
The irace Package: User Guide

Manuel López-Ibáñez, Leslie Pérez Cáceres, Jérémie Dubois-Lacoste,

Thomas Stützle and Mauro Birattari

IRIDIA, CoDE, Université Libre de Bruxelles, Brussels, Belgium

Version 2.3, April 25, 2017

Contents

1 General information 4

1.1 Background . 4
1.2 Version . 4
1.3 License . 4

2 Before starting 4

3 Installation 5

3.1 System requirements . 5
3.2 irace installation . 5

3.2.1 Install automatically within R . 6
3.2.2 Manual download and installation . 6
3.2.3 Local installation . 6
3.2.4 Testing the installation and invoking irace 7

4 Running irace 8

4.1 Step-by-step setup guide . 9
4.2 Setup example for ACOTSP . 12

5 Defining a configuration scenario 13

5.1 Target algorithm parameters . 13
5.1.1 Parameter types . 13
5.1.2 Parameter domains . 14
5.1.3 Conditional parameters . 14
5.1.4 Parameter file format . 14
5.1.5 Parameters R format . 15

5.2 Target algorithm runner . 17
5.2.1 Target runner executable program . 17
5.2.2 Target runner R function . 18

5.3 Target evaluator . 19
5.3.1 Target evaluator executable program . 20
5.3.2 Target evaluator R function . 20

5.4 Training instances . 21

1

5.5 Initial configurations . 22
5.6 Forbidden configurations . 23
5.7 Repairing configurations . 23

6 Parallelization 24

7 Testing of configurations 25

8 Recovering irace runs 26

9 Output and results 27

9.1 Text output . 27
9.2 Data file output . 29
9.3 Analysis of results . 34

10 Advanced topics 38

10.1 Tuning budget . 38
10.2 Multi-objective tuning . 39
10.3 Tuning for minimizing computation time . 39
10.4 Heterogeneous scenarios . 40
10.5 Choosing the statistical test . 40
10.6 Complex parameters . 41
10.7 Unreliable target algorithms . 42

11 List of command-line and scenario options 42

11.1 General options . 42
11.2 Elitist irace . 43
11.3 Internal irace options . 44
11.4 Target algorithm parameters . 45
11.5 Target algorithm execution . 45
11.6 Initial configurations . 46
11.7 Training instances . 46
11.8 Tuning budget . 46
11.9 Statistical test . 47
11.10 Recovery . 47
11.11 Testing . 47

12 FAQ 48

12.1 Is irace minimizing or maximizing the output of my algorithm? 48
12.2 Is it possible to configure a MATLAB algorithm with irace? 48
12.3 My program works perfectly on its own, but not when running under irace. Is

irace broken? . 48
12.4 My program may be buggy and run into an infinite loop. Is it possible to set a

maximum timeout? . 48
12.5 When using the mpi option, irace is aborted with an error message indicating

that a function is not defined. How to fix this? 49
12.6 Error: 4 arguments passed to .Internal(nchar) which requires 3 49

13 Resources and contact information 49

2

14 Acknowledgements 50

Bibliography 50

Appendix A Installing R 51

A.1 GNU/Linux . 51
A.2 OS X . 51
A.3 Windows . 51

Appendix B targetRunner troubleshooting checklist 51

Appendix C Glossary 54

Appendix D NEWS 55

3

1 General information

1.1 Background

The irace package implements an iterated racing procedure, which is an extension of Iterated
F-race (I/F-Race) [2]. The main use of irace is the automatic configuration of optimization
and decision algorithms, that is, finding the most appropriate settings of an algorithm given
a set of instances of a problem. However, it may also be useful for configuring other types of
algorithms when performance depends on the used parameter settings. It builds upon the race

package by Birattari and it is implemented in R. The irace package is available from CRAN.
More information about irace is available at http://iridia.ulb.ac.be/irace.

1.2 Version

The current version of the irace package is 2.3. Previous versions of the package can be found in
the CRAN website.

https://cran.r-project.org/web/packages/irace/

Versions of irace before 2.0 are not compatible with the file formats detailed in this document.

The algorithm underlying the current version of irace and its motivation are described by
López-Ibáñez et al. [5]. Details of the implementation before version 2.0 can be found in a
previous technical report [4].

1.3 License

The irace package is Copyright © 2016 and distributed under the GNU General Public License
version 3.0 (http://www.gnu.org/licenses/gpl-3.0.en.html). The irace package is free soft-
ware (software libre): you can redistribute it and/or modify it under the terms of the GNU
General Public License as published by the Free Software Foundation, either version 3 of the
License, or (at your option) any later version.

The irace package is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR
A PARTICULAR PURPOSE.

Please be aware that the fact that this program is released as Free Software does not excuse
you from scientific propriety, which obligates you to give appropriate credit! If you write a
scientific paper describing research that made substantive use of this program, it is your obligation
as a scientist to (a) mention the fashion in which this software was used in the Methods section;
(b) mention the algorithm in the References section. The appropriate citation is:

Manuel López-Ibáñez, Jérémie Dubois-Lacoste, Leslie Pérez Cáceres, Thomas Stützle, and
Mauro Birattari. The irace package: Iterated Racing for Automatic Algorithm Configu-
ration. Operations Research Perspectives, 3:43–58, 2016. doi: 10.1016/j.orp.2016.09.002

2 Before starting

The irace package provides an automatic configuration tool for tuning optimization algorithms,
that is, automatically finding good configurations for the parameters values of a (target) algo-
rithm saving the effort that normally requires manual tuning.

4

http://iridia.ulb.ac.be/irace
https://cran.r-project.org/web/packages/irace/
http://www.gnu.org/licenses/gpl-3.0.en.html
http://dx.doi.org/10.1016/j.orp.2016.09.002

Training
instances

Parameter
space

Configuration
scenario

targetRunner

calls with θ,i returns c(θ,i)
iraceirace

Figure 1: Scheme of irace flow of information.

Figure 1 gives a general scheme of how irace works. Irace receives as input a parameter
space definition corresponding to the parameters of the target algorithm that will be tuned, a
set of instances for which the parameters must be tuned for and a set of options for irace that
define the configuration scenario. Then, irace searches in the parameter search space for good
performing algorithm configurations by executing the target algorithm on different instances
and with different parameter configurations. A targetRunner must be provided to execute the
target algorithm with a specific parameter configuration (θ) and instance (i). The targetRunner
function (or program) acts as an interface between the execution of the target algorithm and
irace: It receives the instance and configuration as arguments and must return the evaluation of
the execution of the target algorithm.

The following user guide contains guidelines for installing irace, defining configuration sce-
narios, and using irace to automatically configure your algorithms.

3 Installation

3.1 System requirements

• R (version ≥ 2.15) is required for running irace, but you don’t need to know the R language
to use it. R is freely available and you can download it from the R project website (https:
//www.r-project.org). See Appendix A for a quick installation guide of R.

• For GNU/Linux and OS X, the command-line executables irace and parallel-irace require
GNU Bash. There is also a irace.bat for Windows. Individual examples may require
additional software.

3.2 irace installation

The irace package can be installed automatically within R or by manual download and installa-
tion. We advise to use the automatic installation unless particular circumstances do not allow
it. The instructions to install irace with the two mentioned methods are the following:

5

https://www.r-project.org
https://www.r-project.org

3.2.1 Install automatically within R

Execute the following line in the R console to install the package:

install.packages("irace")

Select a mirror close to your location, and test the installation in the R console with:

library("irace")

q() # To exit R

Alternatively, within the R graphical interface, you may use the Packages and data->Package

installer menu on OS X or the Packages menu on Windows.

3.2.2 Manual download and installation

From the irace package CRAN website (https://cran.r-project.org/package=irace), down-
load one of the three versions available depending on your operating system:

• irace_2.3.tar.gz (Unix/BSD/GNU/Linux)

• irace_2.3.tgz (OS X)

• irace_2.3.zip (Windows)

To install the package on GNU/Linux and OS X, you must execute the following command
at the shell:

Replace <package> with the path to the downloaded file.

R CMD INSTALL <package>

To install the package on Windows, open R and execute the following line on the R console:

Replace <package> with the path to the downloaded file.

install.packages("<package>", repos = NULL)

If the previous installation instructions fail because of insufficient permissions and you do
not have sufficient admin rights to install irace system-wide, then you need to force a local
installation.

3.2.3 Local installation

Let’s assume you wish to install irace on a path denoted by <R_LIBS_USER>, which is a filesystem
path for which you have sufficient rights. This directory must exist before attempting the
installation. Moreover, you must provide to R the path to this library when loading the package.
However, the latter can be avoided by adding the path to the system variable R_LIBS or to the
R internal variable .libPaths, as we will see below.1

On GNU/Linux or OS X, execute the following commands to install the package on a local
directory:

1On Windows, see also https://cran.r-project.org/bin/windows/base/rw-FAQ.html#I-don_0027t-have-

permission-to-write-to-the-R_002d3_002e3_002e1_005clibrary-directory.

6

https://cran.r-project.org/package=irace
https://cran.r-project.org/bin/windows/base/rw-FAQ.html#I-don_0027t-have-permission-to-write-to-the-R_002d3_002e3_002e1_005clibrary-directory
https://cran.r-project.org/bin/windows/base/rw-FAQ.html#I-don_0027t-have-permission-to-write-to-the-R_002d3_002e3_002e1_005clibrary-directory

export R_LIBS_USER="<R_LIBS_USER>"

Create R_LIBS_USER if it doesn't exist

mkdir $R_LIBS_USER

Replace <package> with the path to the downloaded file.

R CMD INSTALL --library=$R_LIBS_USER <package>

Tell R where to find R_LIBS_USER

export R_LIBS=${R_LIBS_USER}:${R_LIBS}

On Windows, you can install the package on a local directory by executing the following lines
in the R console:

Replace <package> with the path to the downloaded file.

Replace <R_LIBS_USER> with the path used for installation.

install.packages("<package>", repos = NULL, lib = "<R_LIBS_USER>")

Tell R where to find R_LIBS_USER.

This must be executed for every new session.

.libPaths(c("<R_LIBS_USER>", .libPaths()))

3.2.4 Testing the installation and invoking irace

Once irace has been installed, load the package and test that the installation was successful by
opening an R console and executing:

Load the package

library("irace")

Obtain the installation path

system.file(package = "irace")

The last command must print out the filesystem path where irace is installed. In the remain-
der of this guide, the variable $IRACE_HOME is used to denote this path. When executing any
provided command that includes the $IRACE_HOME variable do not forget to replace this variable
with the installation path of irace.

On GNU/Linux or OS X, you can let the operating system know where to find irace by
defining the $IRACE_HOME variable and adding it to the system PATH. Append the following
commands to ~/.bash_profile, ~/.bashrc or ~/.profile:

Replace <IRACE_HOME> with the irace installation path

export IRACE_HOME=<IRACE_HOME>

export PATH=${IRACE_HOME}/bin/:$PATH

Tell R where to find R_LIBS_USER

Use the following line only if local installation was forced

export R_LIBS=${R_LIBS_USER}:${R_LIBS}

Then, open a new terminal and launch irace as follows:

irace --help

On Windows, you need to add both R and the installation path of irace to the environment
variable PATH. To edit the PATH, search for “Environment variables” in the control panel, edit PATH
and add a string similar to C:\R_PATH\bin;C:\IRACE_HOME\bin where R_PATH is the installation

7

path of R and IRACE_HOME is the installation path of irace. If irace was installed locally, you also
need to edit the environment variable R_LIBS to add R_LIBS_USER. Then, open a new terminal
(run program cmd.exe) and launch irace as:

irace.bat --help

Alternatively, you may directly invoke irace from within the R console by executing:

library("irace")

irace.cmdline("--help")

4 Running irace

Before performing the tuning of your algorithm, it is necessary to define a tuning scenario that
will give irace all the necessary information to optimize the parameters of the algorithm. The
tuning scenario is composed of the following elements:

1. Target algorithm parameter description (see Section 5.1).

2. Target algorithm runner (see Section 5.2).

3. Training instances list (see Section 5.4)

4. irace options (see Section 11).

5. Optional: Initial configurations (see Section 5.5).

6. Optional: Forbidden configurations (see Section 5.6).

7. Optional: Target algorithm evaluator (see Section 5.3).

These scenario elements can be provided as plain text files or as R objects. This user guide
provides examples of both types, but we advise the use of plain text files, which we consider the
simpler option.

For a step-by-step guide to create the scenario elements for your target algorithm continue
to Section 4.1. For an example execution of irace using the ACOTSP scenario go to Section 4.2.

Once all the scenario elements are prepared you can execute irace, either using the command-
line wrappers provided by the package or directly from the R console:

• Execute irace from the command-line as (on Windows, you should execute irace.bat):

$IRACE_HOME is the installation directory of irace.

$IRACE_HOME/bin/irace --scenario scenario.txt

For this example we assume that the needed scenario files have been set properly in the
scenario.txt file using the options described in Section 11. Most irace options can be
specified in the command line or directly in the scenario.txt file.

• Or execute irace from the R console as:

8

library("irace")

parameters <- readParameters("parameters.txt")

scenario <- readScenario(filename = "scenario.txt",

scenario = defaultScenario())

irace(scenario = scenario, parameters = parameters)

The irace executable provides an option (--check) to check that the scenario is correctly
defined. We recommend to perform a check every time you create a new scenario. When
performing the check, irace will verify that the scenario and parameter definitions are correct
and will test the execution of the target algorithm. To check your scenario execute the following
commands:

• From the command-line (on Windows, execute irace.bat):

$IRACE_HOME is the installation directory of irace.

$IRACE_HOME/bin/irace --scenario scenario.txt --check

• Or from the R console:

library("irace")

parameters <- readParameters("parameters.txt")

scenario <- readScenario(filename = "scenario.txt",

scenario = defaultScenario())

checkIraceScenario(scenario = scenario, parameters = parameters)

4.1 Step-by-step setup guide

This section provides a guide to setup a basic execution of irace. The template files provided
in the package ($IRACE_HOME/templates) will be used as basis for creating your new scenario.
Please follow carefully the indications provided in each step and in the template files used; if you
have doubts check the the sections that describe each option in detail.

1. Create a directory (e.g., ~/tuning/) for the scenario setup. This directory will contain all
the files that describe the scenario. On GNU/Linux or OS X, you can do this as follows:

mkdir ~/tuning

cd ~/tuning

2. Copy all the template files from the $IRACE_HOME/templates/ directory to the scenario
directory.

$IRACE_HOME is the installation directory of irace.

cp $IRACE_HOME/templates/*.tmpl ~/tuning/

3. For each template in your tuning directory, remove the .tmpl suffix, and modify them
following the next steps.

4. Define the target algorithm parameters to be tuned by following the instructions in parameters.txt.
Available parameter types and other guidelines can be found in Section 5.1.

