃. As the asymptotic distribution of T, when κ is
known, is χ2

q−m, then c(m) is chosen so that

pr(χ2
q−m ≥ c(m)) =

α

1− prφ0(C)
, (10)

where prφ0(C) is the probability of the order cone (C) under the equality of the parameters,

so prφ0(CIO) = 1
(q−1)! if we test the isotropic order or prφ0(CGIO) = l1!···lL!

(q−1)! if we test the
general isotropic order. Note that as T = 0 under H0 and we are using a conditional test, the
level has to be adjusted using that probability.

If κ is unknown then it can be estimated if we have replicated data and the test statistic T
can be accordingly modified as:

T =
2κ̂SCE(θ, θ̃)

q
, (11)

whose asymptotic distribution under the null hypothesis is Fq−m,q−1. Thus c(m) is chosen so
that

pr(Fq−m,q−1 ≥ c(m)) =
α

1− prφ0(C)
, (12)

where, as in the previous case, prφ0(CIO) = 1
(q−1)! or prφ0(CGIO) = l1!···lL!

(q−1)! depending on the
null hypothesis.

These results are proved for the isotropic order (CIO) in the supplementary material of Fer-
nandez et al. (2011) for moderate and large values of q. Similar proofs can be obtained in the
case of testing the general isotropic order (CGIO).

Moreover, notice that the p-value of this test may serve as a useful goodness of fit criterion
when comparing two or more plausible isotropic orders among a set of parameters. Smaller
p-values, suggest that the estimations are closer to the presumed isotropic order. Thus the
statistical methodology developed in Fernandez et al. (2011) can be used not only for test-
ing relative order among the parameters, but it can be also useful for selecting “best fitting”
isotropic order among several candidate isotropic orders for the biologist to choose form.
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These tests are implemented in the function CTi in the R package isocir. In Section 4 we
illustrate these tests using cell cycle gene expression data.

3. Package isocir

In the following we shall first briefly describe various R packages for isotonic regression and
analysis of circular data. We shall then describe the structure of the proposed package isocir
and demonstrate how to use it with the help of some examples.

3.1. Related R packages

Since isotonic regression is a well-known and widely used technique there are many packages
in R, for performing isotonic regression, such as:

� isotone (de Leeuw et al. (2011)): Active set and generalized PAVA for isotone optimiza-
tion.

� Iso (Turner (2009)): Functions to perform isotonic regression.

� bisoreg (Curtis (2010)): Bayesian Isotonic Regression with Bernstein Polynomials.

� ordMonReg (Balabdaoui et al. (2009)): Compute least squares estimates of one bounded
or two ordered isotonic regression curves.

� OrdFacReg (Rufibach (2010)): Least squares, logistic, and Cox-regression with ordered
predictors.

Similarly, there are several packages in R for analyzing circular data, such as:

� CircStats (Agostinelli (2009)): The implementations of the Circular Statistics from
“Topics in circular Statistics” Jammalamadaka and SenGupta (2001).

� circular (Lund and Agostinelli (2010)): Another package with Circular Statistics from
the same book, Jammalamadaka and SenGupta (2001).

� CircSpatial (Morphet (2009)):This package is a collection of functions for color contin-
uous high resolution images of circular spatial data, circular kriging, and simulation of
circular random fields.

Motivated by the recent interest in applications and the development of constrained inference
for circular data, we introduce the software package isocir. The name comes from the fact
that it allows making isotonic inference for circular data. Our package is closely related
to: circular (see Lund and Agostinelli (2010)) and combinat (see Chasalow (2010)). These
packages should be installed in the computer before loading isocir.

3.2. Package structure

Functions used in the package are summarized in Table 1 and are briefly described below.
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Functions Arguments Description

cirmean (data) circular mean

cirSCE (arg1, arg2, mrl) Sum of Circular Error

CIREi (data, levels, isotropic, graphic, stack) Circular Isotonic Regression Estimator

mrl (data) mean resultant length

cirkappa (data) kappa estimation

CTi (data, levels, kappa) Conditional Test

Table 1: Summary of the components of isocir

� cirmean: This function computes the circular mean as defined in Mardia and Jupp
(2000).

θ =


arctan

(
S
C

)
if S > 0, C > 0

arctan
(
S
C

)
+ π if C < 0

arctan
(
S
C

)
+ 2π if S < 0, C > 0

(13)

where S =
∑q

i=1 sin θi and C =
∑q

i=1 cos θi.