9

5. Optional : Define the initial parameter configuration(s) of your algorithm, which allows you
to provide good starting configurations (if you know some) for the tuning. Follow the in-
structions in configurations.txt and set configurationsFile="configurations.txt"

in scenario.txt. More information in Section 5.5. If you do not need to define initial
configurations remove this file from the directory.

6. Optional : Define forbidden parameter value combinations, that is, configurations that irace

must not consider in the tuning. Follow the instructions in forbidden.txt and update
scenario.txt with forbiddenFile = "forbidden.txt". More information about forbidden
configurations in Section 5.6. If you do not need to define forbidden configurations remove
this file from the directory.

7. Place the instances you would like to use for the tuning of your algorithm in the folder
~/tuning/Instances/. In addition, you can create a file (e.g., instances-list.txt) that
specifies which instances from that directory should be run and which instance-specific pa-
rameters to use. To use such an instance file, set the appropriate option in scenario.txt,
e.g., trainInstancesFile = "instances-list.txt". See Section 5.4 for guidelines.

8. Uncomment and assign in scenario.txt only the options for which you need a value different
from the default. Some common parameters that you might want to adjust are:

execDir (--exec-dir): the directory in which irace will execute the target algorithm; the
default value is the current directory.

maxExperiments (--max-experiments): the maximum number of executions of the target
algorithm that irace will perform.

maxTime (--max-time): the total maximum execution time of the target algorithm. Note
that you must provide either maxTime or maxExperiments.

For setting the tuning budget see Section 10.1. For more information on irace options and
their default values, see Section 11.

9. Modify the target-runner script to run your algorithm. This script must execute your
algorithm with the parameters and instance specified by irace and return the evaluation of
the execution and optionally the execution time (cost [time]). When the maxTime option
is used, returning time is mandatory. The target-runner template is written in GNU

Bash scripting language, which can be executed easily in GNU/Linux and OS X systems.
However, you may use any other programming language. As an example, we provide a
Python example in the directory $IRACE_HOME/examples/python. Follow these instructions
to adjust the given target-runner template to your algorithm:

(a) Set the EXE variable with the path to the executable of the target algorithm.

(b) Set the FIXED_PARAMS if you need extra arguments in the execution line of your algo-
rithm. An example could be the time that your algorithm is required to run (FIXED_PARAMS
="--time 60") or the number of evaluations required (FIXED_PARAMS="--evaluations
10000").

(c) The line provided in the template executes the executable described in the EXE variable.

$EXE ${FIXED_PARAMS} -i ${INSTANCE} --seed ${SEED} ${CONFIG_PARAMS}

You must change this line according to the way your algorithm is executed. In this
example, the algorithm receives the instance to solve with the flag -i and the seed of

10

the random number generator with the flag --seed. The variable CONFIG_PARAMS adds
to the command line the parameters that irace has given for the execution. You must
set the command line execution as needed. For example, the instance might not need
a flag and might need to be the first argument:

$EXE ${INSTANCE} ${FIXED_PARAMS} --seed ${SEED} ${CONFIG_PARAMS}

The output of your algorithm is saved to the file defined in the $STDOUT variable, and
error output is saved in the file given by $STDERR. The line:

if [-s "$STDOUT"]; then

checks if the file containing the output of your algorithm is not empty. The example
provided in the template assumes that your algorithm prints in the last output line the
best result found (only a number). The line:

COST=$(cat ${STDOUT} | grep -e 'ˆ[[:space:]]*[+-]\?[0-9]' | cut -f1)

parses the output of your algorithm to obtain the result from the last line. The
target-runner script must return only one number. In the template example, the
result is returned with echo "$COST" (assuming maxExperiments is used) and the
used files are deleted.

The target-runner script must be executable.

You can test the target runner from the R console by checking the scenario as explained
earlier in Section 4.

If you have problems related to the target-runner script when executing irace, see
Appendix B for a check list to help diagnose common problems. For more information
about the targetRunner, please see Section 5.2,

10. Optional : Modify the target-evaluator file. This is rarely needed and the target-runner

template does not use it. Section 5.3 explains when a targetEvaluator is needed and how
to define it.

Once the files have been prepared, you can execute irace using the command-line or directly
from the R console:

• On the console, call the command:

cd ~/tuning/

$IRACE_HOME/bin/irace

• On the R console, open an R console and execute:

library("irace")

Go to the directory containing the scenario files

setwd("~/tuning")

Create the R objects scenario and parameters

parameters <- readParameters("parameters.txt")

scenario <- readScenario(filename = "scenario.txt",

scenario = defaultScenario())

irace(scenario = scenario, parameters = parameters)

11

This will perform one run of irace. See the output of irace --help in the command-line or
irace.usage() in R for quick information on additional irace parameters. For more information
about irace options, see Section 11.

Command-line options override the same options specified in the scenario.txt file.

4.2 Setup example for ACOTSP

The ACOTSP tuning example can be found in the package installation:

$IRACE_HOME/examples/acotsp

Additionally, a number of example scenarios can be found in the examples folder. More examples
of tuning scenarios can be found in the Algorithm Configuration Library (AClib):

http://www.aclib.net/

In this section, we describe how to execute the ACOTSP scenario. If you wish to start setting
up your own scenario, continue to the next section. For this example, we assume a GNU/Linux
system but making the necessary changes in the commands and targetRunner, it can be executed
in any system that has a C compiler. To execute this scenario follow the steps described in the
following:

1. Create a directory for the tuning (e.g., ~/tuning/) and copy the example scenario files
located in the examples folder to the created directory:

mkdir ~/tuning

cd ~/tuning

$IRACE_HOME is the installation directory of irace.

cp $IRACE_HOME/examples/acotsp/* ~/tuning/

2. Download the training instances from http://iridia.ulb.ac.be/irace/ to the ~/tuning/
directory.

3. Create the instance directory (e.g., ~/tuning/Instances) and decompress the instance files
on it.

mkdir ~/tuning/Instances/

cd ~/tuning/

tar -xvf tsp-instances-training.tar.bz2 Instances/

4. Download the ACOTSP software from http://www.aco-metaheuristic.org/aco-code/ to
the ~/tuning/ directory and compile it.

cd ~/tuning/

tar -xvf ACOTSP-1.03.tgz

cd ~/tuning/ACOTSP-1.03

make

5. Create a directory for the executable and copy it:

12

http://www.aclib.net/
http://iridia.ulb.ac.be/irace/
http://www.aco-metaheuristic.org/aco-code/

mkdir ~/bin/

cp ~/tuning/ACOTSP-1.03/acotsp ~/bin/

6. Create a directory for executing the experiments and execute irace:

mkdir ~/tuning/acotsp-arena/

cd ~/tuning/

$IRACE_HOME is the installation directory of irace.

$IRACE_HOME/bin/irace

7. Or you can also execute irace from the R console using:

library("irace")

setwd("~/tuning/")

parameters <- readParameters("parameters-acotsp.txt")

scenario <- readScenario(filename = "scenario.txt",

scenario = defaultScenario())

irace(scenario = scenario, parameters = parameters)

5 Defining a configuration scenario

5.1 Target algorithm parameters

The parameters of the target algorithm are defined by a parameter file as described in Sec-
tion 5.1.4. Optionally, when executing irace from the R console, the parameters can be specified
directly as an R object (see Section 5.1.5). For defining your parameters follow the guidelines
provided in the following sections.

5.1.1 Parameter types

Each target parameter has an associated type that defines its domain and the way irace handles
them internally. Understanding the nature of the domains of the target parameters is important
to select appropriate types. The four basic types supported by irace are the following:

• Real parameters are numerical parameters that can take floating-point values within a given
range. The range is specified as an interval ‘(<lower bound>,<upper bound>)’. This interval
is closed, that is, the parameter value may eventually be one of the bounds. The possible
values are rounded to a number of decimal places specified by option digits. For example,
given the default number of digits of 4, the values 0.12345 and 0.12341 are both rounded to
0.1234.

• Integer parameters are numerical parameters that can take only integer values within the
given range. The range is specified as for real parameters.

• Categorical parameters are defined by a set of possible values specified as ‘(<value 1>, ...,

<value n>)’. The values are quoted or unquoted character strings. Empty strings and strings
containing commas or spaces must be quoted.

13

• Ordinal parameters are defined by an ordered set of possible values in the same format as for
categorical parameters. They are handled internally as integer parameters, where the integers
correspond to the indexes of the values.

5.1.2 Parameter domains

For each target parameter, an interval or a set of values must be defined according to its type,
as described above. There is no limit for the size of the set or the length of the interval, but
keep in mind that larger domains could increase the difficulty of the tuning task. Choose always
values that you consider relevant for the tuning. In case of doubt, we recommend to choose larger
intervals, as occasionally best parameter settings may be not intuitive a priori. All intervals are
considered as closed intervals.

It is possible to define parameters that will have always the same value. Such “fixed ” param-
eters will not be tuned but their values are used when executing the target algorithm and they
are affected by constraints defined on them. All fixed parameters must be defined as categorical
parameters and have a domain of one element.

5.1.3 Conditional parameters

Conditional parameters are active only when others have certain values. These dependencies
define a hierarchical relation between parameters. For example, the target algorithm may have a
parameter localsearch that takes values (sa,ts) and another parameter ts-length that only
needs to be set if the first parameter takes precisely the value ts. Thus, parameter ts-length

is conditional on localsearch == "ts".

5.1.4 Parameter file format

For simplicity, the description of the parameters space is given as a table. Each line of the table
defines a configurable parameter

<name> <label> <type> <range> [| <condition>]

where each field is defined as follows:

14

<name> The name of the parameter as an unquoted alphanumeric string, e.g., ‘ants’.

<label> A label for this parameter. This is a string that will be passed together with
the parameter to targetRunner. In the default targetRunner provided with
the package (Section 5.2), this is the command-line switch used to pass the
value of this parameter, for instance ‘"--ants "’.
The value of the parameter is concatenated without separator to the label
when invoking targetRunner, thus any whitespace in the label is significant.
Following the same example, when parameter ants takes value 5, the default
targetRunner will pass the parameter as "--ants 5".

<type> The type of the parameter, either integer, real, ordinal or categorical, given as
a single letter: ‘i’, ‘r’, ‘o’ or ‘c’.

<range> The range or set of values of the parameter delimited by parentheses.
e.g., (0,1) or (a,b,c,d).

<condition> An optional condition that determines whether the parameter is enabled or
disabled, thus making the parameter conditional. If the condition evaluates to
false, then no value is assigned to this parameter, and neither the parameter
value nor the corresponding label are passed to targetRunner. The condition
must follow the same syntax as those for specifying forbidden configurations
(Section 5.6), that is, it must be a valid R logical expression2. The condition
may contain the name of other parameters as long as the dependency graph
does not contain any cycle. Otherwise, irace will detect the cycle and stop
with an error.

As an example, Figure 2 shows the parameters file of the ACOTSP scenario.

name switch type values [conditions (using R syntax)]

algorithm "--" c (as,mmas,eas,ras,acs)

localsearch "--localsearch " c (0, 1, 2, 3)

alpha "--alpha " r (0.00, 5.00)

beta "--beta " r (0.00, 10.00)

rho "--rho " r (0.01, 1.00)

ants "--ants " i (5, 100)

nnls "--nnls " i (5, 50) | localsearch %in% c(1, 2, 3)

q0 "--q0 " r (0.0, 1.0) | algorithm == "acs"

dlb "--dlb " c (0, 1) | localsearch %in% c(1,2,3)

rasrank "--rasranks " i (1, 100) | algorithm == "ras"

elitistants "--elitistants " i (1, 750) | algorithm == "eas"

Figure 2: Parameter file (parameters.txt) for tuning ACOTSP.

5.1.5 Parameters R format

The target parameters are stored in an R list that you can obtain from the R console using the
following command:

2For a quick list of R operators see: https://stat.ethz.ch/R-manual/R-devel/library/base/html/Syntax.

html

15

https://stat.ethz.ch/R-manual/R-devel/library/base/html/Syntax.html
https://stat.ethz.ch/R-manual/R-devel/library/base/html/Syntax.html

parameters <- readParameters(file = "parameters.txt")

See the help of the readParameters function (?readParameters) for more information. The
structure of the parameter list that is created is as follows:

names Vector that contains the names of the parameters.

types Vector that contains the type of each parameter ’i’, ’c’, ’r’, ’o’.

switches Vector that contains the labels of the parameters. e.g., switches to be used
for the parameters on the command line.

domain List of vectors, where each vector may contain two values (minimum, maxi-
mum) for real and integer parameters, or a set of values for categorical and
ordinal parameters.

conditions List of R logical expressions, with variables corresponding to parameter
names.

isFixed Logical vector that specifies which parameter is fixed and, thus, it does not
need to be tuned.

nbParameters An integer, the total number of parameters.

nbFixed An integer, the number of parameters with a fixed value.

nbVariable Number of variable (i.e., to be tuned) parameters.

The following example shows the structure of the parameters R object for the algorithm,
ants and q0 parameters of the ACOTSP scenario:

> print(parameters)

$names

[1] "algorithm" "ants" "q0"

$types

algorithm ants q0

"c" "i" "r"

$switches

algorithm ants q0

"--" "--ants " "--q0 "

$domain

$domain$algorithm

[1] "as" "mmas" "eas" "ras" "acs"

$domain$ants

[1] 5 100

$domain$q0

[1] 0 1

$conditions

16

$conditions$algorithm

expression(TRUE)

$conditions$ants

expression(TRUE)

$conditions$q0

expression(algorithm %in% c("acs"))

$isFixed

algorithm ants q0

FALSE FALSE FALSE

$nbParameters

[1] 3

$nbFixed

[1] 0

$nbVariable

[1] 3

5.2 Target algorithm runner

The execution of a candidate configuration on a single instance is done by means of a user-given
auxiliary program or, alternatively, a user-given R function. The function (or program name)
is specified by the option targetRunner. The targetRunner must return the evaluation of the
execution unless a post-execution evaluation (e.g., multi-objective evaluation) is required, see
Section 5.3 for details.

The objective of irace is to minimize the obtained evaluations. If you wish to maximize, you can
multiply the evaluations by -1 before returning them to irace.

5.2.1 Target runner executable program

When targetRunner is an auxiliary executable program, it is invoked for each candidate config-
uration, passing as arguments:

<id.configuration> <id.instance> <seed> <instance> [<extra.params>] <configuration>

17

id.configuration an alphanumeric string that uniquely identifies a configuration;

id.instance an alphanumeric string that uniquely identifies a pair (instance, seed);

seed seed for the random number generator to be used for this evaluation,
ignore the seed for deterministic algorithms;

instance string giving the instance to be used for this evaluation;

extra.params user-defined parameters associated to the instance;

configuration the pairs parameter label-value that describe this candidate configuration.
Typically given as command-line switches to be passed to the executable
program.

The experiment list shown in Section 5.2.2, would result in the following execution line:

target-runner 1 113 734718556 /home/user/instances/tsp/2000-533.tsp \

--eas --localsearch 0 --alpha 2.92 --beta 3.06 --rho 0.6 --ants 80

The command line switches that describe the candidate configuration are constructed by ap-
pending to each parameter label (switch), without separator, the value of the parameter, following
the order given in the parameter table. The program targetRunner must print a real number,
which corresponds to the cost measure of the candidate configuration for the given instance
and optionally its execution time (mandatory when maxTime is used). The working directory of
targetRunner is set to the execution directory specified by the option execDir. This allows the
user to execute independent runs of irace in parallel using different values for execDir, without
the runs interfering with each other.

5.2.2 Target runner R function

When targetRunner is an R function, it is invoked for each candidate configuration as:

targetRunner(experiment, scenario)

where experiment is a list that contains information about configuration and instance to execute
one experiment, and scenario is the scenario list. The structure of the experiment list is as
follows:

id.configuration an alphanumeric string that uniquely identifies a configuration;

id.instance an alphanumeric string that uniquely identifies a pair (instance, seed);

seed seed to be used for this evaluation;

instance string giving the instance to be used for this evaluation;

extra.params user-defined parameters associated to the instance;

configuration 1-row data frame with a column per parameter name;

switches vector of parameter switches (labels) in the order of parameters used in
configuration.

The following is an example of an experiment list for the ACOTSP scenario:

> print(experiment)

$id.configuration

[1] 1

18

$id.instance

[1] 113

$seed

[1] 734718556

$configuration

algorithm localsearch alpha beta rho ants nnls q0 dlb

1 eas 0 2.92 3.06 0.6 80 NA NA <NA>

rasrank elitistants

1 NA 588

$instance

[1] "/home/user/instances/tsp/2000-533.tsp"

$extra.params

NULL

$switches

algorithm localsearch alpha

"--" "--localsearch " "--alpha "

beta rho ants

"--beta " "--rho " "--ants "

nnls q0 dlb

"--nnls " "--q0 " "--dlb "

rasrank elitistants

"--rasranks " "--elitistants "

If targetEvaluator is NULL, then the targetRunner function must return a list with at
least one element "cost", the numerical value corresponding to the evaluation of the given
configuration on the given instance.

If the scenario option maxTime is non-zero, then the list must contain at least another element
"time" that reports the execution time for this call to targetRunner.

The return list may also contain the following optional elements that are used by irace for
reporting errors in targetRunner:

error is a string used to report an error;

outputRaw is a string used to report the raw output of calls to an external program or
function;

call is a string used to report how targetRunner called an external program or func-
tion;

5.3 Target evaluator

Normally, targetRunner returns the cost of the execution of a candidate configuration (see Sec-
tion 5.2). However, there are cases when the cost evaluation must be delayed until all candidate
configurations in a race have been executed on a instance.

The targetEvaluator option defines an auxiliary program (or an R function) that allows
postponing the evaluations of the candidate configurations. For each instance seen, the program

19

targetEvaluator is only invoked after all the calls to targetRunner for all alive candidate
configurations on the same instance have already finished.

When using targetEvaluator, targetRunner must not return the evaluation of the
configuration. If maxTime is used, targetRunner must return only execution time.

As an example, targetEvaluator may be used to dynamically find normalization bounds for
the output returned by an algorithm for each individual instance. In this case, targetRunner
will save the output of the algorithm, then the first call to targetEvaluator will examine the
output produced by all calls to targetRunner for the same instance, update the normalization
bounds and return the normalized output. Subsequent calls to targetEvaluator for the same
instance will simply return the normalized output.

A similar need arises when using quality measures for multi-objective optimization algorithms,
such as the hypervolume, which typically require specifying reference points or sets. By using
targetEvaluator, it is possible to dynamically compute the reference points or sets while irace

is running. Examples are provided at examples/hypervolume. See also Section 10.2 for more
information on how to tune multi-objective algorithms.

5.3.1 Target evaluator executable program

When targetEvaluator is an auxiliary executable program, it is invoked for each candidate
with the following arguments:

<id.configuration> <id.instance> <seed> <instance> <num.configs> <all.conf.id>

id.configuration an alphanumeric string that uniquely identifies a configuration;

id.instance an alphanumeric string that uniquely identifies a pair (instance, seed);

seed seed to be used for this evaluation;

instance string giving the instance to be used for this evaluation;

num.configs number of alive candidate configurations;

all.conf.id list of IDs of the alive configurations separated by whitespace.

The targetEvaluator executable must print a numerical value corresponding to the cost
measure of the candidate configuration on the given instance.

5.3.2 Target evaluator R function

When targetEvaluator is an R function, it is invoked for each candidate configuration as:

targetEvaluator(experiment, num.configurations, all.conf.id,

scenario, target.runner.call)

where experiment is a list that contains information about one experiment (see Section 5.2.2),
num.configurations is the number of configurations alive in the race, all.conf.id is the vector
of IDs of the alive configurations, scenario is the scenario list and target.tunner.call is the
string of the targetRunner execution line.

The function targetEvaluator must return a list with one element "cost", the numerical
value corresponding to the cost measure of the given configuration on the given instance.

The return list may also contain the following optional elements that are used by irace for
reporting errors in targetEvaluator:

20

error is a string used to report an error;

outputRaw is a string used to report the raw output of calls to an external program or
function;

call is a string used to report how targetEvaluator called an external program or
function;

5.4 Training instances

The irace options trainInstancesDir and trainInstancesFile specify where to find the train-
ing instances.

By default, the value of trainInstancesFile is empty. This means that irace will consider
all files within the directory given by trainInstancesDir (by default ./Instances) as training
instances.

Otherwise, the value of trainInstancesFile may specify a text file. The format of this file
is one instance per line, and the first alphanumeric string of each line corresponds to the instance
filename. The remainder text within each line are considered as extra parameters to be supplied
to targetRunner for this specific instance. The following example shows a training instance file
for the ACOTSP scenario:

Example training instances file

100/100-1_100-2.tsp --time 1

100/100-1_100-3.tsp --time 2

100/100-1_100-4.tsp --time 3

Figure 3: Training instances file for tuning ACOTSP.

The value of trainInstancesDir is always prefixed to the instance name, that is, the in-
stances names are treated as relative to this directory. For example, given the above file as
trainInstancesFile and the default value of trainInstancesDir (./Instances), then a pos-
sible invocation of targetRunner would be:

target-runner 1 113 734718 ./Instances/100/100-1_100-2.tsp --time 1 \

--alpha 2.92 ...

Training instances do not need to be files, irace just passes their names to targetRunner,
thus the names can denote benchmark functions or descriptive labels that the target algorithm
understands. The extra instance parameters could actually be the definition of the instance. In
that case, trainInstancesDir is usually set to the empty string (--train-instances-dir="").
For example,

Example training instances file

rosenbrock_20 --function=12 --nvar 20

rosenbrock_30 --function=12 --nvar 30

rastrigin_20 --function=15 --nvar 20

rastrigin_30 --function=15 --nvar 30

Optionally, when executing irace from the R console, the list of instances and their spe-
cific parameters might be provided explicitly by means of the variables scenario$instances

and scenario$instances.extra.params, respectively. Thus, the previous example would be
equivalent to:

21

scenario$instances <- c("rosenbrock_20", "rosenbrock_40",

"rastrigin_20", "rastrigin_40")

scenario$instances.extra.params <-

c("--function=12 --nvar 20", "--function=12 --nvar 30",

"--function=15 --nvar 20", "--function=15 --nvar 30")

By default, irace assumes that the target algorithm is stochastic (the value of the option
deterministic is 0), thus, the same configuration can be executed more than once on the same
instance and obtain different results. In this case, irace generates pairs (instance,seed) by
generating a random seed for each instance. In other words, configurations evaluated on the
same instance use the same random seed. This is a well-known variance reduction technique
called common random numbers [6]. If all available pairs are used within a run of irace, new
pairs are generated with different seeds, that is, a configuration evaluated more than once per
instance will use different random seeds.

If deterministic is set to 1, then each instance will be used at most once per race. This
setting should only be used for target algorithms that do not have a stochastic behavior and,
therefore, executing the target algorithm on the same instance several times with different seeds
does not make sense.

If deterministic is active and the number of training instances provided to irace is less than
firstTest (default: 5), no statistical test will be performed on the race.

Finally, irace randomly re-orders the sequence of instances provided. This random sampling
may be disabled by using the option sampleInstances (--sample-instances 0) if keeping the
order provided in the instance file is important.

We advise to always sample instances to prevent biasing the tuning due to the instance order.
See also Section 10.4

5.5 Initial configurations

The scenario option configurationsFile allows specifying a text file that contains an initial set
of configurations to start the execution of irace. If the number of initial configurations supplied in
the file is less than the number of configurations required by irace in the first iteration, additional
configurations will be sampled uniformly at random.

The format of the configurations file is one configuration per line, and one parameter value
per column. The first line must give the parameter name corresponding to each column (names
must match those given in the parameters file). Each configuration must satisfy the parameter
conditions (NA should be used for those parameters that are not enabled for a given configuration)
and not be forbidden by the constraints that define forbidden configurations (Section 5.6), if any.

Figure 4 gives an example file that corresponds to the ACOTSP scenario.

Initial candidate configuration for irace

algorithm localsearch alpha beta rho ants nnls dlb q0 rasrank elitistants

as 0 1.0 1.0 0.95 10 NA NA 0 NA NA

Figure 4: Initial configuration file (default.txt) for tuning ACOTSP.

We advise to use this feature when a default configuration of the target algorithm exists or
when different sets of good parameter values are known. This will allow irace to start the search
from those parameter values and attempt to improve their performance.

22

5.6 Forbidden configurations

The scenario option forbiddenFile specifies a text file containing logical expressions of param-
eter values that valid configurations should not satisfy, that is, no configuration that satisfies
any of these logical expressions will be evaluated by irace. This is useful when some combination
of parameter values could cause the target algorithm to crash, consume excessive CPU time or
memory, or when it is known that they do no produce satisfactory results.

The format of the forbidden configurations file is one constraint per line, where each constraint
is a logical expression (in R syntax) containing parameter names as defined by the parameterFile
(Section 5.1), values and logical operators. For a quick list of R logical operators see:

https://stat.ethz.ch/R-manual/R-devel/library/base/html/Syntax.html

If a parameter configuration is generated that makes any of the logical expressions evaluate
to TRUE, then the configuration is considered forbidden and it is discarded. Figure 5 shows an
example file that corresponds to the ACOTSP scenario.

Examples of valid logical operators are:

== != >= <= > < & | ! %in%

(alpha == 0.0) & (beta == 0.0)

Figure 5: Forbidden configurations file (forbidden.txt) for tuning ACOTSP.

If initial configuration are provided (Section 5.5), they must also comply with the constraints
defined in forbiddenFile.

Categorical and ordinal parameters are always treated as strings. Given a parameter like:

a "" c (0, 5, 10, 20)

then, a condition like a >10 will be true when a is 5, because comparisons between strings are
lexicographic and "10" is sorted before "5". As a work-around, you can convert the string to
numeric in the condition with as.numeric(a).

5.7 Repairing configurations

In some problems, the parameter values require complex constraints that cannot be implemented
by constraints defined in forbiddenFile (Section 5.6). The scenario option repairConfiguration

can be set to a user-defined R function that takes a single configuration generated by irace and
returns a “repaired “ configuration, thus allowing the implementation of any rules necessary to
satisfy arbitrary constraints on parameter values. The repairConfiguration function is called
after generating a configuration and before checking for forbidden configurations. The first argu-
ment is a 1-row data.frame with parameter names as the column names, the second argument
is the parameters list (Section 5.1.5), and the third argument is the scenario variable digits.
An example that makes all real-valued parameters sum up to one would be:

repairConfiguration <- function (configuration, parameters, digits)

{

isreal <- parameters$type[colnames(configuration)] %in% "r"

configuration[isreal] <- configuration[isreal] / sum(configuration[isreal])

return(configuration)

}

23

https://stat.ethz.ch/R-manual/R-devel/library/base/html/Syntax.html

6 Parallelization

A single run of irace can be done much faster by executing the calls to targetRunner (the runs
of the target algorithm) in parallel. There are four ways to parallelize a single run of irace:

• Parallel processes: The option parallel allows executing in parallel, within a single com-
puter, the calls to targetRunner, by means of the parallel R package. For example, adding
--parallel N to the command line of irace will launch in parallel up to N calls of the target
algorithm.

• MPI: By enabling the option mpi, calls to targetRunner will be executed in parallel by using
the message passing interface (MPI) protocol (requires the Rmpi R package). In this case,
the option parallel controls the number of slave nodes used by irace. For example, adding
--mpi 1 --parallel N to the command-line will create N slaves + 1 master, and execute
up to N calls of targetRunner in parallel.

The user is responsible for setting up the required MPI environment. MPI is commonly
available in computing clusters and requires launching irace in some particular way. An
example script for using MPI mode in a SGE cluster is given at $IRACE_HOME/examples/mpi/.

• Batch jobs clusters: Some computing clusters work by submitting jobs to a batch queue and
waiting for the jobs to finish. With the option batchmode (--batchmode [sge|pbs|torque|slurm]),
irace will launch in parallel as many calls of targetRunner as possible (parallel can be used
to set a limit) and use a cluster-specific method to wait for jobs to finish. If your cluster type
is not supported or not working as expected, please contact us and we will gladly add support
for it.

In this mode, irace must run in the submission node of the cluster, and hence, irace should
not be submitted to the cluster as a job (that is, neither qsub nor squeue should be used to
invoke irace itself). The user must call the appropriate job submission command (e.g., qsub)
from within targetRunner with the appropriate settings for their cluster, otherwise
targetRunner will not submit jobs to the cluster. The script must return a single string:
The job ID that allows irace to determine the status of the running job. Moreover, the use
of a separate targetEvaluator script is required to evaluate the results of targetRunner and
return them to irace.

See the examples in $IRACE_HOME/examples/batchmode-cluster/.

• targetRunnerParallel: This option allows users to fully control the parallelization of the
execution of targetRunner. Its value must be an R function that will be invoked by irace as
follows:

targetRunnerParallel(experiments, exec.target.runner, scenario)

where experiments is a list that contains elements with information about configurations
and instances to be executed (see Section 5.2 for a description), exec.target.runner is
the function within irace that takes care of executing targetRunner, check its output and,
possibly, retry in case of error (targetRunnerRetries) and scenario is the scenario list. The
targetRunnerParallel function may call the given exec.target.runner for each element
in the experiments list. A trivial example would be:

24

targetRunnerParallel <- function(experiments, exec.target.runner, scenario)

{

return (lapply(experiments, exec.target.runner, scenario = scenario))

}

However, the user is free to set up the calls in any way, perhaps implementing its own
replacement for exec.target.runner.