� cirSCE: Calculates the circular error between two q dimensional points on the circle
as defined in (6). In case data with replications, the mean resultant lengths (ri) have
to be introduced in the argument mrl. Otherwise, by default it is assumed to be 1.

� CIREi: For a given user specified general isotropic order (4), this function computes
CIRE (5) using the algorithm developed in Rueda et al. (2009).

� mrl: Calculates the mean resultant length as defined in Mardia et al. (2000).

� cirkappa: Calculates the estimation of the concentration parameter of a von Mises
distribution. It is necessary to have replications in the data. The argument is a matrix
where each row is an individual and each replications appears in a column.

� CTi: Performs the conditional test and computes the corresponding p-value for the
following hypotheses:

H0 : The phase angles φi i = 1 . . . q follow a known (general) isotropic order.

H1 : H0 is not true

The test statistic is:

T =

{
2κSCE(θ, θ̃)

aprox.
; χ2

q−m if κ can be assumed as known
2κ̂SCE(θ,θ̃)

q

aprox.
; Fq−m,q−1 if κ is unknown (replications needed) ,

(14)
where θ̃ is the CIRE obtained internally with CIREi, m is the number of level sets for
θ̃ and κ̂ is the estimation of κ obtained when necessary with cirkappa. Now, if t∗ is the
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value of T for the data, the p-value of the test is:

p−value =

{
pr(χ2

q−m ≥ t∗)[1− prφ0(C)] if κ can be assumed as known

pr(Fq−m,q−1 ≥ t∗)[1− prφ0(C)] if κ is unknown (replications needed),
(15)

where prφ0(C) is the probability of the order cone (C) under the equality of the param-
eters.

3.3. How isocir works

We illustrate isocir by describing the two main components of the package, namely, CIREi
for obtaining the circular isotonic regression estimator, and CTi for performing conditional
test explained above.

CIREi

Arguments Values

data matrix with the data

levels the levels of the order

isotropic =TRUE(by default) / =FALSE

graphic =FALSE(by default) / =TRUE

stack =TRUE(by default) / =FALSE

Table 2: Arguments of the CIREi function

In this section we describe each argument of the function CIREi. The characteristics of these
arguments are described in Table 2. The input variable data consists of all the input angles
θjp grouped and ordered according to the desired order.

� Example 1

In this example, we assume the following order for the parameters:
φ11
φ12
φ13

 �
{
φ21
φ22

}
� {φ31} �

{
φ41
φ42

}
�


φ11
φ12
φ13

 (16)

Suppose that θjp ∀j = 1, . . . , L, p = 1, . . . , lj , the sample mean directions corresponding to
the parameters φjp, are:

θ11 = 0.025; θ12 = 1.475; θ13 = 3.274;
θ21 = 5.518; θ22 = 2.859;
θ31 = 5.387;
θ41 = 4.179; θ42 = 1.962.

These data are in the example set of random circular data in our package and they can be
used by calling as below:
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> data(cirdata)

The format of the data is a matrix and the levels of the order are defined as follows:

> data4 <- matrix(cirdata, ncol = 1)

> orderLevels <- c(1, 1, 1, 2, 2, 3, 4, 4)

The isotropic order is considered by default (i.e. isotropic = TRUE) but the algorithm can
obtain the CIRE under the simple order by setting isotropic = FALSE. The result of the
function is a list with three elements:

$cirmeans is a list with the circular means with the form set by levels.

$SCE is the value of the Sum of Circular Error between the data and the CIRE.

$CIRE is a list with the CIRE with the form set by levels.

CIRE estimates for the above example with isotropic=TRUE are:

> CIREi(data = data4, levels = orderLevels)

Thus,
θ̃11 = 0.9939

θ̃12 = 1.4756

θ̃13 = 3.0665

 �
{
θ̃21 = 5.0567

θ̃22 = 3.0665

}
� {θ̃31 = 5.0567} �

{
θ̃41 = 5.0567

θ̃42 = 0.9939

}
(17)

Results may be displayed graphically by setting graphic = TRUE. When done so, two plots
are produced, one for the unrestricted estimates and the other for CIRE. Graphs are not
obtained if the variable graphic = FALSE which is the default value. Additional arguments
can be introduced to change the options of the plots, such as stack which is TRUE by default
to see points with the same value separately, otherwise that points would be overlapped.