The only requirement is that the targetRunnerParallel function must return a list of the
same length as experiments, where each element is the output expected from the corre-
sponding call to targetRunner (see Section 5.2). The following is an example of the output
of a call to targetRunnerParallel with 2 experiments, in which the execution time is not
reported:

print(output)

[[1]]

[[1]]$cost

[1] 38546312

##

[[1]]$time

[1] NA

##

##

[[2]]

[[2]]$cost

[1] 39347203

##

[[2]]$time

[1] NA

7 Testing of configurations

Once the tuning process is finished, irace commonly returns a set of configurations correspond-
ing to the elite configurations at the end of the run, ordered from best to worst. To further
investigate the cost of these configurations, irace offers the possibility of evaluating these config-
urations on a test instance set, typically different from the training set used during the tuning
phase. These evaluations will use the same settings for parallel execution, targetRunner and
targetEvaluator.

The test instance set can be specified by the options testInstancesDir and testInstancesFile,
or by setting directly the variable scenario$testInstances, which behave the same as their
counterparts for the training instances (Section 5.4). In particular, each test instance is assigned
a different seed in the same way as done for the training instances. In principle, irace evaluates
each configuration on each testing instance just once, because evaluating one run on n instances
is always better than evaluating n′ runs on n/n′ instances [1]. However, if the number of in-
stances is limited, one can always duplicate instances as needed in the testInstancesFile, and
irace will assign a different random seed to each instance.

25

The options testNbElites and testIterationElites control which configurations are eval-
uated during the testing phase. In particular, setting testIterationElites = 1 will test not
only the final set of elite configurations (those returned at the end of the training phase), but
also the set of elites at the end of each race (iteration). The option testNbElites limits the
maximum number of configurations considered within each set. Some examples:

• testIterationElites = 0; testNbElites = 1 means that only the best configuration found
during the run of irace, the final best, will be used in the testing phase.

• testIterationElites = 1; testNbElites = 1 will test, in addition to the final best, the
best configuration found at each iteration.

• testIterationElites = 1; testNbElites = 2 will test the two best configurations found
at each iteration, in addition to the final best and second-best configurations.

The testing can be also (re-)executed at a later time by using the following R command:

testing.main(logFile = "./irace.Rdata")

This line will load the irace results found in the generated logFile file to perform the testing.
The testing results will be saved in the irace log file specified in scenario$logFile in the
iraceResults$testing R object. The structure of the object is described in Section 9.2. For
examples on how to analyse the data see Section 9.3.

Another alternative is to test a specific set of configurations using the command-line option
--only-test as follows:

irace --only-test configurations.txt

where configurations.txt has the same format as the set of initial configurations (Section 5.5).

8 Recovering irace runs

Problems like power cuts, hardware malfunction or the need to use computational power for other
tasks may occur during the execution of irace, terminating a run before completion. At the end
of each iteration, irace saves an R data file (logFile, by default "./irace.Rdata") that not
only contains information about the tuning progress (Section 9.2), but also internal information
that allows recovering an incomplete execution.

To recover an incomplete irace run, set the option recoveryFile to the log file previously
produced, and irace will continue the execution from the last saved iteration. The state of the
random generator is saved and loaded, therefore, as long as the execution is continued in the same
machine, the obtained results will be exactly the same as executing irace in one step (external
factors, such as CPU load and disk caches, may affect the target algorithm and that may affect
the results). You can specify the recoveryFile from the command-line or from the scenario file,
and execute irace as described in Section 4. For example, from the command-line use:

irace --recovery-file "./irace-backup.Rdata"

When recovering a previous run, irace will try to save data on the file specified by the logFile

option. Thus, you must specify different files for logFile and recoveryFile. Before recovering,
we strongly advise to rename the saved R data file as in the example above, which uses
"irace-backup.Rdata".

26

Do not change anything in the log file or the scenario file before recovering, as it may have
unexpected effects on the recovered run of irace. In case of doubt, please contact us first
(Section 13).

If your scenario uses targetEvaluator (Section 5.3) and targetEvaluator requires files created
by targetRunner, then recovery will fail if those files are not present in the execDir directory.
This can happen, for example, if you recover from a different directory than the one from which
irace was initially executed, or when execDir is set to a temporary directory for every irace run.
Thus, you need to copy the contents of the previous execDir into the new one.

9 Output and results

During its execution, irace prints information about the progress of the tuning in the standard
output. Additionally, after each iteration, an R data file is saved (logFile option) containing
the state of irace.

9.1 Text output

Figure 6 shows the output, up to the end of the first iteration, of a run of elitist irace applied to
the ACOTSP scenario with 1000 evaluations as budget.

First, irace gives the user a warning informing that it has found a file with the default scenario
filename and it will use it. Then, general information about the selected irace options is printed:

• nbIterations indicates the minimum number of iterations irace has calculated for the sce-
nario. Depending on the development of the tuning the final iterations that are executed can
be more.

• minNbSurvival indicates the minimum number of alive configurations that are required to
continue a race. When less configurations are alive the race is stopped and a new iteration
begins.

• nbParameters is the number of parameters of the scenario.

• seed is the number that was used to initialize the random number generator in irace.

• confidence level is the confidence level of the statistical test.

• budget is the total number of evaluations available for the tuning.

• time budget is the maximum execution time available for the tuning.

• mu is a value used for calculating the minimum number of iterations.

• deterministic indicates if the target algorithm is assumed to be deterministic.

At each iteration, information about the progress of the execution is printed as follows:

• experimentsUsedSoFar is the number of experiments from the total budget that have been
used up to the current iteration.

• timeUsed is the execution time used so far in the experiments. Only available when reported
in the targetRunner (activate it with the maxTime option).

27

Warning: A default scenario file './scenario.txt' has been found and will be read

2016-11-04 19:05:11 CET: Elitist race

Elitist new instances: 1

Elitist limit: 2

2016-11-04 19:05:11 CET: Initialization

nbIterations: 5

minNbSurvival: 5

nbParameters: 11

seed: 123

confidence level: 0.95

budget: 1000

mu: 5

deterministic: FALSE

2016-11-04 19:05:11 CET: Iteration 1 of 5

experimentsUsedSoFar: 0

remainingBudget: 1000

currentBudget: 200

nbConfigurations: 33

Markers:

x No test is performed.

- The test is performed and some configurations are discarded.

= The test is performed but no configuration is discarded.

! The test is performed and configurations could be discarded but elite configurations are preserved.

+-+-----------+------+-----+------------+-----------+--------+-----+----+------+

| | Instance| Alive| Best| Mean best| Exp so far| W time| rho|KenW| Qvar|

+-+-----------+------+-----+------------+-----------+--------+-----+----+------+

|x| 1| 33| 28| 23166743.00| 33|00:00:30| NA| NA| NA|

|x| 2| 33| 28| 25845047.50| 66|00:00:31|+0.97|0.99|0.0053|

|x| 3| 33| 23| 24976880.00| 99|00:00:30|+0.97|0.98|0.0078|

|x| 4| 33| 28| 25882919.25| 132|00:00:31|+0.98|0.98|0.0067|

|-| 5| 2| 23| 26349755.40| 165|00:00:31|-0.20|0.04|0.6000|

+-+-----------+------+-----+------------+-----------+--------+-----+----+------+

Best configuration: 23 mean value: 26349755.40

Description of the best configuration:

.ID. algorithm localsearch alpha beta rho ants nnls q0 dlb rasrank elitistants .PARENT.

23 23 acs 3 4.2705 3.679 0.8752 19 17 0.6667 1 NA NA NA

2016-11-04 19:07:47 CET: Elite configurations:

algorithm localsearch alpha beta rho ants nnls q0 dlb rasrank elitistants

23 acs 3 4.2705 3.6790 0.8752 19 17 0.6667 1 NA NA

28 acs 3 3.8770 3.7682 0.0517 39 17 0.8505 0 NA NA

Figure 6: Sample text output of irace.

• remainingBudget is the number of experiments that have not been used yet.

• timeEstimate estimation of the mean execution time. This is used to calculate the remaining
budget when maxTime is used.

• currentBudget is the number of evaluations irace has allocated to the current iteration.

• nbConfigurations is the number of configurations irace will use in the current iteration. In
the first iteration, this number of configurations include the initial configurations provided;
in later iterations, it includes the elite configurations from the previous iterations.

28

After the iteration information, a table shows the progress of the iteration execution. Each
row of the table gives information about the execution of an instance in the race. The first
column contains a symbol that describes the results of the statistical test:

|x| No statistical test was performed for this instance. The options firstTest and eachTest

control on which instances the statistical test is performed.

|-| Statistical test performed and configurations have been discarded. The column Alive gives
an indication of how many configurations have been discarded.

|=| Statistical test performed and no configurations have been discarded. This means irace

needs to evaluate more instances to identify the best configurations.

|!| This indicator exists only for the elitist version of irace. It indicates that the statistical test
was performed and some elite configurations appear to show bad performance and could be
discarded but they are kept because of the elitist rules. See option elitist in Section 11
for more information.

The instance column gives the number of (instance,seed) pair executed. This number
corresponds to the index of the list found in state$.irace$instancesList. See Section 9.2 for
more information.

The Alive column gives the number of configurations that have not been discarded after the
statistical test was performed. The column Best gives the ID of the best configuration according
to the instances seen so far in this race (i.e., not including previous iterations). The Mean best

column gives the mean of the best configuration across the instances seen so far in this race. The
Exp so far gives the number of experiments performed so far. The W time column gives the
wall-clock time spent on that instance.

The columns rho, KenW, and Qvar give the values of Spearman’s rank correlation coefficient
rho, Kendall’s concordance coefficient W, and a variance measure described in [7], respectively,
of the configurations across the instances executed so far in this race. Use rho, KenW and Qvar to
analyze how consistent is the performance of the configurations across the instances. Note that
these values are only valid for the instances that were already executed in the iteration. Values
close to 1 for rho and KenW and values close to 0 for Qvar indicate that the scenario is highly
homogeneous. For heterogeneous scenarios, we provide advice in Section 10.4.

Finally, irace outputs the best configuration found and a list of the elite configurations. The
elite configurations are configurations that did not show statistically significant difference during
the race; they are ordered according to their mean performance on the executed instances.

9.2 Data file output

The R data file created by irace (logFile) contains an object called iraceResults. You can
load this data in the R console by:

load("irace-output.Rdata")

The iraceResults object is a list, and the elements of a list can be accessed in R by using
the $ or [[]] operators:

> iraceResults$irace.version

[1] "2.2.1689:1690M"

29

> iraceResults[["irace.version"]]

[1] "2.2.1689:1690M"

The iraceResults list contains the following elements:

• scenario: The scenario R object containing the irace options used for the execution. See
Section 11 and the help of the irace package; open an R console and type: ?defaultScenario.
See Section 11 for more information.

• parameters: The parameters R object containing the description of the target algorithm
parameters. See Section 5.1.

• allConfigurations: The target algorithm configurations generated by irace. This object is
a data frame, each row is a candidate configuration; the first column (.ID.) indicates the
internal identifier of the configuration; the final column (.PARENT.) is the identifier of the
configuration from which the current configuration was sampled; and the remaining columns
correspond to the parameter values; each column is named as the parameter name specified
in the parameter object.

> head(iraceResults$allConfigurations)

.ID. algorithm localsearch alpha beta rho ants nnls

1 1 as 3 2.8815 3.9545 0.4553 72 8

2 2 ras 1 4.1578 2.1517 0.5030 31 13

3 3 eas 0 2.7373 6.4424 0.6003 35 NA

4 4 ras 1 1.9410 1.6048 0.8639 96 30

5 5 mmas 2 0.5409 4.8703 0.1085 20 18

6 6 ras 0 4.3323 7.0857 0.7628 19 NA

q0 dlb rasrank elitistants .PARENT.

1 NA 0 NA NA NA

2 NA 1 33 NA NA

3 NA <NA> NA 669 NA

4 NA 0 100 NA NA

5 NA 1 NA NA NA

6 NA <NA> 36 NA NA

• allElites: A list that contains one element per iteration. Each element contains the inter-
nal identifier of the elite candidate configurations of the corresponding iteration (identifiers
correspond to allConfigurations$.ID.).

> print(iraceResults$allElites)

[[1]]

[1] 23 28

[[2]]

[1] 51 41 28 23

30

[[3]]

[1] 65 51 81 71

[[4]]

[1] 65 102 109

[[5]]

[1] 65 140 136 138 142

[[6]]

[1] 65 136 140 138 146

[[7]]

[1] 65 140 136 138 146

The configurations are ordered by mean performance, that is, the ID of the best configuration
corresponds to the first ID. To obtain the values of the parameters of all elite configurations
found by irace use:

> getFinalElites(irace.logFile = "irace-output.Rdata", n = 0)

.ID. algorithm localsearch alpha beta rho ants nnls

1 65 acs 3 1.6204 2.3432 0.65 40 10

2 140 acs 3 1.5916 4.581 0.6623 42 12

3 136 acs 3 4.7387 2.6375 0.4605 66 19

4 138 acs 3 1.657 3.7568 0.6338 39 7

5 146 acs 3 2.9621 3.0738 0.6904 56 16

q0 dlb rasrank elitistants .PARENT.

1 0.0532 1 NA NA 51

2 0.0454 1 NA NA 65

3 0.8355 1 NA NA 102

4 0.0325 1 NA NA 65

5 0.0275 1 NA NA 65

• iterationElites: A vector containing the best candidate configuration ID of each iteration.
The best configuration found corresponds to the last one of this vector.

> print(iraceResults$iterationElites)

[1] 23 51 65 65 65 65 65

One can obtain the full configuration with:

> last <- length(iraceResults$iterationElites)

> id <- iraceResults$iterationElites[last]

> getConfigurationById(irace.logFile = "irace-output.Rdata", ids = id)

31

.ID. algorithm localsearch alpha beta rho ants nnls

65 65 acs 3 1.6204 2.3432 0.65 40 10

q0 dlb rasrank elitistants .PARENT.

65 0.0532 1 NA NA 51

• experiments: A matrix with configurations as columns and instances as rows. Column names
correspond to the internal identifier of the configuration (allConfigurations$.ID.). The
results of a particular configuration can be obtained using:

> # As an example, we use the best configuration found

> best.config <- getFinalElites(iraceResults = iraceResults, n = 1)

> id <- best.config$.ID.

> # Obtain the configurations using the identifier

> # of the best configuration

> all.exp <- iraceResults$experiments[,as.character(id)]

> all.exp[!is.na(all.exp)]

1 2 3 4 5 6

23092770 28408585 23215699 28532010 28196078 23374947

7 8 9 10 11 12

28440962 28393330 23131730 23273042 28425945 23264980

13 14 15 16

28078660 28420396 23411677 28479495

When a configuration was not executed on an instance, its value is NA. A configuration may
not be executed on an instance because: 1) it was not created yet when the instance was
used, or 2) it was discarded by the statistical test and not executed on subsequent instances,
or 3) the race terminated before this instance was considered.

Row names correspond to the identifier of the (instance,seed) pairs defined in
state$.irace$instancesList. The instance and seed used for a particular experiment
can be obtained with:

> # As an example, we get seed and instance of the experiments

> # of the best candidate.

> # Get index of the instances

> pair.id <- names(all.exp[!is.na(all.exp)])

> index <- iraceResults$state$.irace$instancesList[pair.id,"instance"]

> # Obtain the instance names

> iraceResults$scenario$instances[index]

[1] "1000-3.tsp" "1500-3.tsp" "1000-4.tsp" "1500-2.tsp"

[5] "1500-1.tsp" "1000-1.tsp" "1500-5.tsp" "1500-4.tsp"

[9] "1000-2.tsp" "1000-5.tsp" "1500-5.tsp" "1000-5.tsp"

[13] "1500-1.tsp" "1500-4.tsp" "1000-1.tsp" "1500-2.tsp"

> # Get the seeds

> iraceResults$state$.irace$instancesList[index,"seed"]

32

[1] 1291423063 618989142 1106017917 781881326 1890315053

[6] 512660239 369736010 366457852 2066650079 864519670

[11] 369736010 864519670 1890315053 366457852 512660239

[16] 781881326

• experimentLog: A matrix with columns iteration,instance,configuration. This matrix
contains the log of all the experiments that irace performs during its execution. The instance
column refers to the index of the state$.irace$instancesList data frame.

• softRestart: A logical vector that indicates if a soft restart was performed on each iteration.
If FALSE, then no soft restart was performed. See option softRestart in Section 11.

• state: A list that contains the state of irace, the recovery (Section 8) is done using the
information contained in this object. The probabilistic model of the last elite configurations
can be found here by doing:

> # As an example, we get the model probabilities for the

> # localsearch parameter.

> iraceResults$state$model["localsearch"]

$localsearch

$localsearch$`65`

[1] 0.0003406192 0.0003406192 0.0003406192 0.9989781425

$localsearch$`136`

[1] 0.0003406192 0.0003406192 0.0003406192 0.9989781425

$localsearch$`140`

[1] 0.0003406192 0.0003406192 0.0003406192 0.9989781425

$localsearch$`138`

[1] 0.0003406192 0.0003406192 0.0003406192 0.9989781425

$localsearch$`146`

[1] 0.0003406192 0.0003406192 0.0003406192 0.9989781425

> # The order of the probabilities corresponds to:

> iraceResults$parameters$domain$localsearch

[1] "0" "1" "2" "3"

The example shows a list that has one element per elite configuration (ID as element name).
In this case, localsearch is a categorical parameter and it has a probability for each of its
values.

• testing: A list that contains the testing results. The list contains the following elements:

– experiments: Matrix of experiments in the same format as the
iraceResults$experiments matrix. The column names indicate the candidate
configuration identifier and the row names contain the name of the instances.

33

> # Get the experiments of the testing

> iraceResults$testing$experiments

23 51 65 140 136 138

1t 23092745 23051175 22990020 23037470 23075260 22950192

2t 23194161 23161962 23088094 23059061 23091891 23129660

3t 22945832 22897901 22859548 22843498 22853508 22951710

4t 23267377 23232684 23230627 23222039 23252091 23214003

5t 23395153 23394636 23341288 23397462 23357325 23363846

6t 28501197 28516973 28509623 28385412 28352280 28403105

7t 28268948 28297752 28327431 28353541 28379836 28316938

8t 28130418 28143995 28110054 28133792 28200990 28169016

9t 28189479 28247877 28286336 28199681 28216944 28151761

10t 28620723 28687492 28627346 28619705 28674665 28671578

146

1t 22992162

2t 23090099

3t 22853912

4t 23192286

5t 23338997

6t 28541594

7t 28361716

8t 28179508

9t 28139094

10t 28635274

– seeds: The seeds used for the experiments, each seed corresponds to each instance in the
rows of the test experiments matrix.

> # Get the experiments of the testing

> iraceResults$testing$seeds

1t 2t 3t 4t 5t

121390228 711920537 1468460454 1648782686 1402412889

6t 7t 8t 9t 10t

2005328808 7550449 812584389 1382343924 212756813

In the example, instance 1000-1.tsp is executed with seed 121390228.

9.3 Analysis of results

The final configurations returned by irace are the elites of the final race. They are reported in
decreasing order of performance, that is, the best configuration is reported first.

If testing is performed, you can further analyze the resulting best configurations by performing
statistical tests in R or just plotting the results:

> results <- iraceResults$testing$experiments

> # Wilcoxon paired test

> conf <- gl(ncol(results), # number of configurations

+ nrow(results), # number of instances

34

+ labels = colnames(results))

> pairwise.wilcox.test (as.vector(results), conf, paired = TRUE, p.adj = "bonf")

Pairwise comparisons using Wilcoxon signed rank test

data: as.vector(results) and conf

23 51 65 140 136 138

51 1 - - - - -

65 1 1 - - - -

140 1 1 1 - - -

136 1 1 1 1 - -

138 1 1 1 1 1 -

146 1 1 1 1 1 1

P value adjustment method: bonferroni

> # Plot the results

> boxplot (iraceResults$testing$experiments,

+ ylab = "Solution cost",

+ xlab = "Configuration ID")

35

23 51 65 140 136 138 146

2
.3

e
+

0
7

2
.4

e
+

0
7

2
.5

e
+

0
7

2
.6

e
+

0
7

2
.7

e
+

0
7

2
.8

e
+

0
7

Configuration ID

S
o

lu
ti
o

n
 c

o
s
t

Figure 7: Boxplot of the testing results of the best configurations.

During the tuning, irace iteratively updates the sampling models of the parameters to focus
on the best regions of the parameter search space. The frequency of the sampled configurations
can provide insights on the parameter search space. We provide a function for plotting the
frequency of the sampling of a set of configurations. For more information on this function,
please see the R help, type in the R console: ?parameterFrequency. The following example
plots the frequency of the parameters sampled during one irace run:

> parameterFrequency(iraceResults$allConfigurations, iraceResults$parameters)

Plotting: algorithm

Plotting: localsearch

Plotting: alpha

Plotting: beta

Plotting: rho

Plotting: ants

Plotting: nnls

Plotting: q0

Plotting: dlb

Plotting: rasrank

Plotting: elitistants

36

as eas ras acs

algorithm

values

F
re

q
u
e
n
c
y

0
4
0

8
0

0 1 2 3

localsearch

values

F
re

q
u
e
n
c
y

0
4
0

8
0

alpha

values

P
ro

b
a
b
ili

ty
 d

e
n
s
it
y

0 1 2 3 4 5

0
.0

0
0
.2

5

beta

values

P
ro

b
a
b
ili

ty
 d

e
n
s
it
y

0 2 4 6 8 10

0
.0

0
0
.1

5

rho

values

P
ro

b
a
b
ili

ty
 d

e
n
s
it
y

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

1
.0

ants

values

P
ro

b
a
b
ili

ty
 d

e
n
s
it
y

20 40 60 80 100

0
.0

0
0

0
.0

1
5

nnls

values

P
ro

b
a
b
ili

ty
 d

e
n
s
it
y

10 20 30 40 50

0
.0

0
0
.0

3

q0

values

P
ro

b
a
b
ili

ty
 d

e
n
s
it
y

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

1
.0

2
.0

0 1 <NA>

dlb

values

F
re

q
u
e
n
c
y

0
4
0

1
0
0

rasrank

values

P
ro

b
a
b
ili

ty
 d

e
n
s
it
y

0 20 40 60 80 100

0
.0

0
0

0
.0

1
5

elitistants

values

P
ro

b
a
b
ili

ty
 d

e
n
s
it
y

0 200 400 600

0
.0

0
0

0
.0

0
3

Figure 8: Parameters sampling frequency.

By using parallel coordinates plots, it is possible to analyze how the parameters interact with
each other. For more information on this function, please see the R help, type in the R console:
(?parallelCoordinatesPlot). The following example shows how to create a parallel coordinate
plot of the configurations in the last two iterations of irace.

Get last iteration number

last <- length(iraceResults$iterationElites)

Get configurations in the last two iterations

conf <- getConfigurationByIteration(iraceResults = iraceResults,

iterations = c(last - 1, last))

parallelCoordinatesPlot (conf, iraceResults$parameters,

37

param_names = c("algorithm", "alpha",

"beta", "rho", "q0"),

hierarchy = FALSE)

Parameters parallel coordinates

a
lg

o
ri

th
m

a
lp

h
a

b
e

ta

rh
o

q
0

as

mmas

eas

ras

acs

NA

0

1

2

3

4

5

<NA>

0

2

4

6

8

10

<NA>

0

0.2

0.4

0.6

0.8

1

<NA>

0

0.2

0.4

0.6

0.8

1

<NA>

Figure 9: Parallel coordinate plots of the parameters of the configurations in the last two itera-
tions of a run of irace.

10 Advanced topics

10.1 Tuning budget

Irace provides two options for setting the total tuning budget (maxExperiments and maxTime).
Before setting the budget for the tuning, please consider the number of parameters that need
to be tuned, available processing power and available time. The option maxExperiments limits
the number of executions of targetRunner performed by irace. The option maxTime limits the
total time of the targetRunner executions. When this latter option is used, targetRunner must
return the evaluation cost together with the execution time ("cost time").

38

When the goal is to minimize the computation time of an algorithm, and you wish to use
maxTime as the tuning budget, targetRunner must return the time also as the evaluation cost,
that is, return the time two times as "time time".

When using targetEvaluator and using maxTime as tuning budget, targetRunner just returns
the time ("time") and targetEvaluator returns the cost.

When using maxTime, irace estimates the execution time of each targetRunner execution
before the configuration. The amount of budget used for the estimation is set with the option
budgetEstimation (default is 2%). The obtained estimation is adjusted after each iteration
using the obtained results and it is used to estimate the number of experiments that can be
executed. Internally, irace uses the number of remaining experiments to adjust the number of
configurations tested in each race.

10.2 Multi-objective tuning

Currently, irace only optimizes one cost value at a time, which can be solution cost, computa-
tion time or any other objective that is returned to irace by the targetRunner. If the target
algorithm is multi-objective, it will typically return not a single cost value, but a set of objective
vectors (typically, a Pareto front). For tuning such a target algorithm with irace, there are two
alternatives. If the algorithm returns a single vector of objective values, they can be aggregated
into one single number by using, for example, a weighted sum. Otherwise, if the target algorithm
returns a set of objective vectors, a unary quality metric (e.g., the hypervolume) may be used to
evaluate the quality of the set.3

The use of aggregation or quality metrics often requires normalizing the different objectives.
If normalization bounds are known a priori for each instance, normalized values can be computed
by targetRunner. Otherwise, the bounds may be dynamically computed while running irace, by
using targetEvaluator. In this case, targetRunner will save the output of the algorithm, then
the first call to targetEvaluator will examine the output produced by all calls to targetRunner

for the same instance, update the normalization bounds and return the normalized output.
Subsequent calls to targetEvaluator for the same instance will simply return the normalized
output. A similar approach can be used to dynamically compute the reference points or sets
often required by unary quality metrics.

For more information about defining a targetEvaluator, see Section 5.3. Examples of
tuning a multi-objective target algorithm using the hypervolume can be found in the examples
at $IRACE_HOME/examples/hypervolume and $IRACE_HOME/examples/moaco.

10.3 Tuning for minimizing computation time

Irace was developed primarily for tuning algorithms that report solution cost. When using irace

for tuning algorithms that report computation time to reach a target, the execution time of a
configuration must be returned instead of the cost by the targetRunner. Even though irace

can be used for minimizing computation time, irace may itself require more time to do so in its
current version than other methods, such as ParamILS4 or SMAC5, since it does not make use of
techniques, such as “adaptive capping”, that avoid long runs of the target algorithm.

We are currently extending irace with an adaptive capping mechanism.

3An implementation is publicly available at http://lopez-ibanez.eu/hypervolume [3]
4http://www.cs.ubc.ca/labs/beta/Projects/ParamILS/
5http://www.cs.ubc.ca/labs/beta/Projects/SMAC/

39

http://lopez-ibanez.eu/hypervolume
http://www.cs.ubc.ca/labs/beta/Projects/ParamILS/
http://www.cs.ubc.ca/labs/beta/Projects/SMAC/

10.4 Heterogeneous scenarios

We classify a scenario as homogeneous when the target algorithm has a consistent performance
regarding the instances; roughly speaking, good configurations tend to perform well and bad
configurations tend to perform poorly on all instances of the problem. By contrast, in hetero-
geneous scenarios, the target algorithm has an inconsistent performance on different instances,
that is, some configurations perform well for a subset of the instances, while they perform poorly
for a different subset.

When facing a heterogeneous scenario, the first question should be whether the objective of
tuning is to find configurations that perform reasonably well over all instances, even if they are
not the best ones in any of them. If this is not the case, then it would be better to partition
instances into more similar subsets and execute irace separately on each subset. This will lead to
a portfolio of algorithm configurations, one for each subset, and algorithm selection techniques
can be used to select the best configuration from the portfolio when facing a new instance.

If finding an overall good configuration for all the instances is the objective, then we recom-
mend that instances are randomly sampled (option sampleInstances), unless one can provide
the instances in a particular order that does not bias the tuning towards any subset. For example,
let’s assume a heterogeneous scenario with two classes of instances. If training instances are not
sampled and the first ten instances belong to only one class, the tuning will be biased towards
configurations that perform good for those instances. An optimal order would not ever present
consecutively two instances of the same type.

In addition, it may be useful to increase the number of instances executed before doing a
statistical test in order to see more instance classes before discarding configurations. The option
elitistNewInstances in elitist irace (option elitist) can be used to increase the number of
new instances executed in each iteration, e.g., --elitist-new-instances 5 (default value is
1). For the non-elitist irace, the option firstTest may be used for the same purpose, e.g.,
--first-test 10 (default value is 5).

While executing irace, the homogeneity of the scenario can be observed by examining the
values of Spearman’s rank correlation coefficient and Kendall’s concordance coefficient in the
text output of irace. See Section 9.1 for more information.

10.5 Choosing the statistical test

The statistical test used in irace identifies statistically bad performing configurations that can be
discarded from the race in order to save budget. Different statistical tests use different criteria
to compare the cost of the configurations, which has an effect on the tuning results.