CTi

As stated earlier, in this section we assume that the sample mean directions θi are distributed
according to independent von Mises distribution VM(φi, κ), where φi is the mean direction
of population i and κ its concentration parameter.

Arguments κ known κ unknown

data matrix (one column) matrix (as many columns as replications)

levels numeric vector with the levels of the order to be contrasted

kappa numeric value (NULL)

Table 3: Arguments of the CTi function
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The three arguments of the function CTi are data, levels and kappa. The characteristics
of these arguments are described in Table 3. In this section we explain these arguments with
the help of two examples. In the first example, which is based on the data provided Example
1, we assume that κ is known and in the second example, which is based on a set of data
available in the package, κ is an unknown parameter.

� Example 2.1 (κ known):

Using the same notation as in Example 1, we test the following hypotheses.

H0 :


φ11
φ12
φ13

 �
{
φ21
φ22

}
� {φ31} �

{
φ41
φ42

}
�


φ11
φ12
φ13


H1 : H0 is not true.

The data argument contains the sample mean directions in the form of a matrix where
the rows are the individuals and the columns are the replications when they exist, if not
there is one column with the angular means. In this case data = cbind(cirdata)).
The value of κ is introduced in kappa. Thus, for the data and the order restriction in
Example 1(page 9), assuming κ = 0.2 we have the following statements. The output is
the p-value for the conditional test from equation (15).

> CTi(data = cbind(cirdata), levels = c(1, 1, 1, 2, 2, 3, 4, 4),

+ kappa = 0.2)

Since p-value=0.9615, we cannot reject the null hypothesis that the parameters satisfy
this general isotropic order.

� Example 2.2 (κ unknown (replications needed)):

Using the data in package called datareplic we demonstrate the use of the function
CTi when κ is unknown. As remarked earlier, when κ is unknown we need replicate
data to estimate κ. The file datareplic is a matrix with columns denoting replications
and rows denoting the angles corresponding to each individual. We have 8 parameters
(φ11, φ12, φ13, φ21, φ22, φ31, φ32, φ41) and the order to be contrast is.

H0 :


φ11
φ12
φ13

 �
{
φ21
φ22

}
�
{
φ31
φ32

}
� {φ41} �


φ11
φ12
φ13


H1 : H0 is not true.

We take the data from the package. We have to set the levels of the order in the argu-
ment levels.
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> data(datareplic)

> orderLevels2 <- c(rep(1, 3), rep(2, 2), rep(3, 2), rep(4, 1))

Since replicate data are available, we do not include kappa in the CTi function. Thus
we have the following code:

> CTi(datareplic, levels = orderLevels2)

The result is the p-value defined in (15). Since the p-value=0.2660570 we may say
that there is not sufficient evidence in the data to reject the null hypotheses that the
angles are in an isotropic order.

4. Application to analysis of the cell cycle gene expression data

As commented earlier, the motivation for the development of the methods described in Rueda
et al. (2009) and Fernandez et al. (2011) is the analysis of gene expression data in the cell
cycle. In this setting, researchers are interested in identifying and understanding functions of
genes participating in a normal cell division cycle in order, for example, to detect disruptions
that may lead to excessive proliferation of cells.

Figure 2: Phases of a cell cycle

A normal cell cycle goes through four phases, shown in the
diagram of the Figure 2, Growth 1 (G1), Synthesis (S),
Growth 2 (G2) and Mitosis (M). Biologists are interested
in determining the phase associated with a cell cycle gene
because it may correspond to the biological function of
the gene. “The phase associated with a gene” is the phase
corresponding to its maximum expression. This moment of
peak expression of the gene in the cell cycle is usually called
the “phase angle” of the gene.

The length, both of the cycle and the phases, varies a lot depending on the organism. Here,
we consider two species of yeasts: S. Cerevisiae and S. Pombe. They are a good exam-
ple of the different length of the phases. For instance, there is a great difference between the
G2 phase in budding yeast (S. Cerevisiae) and in fission yeast (S. Pombe), see Figures 3 and 4.

In this example, we consider 16 genes that have a good rank of periodicity in both yeasts in
order to ensure the quality of their peak expressions data along the cell cycle. The S. Pombe
genes, with their corresponding S. Cerevisiae orthologs in parentheses are: ssb1 (RFA1),
cdc22 (RNR1), msh6 (MSH6), psm3 (SMC3), rad21 (MCD1), cig2 (CLN2), mik1 (SWE1),
h3.3 (HHT2), hhf1 (HHF1), hht3 (HHT1), hta2 (HTA2), htb1 (HTB2), fkh2 (FKH1), chs2
(CHS2), sid2 (DBF2) and slp1 (CDC20).