Irace provides two types of statistical tests (option testType). Each test has different char-
acteristics that are beneficial for different goals:

• Friedman test (F-test): This test uses the ranking of the configurations to analyze the
differences between their performance. This makes the test suitable for scenarios where the
numerical results and their scale are not significant to assess the cost of the configurations. For
example, if the results for different instances have high numerical differences and evaluating
the performance of the configurations using the mean could be deceiving. We recommend
to use the F-test (default) when tuning for solution cost and whenever the best performing
algorithm should be among the best in as many instances as possible.

• Student’s t-test (t-test): This test uses the mean performance of the configurations to
analyze the differences between the configurations. This makes the test suitable for scenarios
where the differences between values obtained for different instances are relevant to assess

40

good configurations. We recommend using t-test, in particular, when the target algorithm is
minimizing computation time and, in general, whenever the best configurations should obtain
the best average solution cost.

The confidence level of the tests may be adjusted by using the option confidence. Increasing
the value of confidence leads to a more strict statistical test. Keep in mind that a stricter test
will require more budget to identify which configurations perform worse. A less strict test discards
configurations faster by requiring less evidence against them and, therefore, it is more likely to
discard good configurations.

10.6 Complex parameters

Some parameters may have complex dependencies. Ideally, parameters should be defined in the
way that is more likely to help the search performed by irace. For example, when tuning a branch
and bound algorithm, one may have the following parameters:

• branching (b) that takes values in {0,1,2,3}, where 0 indicates no branching will be used
and the rest are different types of branching.

• stabilization (s) that takes values in {0,1,2,3,4,5,6,7,8,9,10}, of which for b=0 only
{0,1,2,3,4,5} are relevant.

In this case, it is not possible to describe the parameter space by defining only two parameters
for irace. An extra parameter must be introduced as follows:

name label type range condition

b "-b " c (0,1,2,3)

s1 "-s " c (0,1,2,3,4,5) | b == "0"

s2 "-s " c (0,1,2,3,4,5,6,7,8,9,10) | b != "0"

Parameters whose values depend on the value of other parameters may also require using extra
parameters or changing the parameters and processing them in targetRunner. For example,
given the following parameters:

• Population size (p) takes the integer values [1, 100].

• Selection size (s) takes the same values but no more than the population size, that is [1,p].

In this case, it is possible to describe the parameters p and s using surrogate parameters for
irace that represent a ratio of the original interval as follows:

name label type range

p1 "-p " r (0.0,1.0)

s1 "-s " r (0.0,1.0)

and the values must be further processed in targetRunner. For example, if the surrogate pa-
rameter p1 has value 0.5, mapping it to the original interval of [1, 100], we obtain a value of
p = 51. More than one value of the surrogate parameter (e.g., 0.501 and 0.502) result in the
same final value. Parameter s has an interval that depends on the final value of parameter p,
if the surrogate parameter s1 has value 0.3, it must be mapped to the interval [1, 51], giving a
value of s = 16.

The processing within targetRunner can also split and join parameters. For example, assume
the following parameters:

41

name label type range

m "-m " i (1,250)

e "-e " r (0.0,2.0)

These parameters could be used to define a value m · 10e for another parameter (--strength)
not known by irace. Then, targetRunner takes care of parsing -m and -e, computing the strength
value and passing the parameter --strength together with its value to the target algorithm.

10.7 Unreliable target algorithms

There are some situations in which the target algorithm may fail to execute correctly. By default,
irace stops as soon as a call to targetRunner or targetEvaluator fails, which helps to detect
bugs in the target algorithm. Sometimes the failure cannot be fixed because it is due to system
problems, network issues, memory limits, bugs for which no fix is available, or fixing them is
impossible because there is no access to the source code.

In those cases, if the failure is caused by random errors or transient system problems, one
may wish to ignore the error and try again the same call in the hope that it succeeds. The option
targetRunnerRetries indicates the number of times a targetRunner execution is repeated if it
fails. Use this option only if you know additional repetitions could be successful.

If the target algorithm consistently fails for a particular set of configurations, these configu-
rations may be declared as forbidden (forbiddenFile) so that irace avoids them. On the other
hand, if the configurations that cause the problem are unknown, the targetRunner script should
detect the failure and return a penalty cost (a very large cost value) so that irace discards the
failing configuration as soon as possible. The penalty must be set according to the range of
the cost measure and the goals of the tuning. For example, a configuration that crashes on a
particular instance, e.g., by running out of memory, might still be considered acceptable if it
gives very good results on other instances.

11 List of command-line and scenario options

Most irace options can be specified in the command line using a flag or in the irace scenario
file using the option name (or setting their value in the scenario list passed to the various R

functions exported by the package). This section describes the various irace options that can be
specified by the user in this way.

11.1 General options

scenarioFile flag: -s or --scenario default: ./scenario.txt
File that contains the scenario setup and other irace options. All options listed in this
section can be included in this file. See $IRACE_HOME/templates/ for an example.

debugLevel flag: --debug-level default: 0
Level of information to display in the text output of irace. A value of 0 silences all debug
messages. Higher values provide more verbose debug messages. To see details about the
text output of irace, see Section 9.1.

seed flag: --seed default: NA
Seed to initiallize the random number generator. The seed must be a positive integer. If
the seed is NA, a random seed will be generated.

42

execDir flag: --exec-dir default: ./
Directory where the target algorithm executions will be performed. The default execution
directory is the current directory.

The execution directory must exist before executing irace, it will not be created
automatically.

logFile flag: -l or --log-file default: ./irace.Rdata
File to save tuning results as an R dataset. The provided path must be either an absolute
path or relative to execDir. See Section 9.2 for details on the format of the R dataset.

repairConfiguration default: NULL
User-defined R function that takes a configuration generated by irace and repairs it. See
Section 5.7 for details.

11.2 Elitist irace

elitist flag: --elitist default: 1
Enable/disable elitist irace.

In the elitist version of irace [5], elite configurations are not discarded from the race until
non-elite configurations have been executed on the same instances as the elite configura-
tions.

Each race begins by evaluating all configurations on a number of new instances. This
number is defined by the option elitistNewInstances. After the new instances have
been evaluated, configurations are evaluated on instances seen in the previous race. Elite
configurations already have results for most of these previous instances and, therefore, do
not need to be re-evaluated. Finally, after configurations have been evaluated on all these
instances, the race continues by evaluating additional new instances.

The statistical tests can be performed at any moment during the race according to the
setting of the options firstTest and eachTest. The elitist rule forbids discarding elite
configurations, even if the show poor performance, until the last of the previous instances
is seen in the race.

The non-elitist version of irace can discard elite configurations at any point of the race,
instances are not re-used from one race to the next, and new instances are sampled for
each race.

elitistNewInstances flag: --elitist-new-instances default: 1
Number of new instances added to each race before evaluating instances from previous
races (only for elitist irace).

If deterministic is TRUE then the number of elitistNewInstances will be reduced or set
to 0 once all instances have been evaluated.

elitistLimit flag: --elitist-limit default: 2

Maximum number of statistical tests performed without successful elimination after all
instances from the previous race have been evaluated. If the limit is reached, the current
race is stopped. Only valid for elitist irace. Use 0 to disable the limit.

43

11.3 Internal irace options

sampleInstances flag: --sample-instances default: 1
Enable/disable the sampling of the training instances. If the option sampleInstances is
disabled, the instances are used in the order provided in the trainInstancesFile or in
the order they are read from the trainInstancesDir whentrainInstancesFile is not
provided. For more information about training instances see Section 5.4.

nbIterations flag: --iterations default: 0
Minimum number of iterations to be executed. Each iteration involves the generation of
new configurations and the use of racing to select the best configurations. By default (with
0), irace calculates the minimum number of iterations as N iter = ⌊2 + log

2
Nparam⌋, where

Nparam is the number of non-fixed parameters to be tuned. We recommend to use the
default value.

nbExperimentsPerIteration flag: --experiments-per-iteration default: 0
Number of experiments to execute per iteration. By default (when equal to 0), this value
changes for each iteration and depends on the iteration index and the remaining budget.
Further details are provided in the irace paper [5]. We recommend to use the default value.

nbConfigurations flag: --num-configurations default: 0
The number of configurations that will be raced at each iteration. By default (when equal to
0), this value changes for each iteration and depends on nbExperimentsPerIteration, the
iteration index and mu. The precise details are given in the irace paper [5]. We recommend
to use the default value.

mu flag: --mu default: 5
This value is used to determine the number of configurations to be sampled and evaluated
at each iteration. The number of configurations will be calculated such that there is enough
budget in each race to evaluate all configurations on at least µ+min(5, j) training instances,
where j is the index of the current iteration. The value of µ will be adjusted to never be
lower than the value of firstTest. We recommend to use the default value and, if needed,
adjust firstTest and eachTest, instead.

minNbSurvival flag: --min-survival default: 0
The minimum number of configurations needed to continue the execution of a race. If
the number of configurations alive in the race is not larger than this value, the current
iteration will stop and a new iteration will start, even if there is budget left to continue
the current race. By default (when equal to 0), the value is calculated automatically as
⌊2 + log

2
Nparam⌋, where Nparam is the number of non-fixed parameters to be tuned.

softRestart flag: --soft-restart default: 1
Enable/disable the soft-restart strategy that avoids premature convergence of the proba-
bilistic model. When a sampled configuration is similar to its parent configuration, the
probabilistic model of these configurations is soft restarted. The soft-restart mechanism is
explained in the irace paper [5]. The similarity of categorical and ordinal parameters is
given by the hamming distance, and the option softRestartThreshold defines the simi-
larity of numerical parameters.

softRestartThreshold flag: --soft-restart-threshold default: NA
Soft restart threshold value for numerical parameters. If NA, it is computed as 10−digits,
where digits corresponds to the irace option explained in this section.

44

11.4 Target algorithm parameters

parameterFile flag: -p or --param-file default: ./parameters.txt
File that contains the description of the parameters of the target algorithm. See Section 5.1.

digits flag: --digits default: 4
Maximum number of decimal places that are significant for numerical (real) parameters.

forbiddenFile flag: --forbidden-file default:
File containing a list of logical expressions that cannot be true for any evaluated configu-
ration. If empty or NULL, no forbidden configurations are considered. See Section 5.6 for
more information.

11.5 Target algorithm execution

targetRunner flag: --target-runner default: ./target-runner
This option defines a script or an R function that evaluates a configuration of the target
algorithm on a particular instance. See Section 5.2 for details.

targetRunnerRetries flag: --target-runner-retries default: 0
Number of times to retry a call to targetRunner if the call failed.

targetRunnerData default: NULL
Optional data passed to targetRunner. This is ignored by the default targetRunner

function, but it may be used by custom targetRunner functions to pass persistent data
around.

targetRunnerParallel default: NULL
Optional R function to provide custom parallelization of targetRunner. See Section 6 for
more information.

targetEvaluator flag: --target-evaluator default: ""
Optional script or R function that returns a numerical value for an experiment after all
configurations have been executed on a given instance using targetRunner. See Section 5.3
for details.

deterministic flag: --deterministic default: 0
Enable/disable deterministic target algorithm mode. If the target algorithm is determin-
istic, configurations will be evaluated only once per instance. See Section 5.4 for more
information.

If the number of instances provided is less than the value specified for the option
firstTest, no statistical test will be performed.

parallel flag: --parallel default: 0
Number of calls of the targetRunner to execute in parallel. A value of 0 means no paral-
lelization. For more information on parallelization, see Section 6.

loadBalancing flag: --load-balancing default: 1
Enable/disable load-balancing when executing experiments in parallel. Load-balancing
makes better use of computing resources, but increases communication overhead. If this
overhead is large, disabling load-balancing may be faster. See Section 6.

45

mpi flag: --mpi default: 0
Enable/disable use of Rmpi to execute the targetRunner in parallel using MPI protocol.
When mpi is enabled, the option parallel is the number of slave nodes. See Section 6.

batchmode flag: --batchmode default: 0
Specify how irace waits for jobs to finish when targetRunner submits jobs to a batch
cluster: sge, pbs, torque or slurm (targetRunner must submit jobs to the cluster using.
for example, qsub). See Section 6.

11.6 Initial configurations

configurationsFile flag: --configurations-file default:
File containing a list of initial configurations. If empty or NULL, irace will not use initial
configurations. See Section 5.5.

The provided configurations must not violate the constraints described in parameterFile

and forbiddenFile.

11.7 Training instances

trainInstancesDir flag: --train-instances-dir default: ./Instances
Directory where tuning instances are located; either absolute path or relative to current
directory. See Section 5.4.

trainInstancesFile flag: --train-instances-file default:
File containing a list of instances and optionally additional parameters for them. See
Section 5.4.

If trainInstancesDir is specified, the path contained in trainInstancesFile must be
relative to the directory. When using an absolute path or for defining instances that are
not files, set trainInstancesDir="".

11.8 Tuning budget

maxExperiments flag: --max-experiments default: 0
The maximum number of runs (invocations of targetRunner) that will be performed. It
determines the maximum budget of experiments for the tuning. See Section 10.1.

maxTime flag: --max-time default: 0
The maximum total time in seconds for the runs of targetRunner that will be performed.
The mean execution time of each run is estimated in order to calculate the maximum
number of experiments (see option budgetEstimation). When maxTime is positive, then
targetRunner must return the execution time as its second output. See Section 10.1.

budgetEstimation flag: --budget-estimation default: 0.02
The percentage of the budget used for estimating the mean execution time. Only used
when maxTime > 0. See Section 10.1.

46

11.9 Statistical test

testType flag: --test-type default: F-test
Specifies the statistical test type:

F-test (Friedman test)

t-test (pairwise t-tests with no correction)

t-test-bonferroni (t-test with Bonferroni’s correction for multiple comparisons)

t-test-holm (t-test with Holm’s correction for multiple comparisons).

We recommend to not use corrections for multiple comparisons because the test typically
becomes too strict and the search stagnates. See Section 10.5 for details about choosing
the statistical test most appropriate for your scenario.

firstTest flag: --first-test default: 5
Specifies how many instances are evaluated before the first elimination test.

The value of firstTest must be a multiple of eachTest.

eachTest flag: --each-test default: 1
Specifies how many instances are evaluated between elimination tests.

confidence flag: --confidence default: 0.95
Confidence level for the elimination test.

11.10 Recovery

recoveryFile flag: --recovery-file default: ""
Previously saved irace log file that should be used to recover the execution of irace; ei-
ther absolute path or relative to the current directory. If empty or NULL, recovery is not
performed. For more details about recovery, see Section 11.10.

11.11 Testing

testNbElites flag: --test-num-elites default: 1
Number of elite configurations returned by irace that will be tested if test instances are
provided. For more information about the testing, see Section 7.

testIterationElites flag: --test-iteration-elites default: 0
Enable/disable testing the elite configurations found at each iteration.

testInstancesDir flag: --test-instance-dir default:
Directory where testing instances are located, either absolute or relative to the current
directory.

testInstancesFile flag: --test-instance-file default:
File containing a list of test instances and, optionally, additional parameters for them.

--only-test default:
Run the configurations provided in the file argument on the test instances. See Section 7.

47

12 FAQ

12.1 Is irace minimizing or maximizing the output of my algorithm?

By default, irace considers that the value returned by targetRunner (or by targetEvaluator,
if used) should be minimized. In case of a maximization problem, one can simply multiply
the value by -1 before returning it to irace. This is done, for example, when maximizing the
hypervolume (see the last lines in $IRACE_HOME/examples/hypervolume/target-evaluator).

12.2 Is it possible to configure a MATLAB algorithm with irace?

Definitely. There are two main ways to achieve this:

1. Edit the targetRunner script to call MATLAB in a non-interactive way. See the MATLAB
documentation, or the following links.6 You would need to pass the parameter received by
targetRunner to your MATLAB script: http://www.mathworks.nl/support/solutions/
en/data/1-1BS5S/?solution=1-1BS5S. There is a minimal example in:

$IRACE_HOME/examples/matlab/.

2. Call MATLAB code directly from R using the R.matlab package (https://cran.r-project.
org/package=R.matlab). This is a better option if you are experienced in R. Define targetRunner
as an R function instead of a path to a script. The function should call your MATLAB code
with appropriate parameters.

12.3 My program works perfectly on its own, but not when running
under irace. Is irace broken?

Every time this was reported, it was a difficult-to-reproduce bug in the program, not in irace.
We recommend that in targetRunner, you use valgrind to run your program. That is, if your
program is called like:

$EXE ${FIXED_PARAMS} -i $INSTANCE ${CONFIG_PARAMS} \

1> ${STDOUT} 2> ${STDERR}

then replace that line with:

valgrind --error-exitcode=1 $EXE ${FIXED_PARAMS} \

-i $INSTANCE ${CONFIG_PARAMS} 1> ${STDOUT} 2> ${STDERR}

If there are bugs in your program, they will appear in $STDERR, thus do not delete those files.

12.4 My program may be buggy and run into an infinite loop. Is it
possible to set a maximum timeout?

We are not aware of any way to achieve this using R. However, in GNU/Linux, it is easy to
implement by using the timeout command in targetRunner when invoking your program.

6http://stackoverflow.com/questions/1518072/suppress-start-message-of-matlab

http://stackoverflow.com/questions/4611195/how-to-call-matlab-from-command-line-and-print-to-

stdout-before-exiting

48

http://www.mathworks.nl/support/solutions/en/data/1-1BS5S/?solution=1-1BS5S
http://www.mathworks.nl/support/solutions/en/data/1-1BS5S/?solution=1-1BS5S
https://cran.r-project.org/package=R.matlab
https://cran.r-project.org/package=R.matlab
http://stackoverflow.com/questions/1518072/suppress-start-message-of-matlab
http://stackoverflow.com/questions/4611195/how-to-call-matlab-from-command-line-and-print-to-stdout-before-exiting
http://stackoverflow.com/questions/4611195/how-to-call-matlab-from-command-line-and-print-to-stdout-before-exiting

12.5 When using the mpi option, irace is aborted with an error message
indicating that a function is not defined. How to fix this?

Rmpi does not work the same way when called from within a package and when called from a
script or interactively. When irace creates the slave nodes, the slaves will load a copy of irace

automatically. If the slave nodes are on different machines, they must have irace installed. If
irace is not installed system-wide, R needs to be able to find irace on the slave nodes. This is
usually done by setting R_LIBS, .libPaths() or by loading irace using library() or require()
with the argument “lib.loc”. The settings on the master are not applied to the slave nodes
automatically, thus the slave nodes may need their own settings. After spawning the slaves, it is
too late to modify those settings, thus modifying the shell variable R_LIBS seems the only valid
way to tell the slaves where to find irace.

If the path is set correctly and the problem persists, please check these instructions:

1. Test that irace and Rmpi work. Run irace on a single machine (submit node), without calling
qsub, mpirun or a similar wrapper around irace or R.

2. Test loading irace on the slave nodes. However, jobs submitted by qsub/mpirun may load
R packages using a different mechanism from the way it happens if you log directly into the
node (e.g., with ssh). Thus, you need to write a little R program such as:

library(Rmpi)

mpi.spawn.Rslaves(nslaves = 10)

x <- mpi.applyLB(1:10, function(x) {

library(irace)

return(path.package("irace")) })

print(x)

Submit this program to the cluster (using qsub/mpirun) like you would submit irace.

3. In the script bin/parallel-irace-mpi, the function irace_main() creates an MPI job for
our cluster. You may need to speak with the admin of your cluster and ask them how to best
submit a job for MPI. There may be some particular settings that you need. Rmpi normally
creates log files; but irace suppresses those files unless debugLevel > 0.

Please contact us (Section 13) if you have further problems.

12.6 Error: 4 arguments passed to .Internal(nchar) which requires 3

This is a bug in R 3.2.0 on Windows. The solution is to update your version of R.

13 Resources and contact information

More information about the package can be found on the irace webpage:

http://iridia.ulb.ac.be/irace/

For questions and suggestions please contact the development team through the irace package
Google group:

https://groups.google.com/d/forum/irace-package

or by sending an email to:

irace-package@googlegroups.com

49

http://iridia.ulb.ac.be/irace/
https://groups.google.com/d/forum/irace-package
mailto:irace-package@googlegroups.com

14 Acknowledgements

We would like to thank all the people that directly or indirectly have collaborated in the devel-
opment and improvement of irace: Prasanna Balaprakash, Zhi (Eric) Yuan, Franco Mascia,
Alberto Franzin, Anthony Antoun, Esteban Diaz Leiva, Federico Caselli, and Pablo Valledor
Pellicer.

Bibliography

[1] M. Birattari. On the estimation of the expected performance of a metaheuristic on a class
of instances. how many instances, how many runs? Technical Report TR/IRIDIA/2004-001,
IRIDIA, Université Libre de Bruxelles, Belgium, 2004.

[2] M. Birattari, Z. Yuan, P. Balaprakash, and T. Stützle. F-race and iterated F-race: An
overview. In T. Bartz-Beielstein, M. Chiarandini, L. Paquete, and M. Preuss, editors, Ex-
perimental Methods for the Analysis of Optimization Algorithms, pages 311–336. Springer,
Berlin, Germany, 2010.

[3] C. M. Fonseca, L. Paquete, and M. López-Ibáñez. An improved dimension-sweep algorithm for
the hypervolume indicator. In Proceedings of the 2006 Congress on Evolutionary Computation
(CEC 2006), pages 1157–1163. IEEE Press, Piscataway, NJ, July 2006. doi: 10.1109/CEC.
2006.1688440.

[4] M. López-Ibáñez, J. Dubois-Lacoste, T. Stützle, and M. Birattari. The irace package, it-
erated race for automatic algorithm configuration. Technical Report TR/IRIDIA/2011-004,
IRIDIA, Université Libre de Bruxelles, Belgium, 2011. URL http://iridia.ulb.ac.be/

IridiaTrSeries/IridiaTr2011-004.pdf.

[5] M. López-Ibáñez, J. Dubois-Lacoste, L. Pérez Cáceres, T. Stützle, and M. Birattari. The
irace package: Iterated racing for automatic algorithm configuration. Operations Research
Perspectives, 3:43–58, 2016. doi: 10.1016/j.orp.2016.09.002.

[6] C. C. McGeoch. Analyzing algorithms by simulation: Variance reduction techniques and
simulation speedups. ACM Computing Surveys, 24(2):195–212, 1992. doi: 10.1145/130844.
130853.

[7] M. Schneider and H. H. Hoos. Quantifying homogeneity of instance sets for algorithm con-
figuration. In Y. Hamadi and M. Schoenauer, editors, Learning and Intelligent Optimization,
6th International Conference, LION 6, volume 7219 of Lecture Notes in Computer Science,
pages 190–204. Springer, Heidelberg, Germany, 2012. doi: 10.1007/978-3-642-34413-8_14.

50

http://iridia.ulb.ac.be/IridiaTrSeries/IridiaTr2011-004.pdf
http://iridia.ulb.ac.be/IridiaTrSeries/IridiaTr2011-004.pdf

Appendix A Installing R

This section gives a quick R installation guide that will work in most cases. The official instruc-
tions are available at https://cran.r-project.org/doc/manuals/r-release/R-admin.html

A.1 GNU/Linux

You should install R from your package manager. On a Debian/Ubuntu system it will be some-
thing like:

sudo apt-get install r-base

Once R is installed, you can launch R from the Terminal and from the R prompt install the
irace package (see Section 3.2).

A.2 OS X

You can install R directly from a CRAN mirror.7 Alternatively, if you use homebrew, you can
just brew the R formula from the science tap (unfortunately it does not come already bottled so
you need to have Xcode8 installed to compile it):

brew tap homebrew/science

brew install r

Once R is installed, you can launch R from the Terminal (or from your Applications), and
from the R prompt install the irace package (see Section 3.2).

A.3 Windows

You can install R from a CRAN mirror.9 We recommend that you install R on a filesystem path
without spaces, special characters or long names, such as C:\R. Once R is installed, you can
launch the R console and install the irace package from it (see Section 3.2).

Appendix B targetRunner troubleshooting checklist

If the targetRunner script fails to return the output expected by irace, it can be sometimes
difficult to diagnose where the problem lies. The more descriptive errors provided by your
script, the easier it will be to debug it. If targetRunner enters an infinite loop, irace will wait
indefinitely (see FAQ in Section 12.4). If you are using temporary files to redirect the output of
your algorithm, check that these files are properly created. We recommend to follow the structure
of the example file (target-runner) provided in $IRACE_HOME/templates. The following error
examples are based on a file with those characteristics.

In case of failure of targetRunner, irace will print an error on its output describing which
execution of targetRunner was not successful. Follow this checklist to detect where the problem
is:

1. Make sure that your targetRunner script or program is at the specified location. If you see
this error:
7https://cran.r-project.org/bin/macosx/
8Xcode download webpage: https://developer.apple.com/xcode/download/
9https://cran.r-project.org/bin/windows/

51

https://cran.r-project.org/doc/manuals/r-release/R-admin.html
https://cran.r-project.org/bin/macosx/
https://developer.apple.com/xcode/download/
https://cran.r-project.org/bin/windows/

Error: == irace == target runner '~/tuning/target-runner' does not exist

it means that irace cannot find the target-runner file. Check that the file is at the path
specified by the error.

2. Make sure that your targetRunner script is an executable file and the user running irace has
permission to execute it. The following errors:

Error: == irace == target runner '~/tuning/target-runner' is a directory,

not a file

or

Error: == irace == target runner '~/tuning/target-runner' is not executable

mean that your targetRunner is not an executable file. In the first case, the script is a folder
and therefore there must be a problem with the name of the script. In the second case, you
must make the file executable, which in GNU/Linux can be done by:

chmod +x ~/tuning/target-runner

3. If your targetRunner script calls another program, make sure it is at the location described
in the script (variable EXE in the examples and templates). A typical output for such an error
is:

Error: == irace == running command ''~/tuning/target-runner' 1 8 676651103

~/tuning/Instances/1000-16.tsp --ras --localsearch 2 --alpha 4.03 --beta 1.89

--rho 0.02 --ants 37 --nnls 48 --dlb 0 --rasranks 15 2>\&1' had status 1

== irace == The call to target.runner.default was:

~/tuning/target-runner 1 8 676651103 ~/tuning/Instances/1000-16.tsp --ras

--localsearch 2 --alpha 4.03 --beta 1.89 --rho 0.02 --ants 37 --nnls 48

--dlb 0 --rasranks 15

== irace == The output was:

Tue May 3 19:00:37 UTC 2016: error: ~/bin/acotsp: not found or not executable

(pwd: ~/tuning/acotsp-arena)

You may test your script by copying the command line shown in the error and executing
target-runner directly on the execution directory (execDir). In this case, the command
line is:

~/tuning/target-runner 1 8 676651103 ~/tuning/Instances/1000-16.tsp --ras \

--localsearch 2 --alpha 4.03 --beta 1.89 --rho 0.02 --ants 37 --nnls 48 \

--dlb 0 --rasranks 15

This executes the targetRunner script as irace does. The output of this script must be only
one number.

4. Check that your targetRunner script is actually returning one number as output. If you see
an error as the following, this is your problem:

Error: == irace == The output of '~/tuning/target-runner

1 25 365157769 ~/tuning/Instances/1000-31.tsp --ras

--localsearch 1 --alpha 0.26 --beta 6.95 --rho 0.69

52

--ants 56 --nnls 10 --dlb 0 --rasranks 7' is not numeric!

== irace == The output was:

Solution: 24479793

For testing your script, copy the command-line of target-runner and execute it directly on
the execution directory (execDir):

~/tuning/target-runner 1 25 365157769 ~/tuning/Instances/1000-31.tsp --ras \

--localsearch 1 --alpha 0.26 --beta 6.95 --rho 0.69 --ants 56 \

--nnls 10 --dlb 0 --rasranks 7

This executes the targetRunner script as irace does. The output of this script must be only
one number. In this example, the output of the script is “Solution: 24479793”, which is
not a number. The code that targetRunner uses to parse the output of the algorithm must
be checked.

5. Check that your targetRunner script is creating the output files for your algorithm. If you
see an error as:

== irace == The output was: Tue May 3 19:41:40 UTC 2016:

error: c1-9.stdout: No such file or directory

The output file of the execution of your algorithm has not been created (check permissions)
or has been deleted before the result can be read.

6. Other errors can produce the following output:

== irace == The output was: Tue May 3 19:49:06 UTC 2016:

error: c1-23.stdout: Output is not a number

This might be because your targetRunner script is not executing your algorithm correctly.
To further investigate this issue, comment out the line that eliminates the temporary files
that saves the output of your algorithm. Similar to this one

rm -f "${STDOUT}" "${STDERR}"

Execute directly the targetRunner command-line that is provided in the error message, look
in your execution directory for the files that are created. Check the .stderr file for errors
and the .stdout file to see the output that your algorithm produces.

7. It is possible that transient bugs in the target algorithm are only visible when running within
irace, and targetRunner appears to work fine when executed directly in the command-line
outside irace (See FAQ in Section 12.3). We recommend that in targetRunner, you use
valgrind to run your program. That is, if your program is called like:

$EXE ${FIXED_PARAMS} -i $INSTANCE ${CONFIG_PARAMS} \

1> ${STDOUT} 2> ${STDERR}

then replace that line with:

valgrind --error-exitcode=1 $EXE ${FIXED_PARAMS} \

-i $INSTANCE ${CONFIG_PARAMS} 1> ${STDOUT} 2> ${STDERR}

If there are bugs in your program, they will appear in $STDERR, thus do not delete those files.