We test if the order given by the S. Cerevisiae genes is maintained by the corresponding S.
Pombe orthologs. The order for the S. Cerevisiae genes is taken from the values given in the
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Figure 3: Budding yeast cycle Figure 4: Fission yeast cycle

comprehensive database by Gauthier (2007) available at http: // www. cyclebase. org . The
S. Pombe data comes from 10 experiments conducted by different biologists: 3 of them by
Oliva et al. (2005) , 2 by Peng et al. (2005) and 5 by Rustici et al. (2004). The unrestricted
phase angle values for these S. Pombe data have been obtained using the Random Periods
Model developed in Liu et al. (2004). All these data are in a matrix named cirgenes where
each column is an experiment and each row is a gene, see Table 4. The genes are ordered
according to their corresponding S. Cerevisiae orthologs.

We test the S. Cerevisiae order in each of the 10 S. Pombe experiments. Suppose φi denotes
the phase angle of gene i in S. pombe then the hypotheses of interest is:

H0 : φssb1 � φcdc22 � φmsh6 � φpsm3 � φrad21 � φcig2 � φmik1 � φh3.3 �
� φhhf1 � φhht3 � φhta2 � φhtb1 � φfkh2 � φchs2 � φsid2 � φslp1 � φssb1

H1 : H0 is not true.

(18)

We begin with the following code to implement isocir for obtaining CIRE and the SCE values
for each of the above 16 genes in the 10 experiments. Results are summarized in Table 5.

> data(cirgenes)

> resultIsoCIRE <- matrix(ncol = ncol(cirgenes), nrow = nrow(cirgenes))

> SCEs <- NULL

> for (i in 1:ncol(cirgenes)) {

+ genes <- as.numeric(cirgenes[!is.na(cirgenes[, i]), i])

+ rCIRE <- CIREi(cbind(genes))

+ resultIsoCIRE[!is.na(cirgenes[, i]), i] <- as.vector(rCIRE$CIRE,

+ mode = "numeric")

+ SCEs[i] <- rCIRE$SCE

+ }

Now, we use the CTi function to perform the conditional test in each of the 10 experiments.
Notice that we have no replications here since the experiments were not performed under the
same experimental conditions. So for this example we consider κ values obtained from the
calculations made in Fernandez et al. (2011). The following code gives the p-values for each

http://www.cyclebase.org
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experiment using the asymptotic distribution of the conditional test. Results are summarized
in Table 5.

> kappas <- c(3.958, 3.03, 1.788, 22.475, 14.52, 21.767, 8.607,

+ 14.143, 5.945, 14.284)

> pvalues <- NULL

> for (i in 1:ncol(cirgenes)) {

+ genes <- as.numeric(cirgenes[!is.na(cirgenes[, i]), i])

+ k <- kappas[i]

+ pvalues[i] <- CTi(cbind(genes), kappa = k)

+ }

From the p-values in Table 5, we see that we cannot reject the null hypothesis that the
isotropic order is conserved between the two species of yeasts in any of the 10 experiments.
Therefore, it seems plausible that the peak expressions of these 16 genes in S. Pombe follow
the same order as in S. Cerevisiae, which is a very interesting conclusion for evolutionary
biologists.

5. Conclusions

In this paper the R package isocir has been presented. This package provides useful tools
for making inferences for circular data under order restrictions. The first of the two main
functions computes CIRE, the circular version of the widely known isotonic regression in Rq.
The second one is designed for testing isotropic hypotheses using a conditional test. We have
provided the step by step execution of these functions with the isocir package. Although we
illustrated the proposed methodology using an example from cell biology, the proposed soft-
ware can be applied to a wide range of contexts. For example, biologists working on circadian
clock may be interested in the testing for the conservation of isotropic order among circadian
genes between two tissues (e.g. Liu et al. (2006)). Similarly, an endocrinologist, studying the
order of peak values of various hormones in women during ovulation under different treatment
conditions, may find the proposed software useful.

We also want to stress that circular data under restrictions is a field widely open to new
developments both in the methods and in implementation. Therefore, it is to be expected
that new analysis methods that can lead to new R packages or functions that may appear in
the near future.
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