53

8. If your targetRunner script works when running irace with parallel=1 but it fails when
using higher number of cores, this may be due to any number of reasons:

• If you submit jobs through a queuing system, the running environment when using the
queuing system may not be the same as when you launch irace yourself. The queuing
system may also send the job to different machines depending on the number of CPUs
requested. One way to test this is to submit the failing execution of targetRunner to the
queuing system, and specifically to any problematic machine.

• When using MPI, some calls to targetRunner may run on different computers than the
one running the master irace process. See FAQ in Section 12.5.

• Does targetRunner read or create intermediate files? These files may cause a race condi-
tion when two calls to targetRunner happen at the same time. You have to make sure
that parallel runs of targetRunner do not interfere with each other’s files.

• Maybe these files consume too much memory or fill the filesystem when there are simulta-
neous targetRunner calls? Moreover, queuing systems have stricter limits for computing
nodes than for the submit/host node.

• Does the machine or the queuing system impose any limits on number of processes or
CPU/memory/filesystem usage per job? Such limits may only trigger when more than one
process is executed in parallel, killing the targetRunner process before it has a chance
to print anything useful. In that case, irace may not detect the the program finished
unexpectedly, only that the expected output was not printed.

Appendix C Glossary

Parameter tuning: Process of searching good settings for the parameters of an algorithm under
a particular tuning scenario (instances, execution time, etc.).

Scenario: Settings that define an instance of the tuning problem. These settings include the
algorithm to be tuned (target), budget for the execution of the target algorithm (execution
time, evaluations, iterations, etc.), set of problem instances and all the information that is
required to perform the tuning.

Target algorithm: Algorithm whose parameters will be tuned.

Target parameter: Parameter of the target algorithm that will be tuned.

irace option: Configurable option of irace.

Elite configurations: Best configurations found so far by irace. New configurations for the
next iteration of irace are sampled from the probabilistic models associated to the elite
configurations. All elite configurations are also included in the next iteration.

$IRACE_HOME: The filesystem path where irace is installed. You can find this information by
opening an R console and executing:

system.file(package = "irace")

54

Appendix D NEWS

NEWS

2.3

* Fix bug that will cause iraceResults$experimentLog to count calls to

targetEvaluator as experiments, even if no call to targetRunner was

performed. This does not affect the computation of the budget consumed and,

thus, it does not affect the termination criteria of irace. The bug triggers

an assertion that terminates irace, thus no successful run with version 2.2

is affected.

(Manuel López-Ibáñez)

2.2

* Command-line parameters are printed to stdout (useful for future

replications). (Manuel López-Ibáñez, suggested by Markus Wagner)

* Users may provide a function to repair configurations before being

evaluated. See the scenario variable repairConfiguration.

(Manuel López-Ibáñez)

* The option --sge-cluster (sgeCluster) was removed and replaced by

--batchmode (batchmode). It is now the responsibility of the target-runner to

parse the output of the batch job submission command (e.g., qsub or squeue),

and return just the job ID. Values supported are: "sge", "torque", "pbs" and

"slurm".

(Manuel López-Ibáñez)

* The option --parallel can now be combined with --batchmode to limit the

number of jobs submitted by irace at once. This may be useful in batch

clusters that have a small queue of jobs.

(Manuel López-Ibáñez)

* New examples under inst/examples/batchmode-cluster/.

(Manuel López-Ibáñez)

* It is now possible to include scenario definition files from other scenario

files by using:

eval.parent(source("scenario-common.txt", chdir = TRUE, local = TRUE))

This feature is VERY experimental and the syntax is likely to change in the

future. (Manuel López-Ibáñez)

* Fix a bug that re-executed elite results under some circumstances.

(Leslie Pérez Cáceres)

* Restrict the number of maximum configurations per race to 1024.

(Leslie Pérez Cáceres)

* Do not warn if the last line in the instance file does not terminate with a

newline. (Manuel López-Ibáñez)

* Fix bug when deterministic == 1.

(Manuel López-Ibáñez, Leslie Pérez Cáceres)

* Update manual and vignette with details about the expected arguments and

return value of targetRunner and targetEvaluator. (Manuel López-Ibáñez)

55

* Many updates to the User Guide vignette. (Manuel López-Ibáñez)

* Fix \dontrun example in irace-package.Rd (Manuel López-Ibáñez)

* Fix bug: If testInstances contains duplicates, results of testing are not

correctly saved in iraceResults$testing$experiments nor reported correctly

at the end of a run. Now unique IDs of the form 1t, 2t, ... are used for

each testing instance. These IDs are used for the rownames of

iraceResults$testing$experiments and the names of the scenario$testInstances

and iraceResults$testing$seeds vectors. (Manuel López-Ibáñez)

* Fix bug where irace keeps retrying the target-runner call even if it

succeeds. (Manuel López-Ibáñez)

* New command-line parameter

--only-test FILE

which just evaluates the configurations given in FILE on the testing

instances defined by the scenario. Useful if you decide on the testing

instances only after running irace. (Manuel López-Ibáñez)

* Bugfix: When using maxTime != 0, the number of experiments performed may be

miscounted in some cases. (Manuel López-Ibáñez)

2.1

* Fix CRAN errors in tests. (Manuel López-Ibáñez)

* Avoid generating too many configurations at once if the initial time

estimation is too small. (Manuel López-Ibáñez)

2.0

* Minimum R version is 2.15.

* Elitist irace by default, it can be disabled with parameter --elitist 0.

(Leslie Pérez Cáceres, Manuel López-Ibáñez)

* The parameter --test-type gains two additional values:

t-test-bonferroni (t-test with Bonferroni's correction for multiple

comparisons),

t-test-holm (t-test with Holm's correction for multiple comparisons)

(Manuel López-Ibáñez)

* MPI does not create log files with --debug-level 0.

(Manuel López-Ibáñez)

* For simplicity, the parallel-irace-* scripts do not use an auxiliary

`tune-main` script. For customizing them, make a copy and edit them

directly.

(Manuel López-Ibáñez)

* New parameters:

--target-runner-retries : Retry target-runner this many times in case

of error.

(Manuel López-Ibáñez)

56

* We print diversity measures after evaluating on each instance:

(Leslie Pérez Cáceres)

- Kendall's W (also known as Kendall's coefficient of concordance) If 1,

all candidates have ranked in the same order in all instances. If 0, the

ranking of each candidate on each instance is essentially random.

W = Friedman / (m * (k-1))

- Spearman's rho: average (Spearman) correlation coefficient computed on the

ranks of all pairs of raters. If there are no repeated data values, a

perfect Spearman correlation of +1 or -1 occurs when each of the variables

is a perfect monotone function of the other.

* Many internal and external interfaces have changed. For example, now we

consistently use 'scenario' to denote the settings passed to irace and

'configuration' instead of 'candidate' to denote the parameter settings

passed to the target algorithm. Other changes are:

parameters$boundary -> parameters$domain

hookRun -> targetRunner

hookEvaluate -> targetEvaluator

tune-conf -> scenario.txt

instanceDir -> trainInstancesDir

instanceFile -> trainInstancesFile

testInstanceDir -> testInstancesDir

testInstanceFile -> testInstancesFile

* Minimal example of configuring a MATLAB program

(thanks to Esteban Diaz Leiva)

* Paths to files or directories given in the scenario file are relative to the

scenario file (except for --log-file, which is an output file and it is

relative to --exec-dir). Paths given in the command-line are relative to the

current working directory. Given

$ cat scenario/scenario.txt

targetRunner <- "./target-runner"

$ irace -s scenario/scenario.txt

irace will search for "./scenario/target-runner", but given

$ irace -s scenario/scenario.txt --target-runner ./target-runner

irace will search for "./target-runner". (Manuel López-Ibáñez)

* New command-line wrapper for Windows installed at

'system.file("bin/irace.bat", package="irace")'

(thanks to Anthony Antoun)

* Budget can be specified as maximum time (maxTime, --max-time) consumed by

the target algorithm. See the documentation for the details about how this

is handled.

(Leslie Pérez Cáceres, Manuel López-Ibáñez)

1.07

* The best configurations found, either at the end or at each iteration of an

irace run, can now be applied to a set of test instances different from the

training instances. See options testInstanceDir, testInstanceFile,

testNbElites, and testIterationElites. (Leslie Pérez Cáceres, Manuel López-Ibáñez)

57

* The R interfaces of hookRun, hookEvaluate and hookRunParallel have changed.

See help(hook.run.default) and help(hook.evaluate.default) for examples of

the new interfaces.

* Printing of race progress now reports the actual configuration and instance

IDs, and numbers are printed in a more human-readable format.

(Leslie Pérez Cáceres, Manuel López-Ibáñez)

* Reduce memory use for very large values of maxExperiments.

(Manuel López-Ibáñez, thanks to Federico Caselli for identifying the issue)

* New option --load-balancing (loadBalancing) for disabling load-balancing

when executing jobs in parallel. Load-balancing makes better use of

computing resources, but increases communication overhead. If this overhead

is large, disabling load-balancing may be faster.

(Manuel López-Ibáñez, thanks to Federico Caselli for identifying the issue)

* The option --parallel in Windows now uses load-balancing by default.

(Manuel López-Ibáñez)

* The wall-clock time after finishing each task is printed in the output.

(Manuel López-Ibáñez, thanks to Federico Caselli for providing an initial

patch)

1.06

* Fix bug that could introduce spurious whitespace when printing the

final configurations. (Manuel López-Ibáñez)

* Fix bug if there are more initial candidates than needed for the

first race. (Leslie Pérez Cáceres, Manuel López-Ibáñez)

* New configuration options, mainly for R users:

- hookRunParallel: Optional R function to provide custom

parallelization of hook.run.

- hookRunData: Optional data passed to hookRun. This is ignored by

the default hookRun function, but it may be used by custom hookRun R

functions to pass persistent data around.

(Manuel López-Ibáñez)

1.05

* New option --version. (Manuel López-Ibáñez)

* Terminate early if there is no sufficient budget to run irace with

the given settings. (Manuel López-Ibáñez)

* The option --parallel (without --mpi) now works under Windows.

(Manuel López-Ibáñez, thanks to Pablo Valledor Pellicer for testing

it)

* Improved error handling when running under Rmpi. Now irace will

terminate as soon as the master node detects at least one failed

slave node. This avoids irace reporting two times the same error.

Also, irace will print all the unique errors returned by all slaves

and not just the first one.

(Manuel López-Ibáñez)

58

* Forbidden configurations may be specified in terms of constraints

on their values. Forbidden configurations will never be evaluated by irace.

See --forbidden-file and inst/templates/forbidden.tmpl.

(Manuel López-Ibáñez)

* New option --recovery-file (recoveryFile) allows resuming a

previous irace run. (Leslie Pérez Cáceres)

* The confidence level for the elimination test is now

configurable with parameter --confidence. (Leslie Pérez Cáceres)

* Much more robust handling of relative/absolute paths. Improved support

for Windows. (Leslie Pérez Cáceres, Manuel López-Ibáñez)

* Provide better error messages for incorrect parameter

descriptions. (Manuel López-Ibáñez)

Examples:

x "" i (0, 0) # lower and upper bounds are the same

x "" r (1e-4, 5e-4) # given digits=2, ditto

x "" i (-1, -2) # lower bound must be smaller than upper bound

x "" c ("a", "a") # duplicated values

* Print elapsed time for calls to hook-run if debugLevel >=1.

(Manuel López-Ibáñez)

* examples/hook-run-python/hook-run: A multi-purpose hook-run written

in Python. (Franco Mascia)

* Parallel mode in an SGE cluster (--sge-cluster) is more

robust. (Manuel López-Ibáñez)

1.04

* Replace obsolete package multicore by package parallel

(requires R >= 2.14.0)

* Use load-balancing (mc.preschedule = FALSE) in mclapply.

1.03

* Use reg.finalizer to finish Rmpi properly without clobbering

.Last().

* Remove uses of deprecated as.real().

* Nicer error handling in readParameters.

* Add hypervolume (multi-objective) example.

* Fix several bugs in the computation of similar candidates.

1.02

* More concise output.

* The parameters expName and expDescription are now useless and they

were removed.

* Faster computation of similar candidates (Jeremie Dubois-Lacoste

and Leslie Pérez Cáceres).

59

* Fix bug when saving instances in tunerResults$experiments.

* irace.cmdline ("--help") does not try to quit R anymore.

1.01

* Fix bug caused by file.exists (and possibly other functions)

not handling directory names with a trailing backslash or slash on

Windows.

* Fix bug using per-instance parameters (Leslie Pérez Cáceres).

* Fix bug when reading initial candidates from a file.

60

	General information
	Background
	Version
	License

	Before starting
	Installation
	System requirements
	irace installation
	Install automatically within R
	Manual download and installation
	Local installation
	Testing the installation and invoking irace

	Running irace
	Step-by-step setup guide
	Setup example for ACOTSP

	Defining a configuration scenario
	Target algorithm parameters
	Parameter types
	Parameter domains
	Conditional parameters
	Parameter file format
	Parameters R format

	Target algorithm runner
	Target runner executable program
	Target runner R function

	Target evaluator
	Target evaluator executable program
	Target evaluator R function

	Training instances
	Initial configurations
	Forbidden configurations
	Repairing configurations

	Parallelization
	Testing of configurations
	Recovering irace runs
	Output and results
	Text output
	Data file output
	Analysis of results

	Advanced topics
	Tuning budget
	Multi-objective tuning
	Tuning for minimizing computation time
	Heterogeneous scenarios
	Choosing the statistical test
	Complex parameters
	Unreliable target algorithms

	List of command-line and scenario options
	General options
	Elitist irace
	Internal irace options
	Target algorithm parameters
	Target algorithm execution
	Initial configurations
	Training instances
	Tuning budget
	Statistical test
	Recovery
	Testing

	FAQ
	Is irace minimizing or maximizing the output of my algorithm?
	Is it possible to configure a MATLAB algorithm with irace?
	My program works perfectly on its own, but not when running under irace. Is irace broken?
	My program may be buggy and run into an infinite loop. Is it possible to set a maximum timeout?
	When using the mpi option, irace is aborted with an error message indicating that a function is not defined. How to fix this?
	Error: 4 arguments passed to .Internal(nchar) which requires 3

	Resources and contact information
	Acknowledgements
	Bibliography
	Appendix Installing R
	GNU/Linux
	OS X
	Windows

	Appendix targetRunner troubleshooting checklist
	Appendix Glossary
	Appendix NEWS

