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Abstract

The highfrequency package contains an extensive toolkit for the use of highfrequency
financial data in R. It offers functionality to manage, clean and match highfrequency
trades and quotes data. Furthermore, it enables users to: calculate easily various liquid-
ity measures, estimate and forecast volatility, and investigate microstructure noise and
intraday periodicity.
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1. General information

The economic value of analyzing high-frequency financial data is now obvious, both in the
academic and financial world. It is the basis of intraday and daily risk monitoring and fore-
casting, an input to the portfolio allocation process, and also for high-frequency trading. For
the efficient use of high-frequency data in financial decision making, the highfrequency pack-
age implements state of the art techniques for cleaning and matching for trades and quotes,
as well as the calculation and forecasting of liquidity, realized and correlation measures based
on high-frequency data. The highfrequency package is the outcome of a Google summer of
code project and an improved and updated version of the 2 packages: RTAQ (Cornelissen and
Boudt 2012) and realized (Payseur 2008).

Handling high-frequency data can be particularly challenging because of the specific character-
istics of the data, as extensively documented in Yan and Zivot (2003). The highfrequency

package offers high-level tools for the analysis of high-frequency data. These tools tackle
three typical challenges of working with high-frequency data. A first specific challenge is the
enormous number of observations, that can reach heights of millions observations per stock
per day. Secondly, transaction-by-transaction data is by nature irregularly spaced over time.
Thirdly, the recorded data often contains errors for various reasons.

The highfrequency package offers a (basic) interface to manage highfrequency trades and
quotes data. Furthermore and foremost, it offers easy-to-use tools to clean and aggregate high-
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frequency data, to calculate liquidity measures and, measure and forecast volatility. The tools
in highfrequency are designed in such a way that they will work with most data input types.
The package contains an extensive collection of functions to calculate realized measures, since
it arose by merging the package RTAQ (Cornelissen and Boudt 2012) from the TradeAnalytics
project and the package realized (Payseur 2008).

highfrequency strongly builds on the functionality offered by the xts package (Ryan and
Ulrich 2009). You can use the functionality in the highfrequency package for trades and
quotes objects from the most popular vendors, as long as your objects are stored as xts
objects.

The highfrequency package is hosted on R-forge and the latest version of the package can
be downloaded through the following command:

install.packages("highfrequency", repos="http://R-Forge.R-project.org")

2. Organizing highfrequency data

Users that have their own system set up to store their highfrequency data as xts objects can
skip this section. The functions to calculate liquidity, etc. in the highfrequency package can
take highfrequency data of various data vendors as input: NYSE TAQ, WRDS TAQ, Reuters,
Bloomberg, etc. To achieve this flexibility, we rely on the functionality provided by the
excellent quantmod package (Ryan 2011). Additionally, highfrequency provides functionality
to convert raw data from several data providers into xts objects. The latter is discussed and
illustrated in this section.

Highfrequency financial data is typically subdivided into two files, containing information on
the trades and quotes respectively. highfrequency can currently parse three types of input
data into xts objects: (i) ”.txt” files extracted from the NYSE TAQ database, (ii) ”.csv” ”files
extracted from the WRDS database, (iii) ”.asc” files from http://www.tickdata.com. For
each of these input data types, we briefly discuss how the convert function can be used to
convert the txt/csv/asc files into xts objects (Ryan and Ulrich 2009) that are saved on-disk
in the “RData” format. We opt to store the data as xts objects because this type of object
can be indexed by an indicator of time and date.1

Parsing raw NYSE TAQ data into xts:
Suppose the folder ~/raw_data on your drive contains the two folders: ”2008-01-02”and ”2008-
01-03”. Suppose these folders each contain the files AAPL_trades.txt and AA_trades.txt

with the daily TAQ data bought from the New York Stock Exchange (NYSE) for the AAPL

and AA stock. The raw data can then easily be converted into on-disk xts objects as follows:

from = "2008-01-02";

to = "2008-01-03";

datasource = "~/raw_data";

datadestination = "~/xts_data";

convert(from, to, datasource, datadestination, trades=TRUE,

1Examples of the use of xts objects can be found on http://www.quantmod.com/examples/data/.

http://www.tickdata.com
http://www.quantmod.com/examples/data/.
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quotes=FALSE,ticker=c("AA","AAPL"), dir=TRUE, extension="txt",

header=FALSE,tradecolnames=NULL,quotecolnames=NULL,

format="%Y%m%d %H:%M:%S");

At this point, the folder ~/xts_data will contain two folders named 2008-01-02 and 2008-
01-03 containing the files AAPL_trades.RData and AAPL_trades.RData which contain the
respective daily trade data. The data can now be loaded with the TAQLoad function (see
below).

Parsing raw WRDS TAQ data into xts:
Suppose the folder ~/raw_data on your drive contains the files IBM_quotes.csv and
IBM_trades.csv acquired from Wharton Research Data Service (WRDS).2 Both files contain
respectively the trade and quote data for the ”IBM” stock for ”2011-12-01” up to ”2011-12-02”.
The data can then easily be converted into on-disk xts objects as follows:

from = "2011-12-01";

to = "2011-12-02";

datasource = "~/raw_data";

datadestination = "~/xts_data";

convert( from=from, to=to, datasource=datasource,

datadestination=datadestination, trades = T, quotes = T,

ticker="IBM", dir = TRUE, extension = "csv",

header = TRUE, tradecolnames = NULL, quotecolnames = NULL,

format="%Y%m%d %H:%M:%S", onefile = TRUE )

Now, the folder ~/xts_data contains two folders, one for each day in the sample, i.e. ”2011-
12-01” up to ”2011-12-02”. Each of these folders contains a file named IBM_trades.RData in
which the trades for that day can be found and a file IBM_quotes.RData in which the quotes
for that day can be found, both saved as xts objects. As a final step, the function TAQLoad

can be used to load the on-disk data into your R workspace. You can for example get the
trades for this sample in your workspace as follows:

> xts_data = TAQLoad( tickers="IBM", from="2011-12-01",

+ to="2011-12-02",trades=F,

+ quotes=TRUE, datasource=datadestination)

> head(xts_data)

SYMBOL EX BID BIDSIZ OFR OFRSIZ MODE

2011-12-01 04:00:00 "IBM" "P" "176.85" "1" "188.00" " 1" "12"

2011-12-01 04:00:17 "IBM" "P" "185.92" "1" "187.74" " 1" "12"

2011-12-01 04:00:18 "IBM" "P" "176.85" "1" "187.74" " 1" "12"

2011-12-01 04:00:25 "IBM" "P" "176.85" "1" "187.73" " 1" "12"

2011-12-01 04:00:26 "IBM" "P" "176.85" "1" "188.00" " 1" "12"

2011-12-01 04:00:26 "IBM" "P" "176.85" "1" "187.74" " 1" "12"

Parsing raw Tickdata.com data into xts:
Suppose the folder ~/raw_data on your drive contains the files GLP_quotes.asc and

2http://wrds-web.wharton.upenn.edu/wrds

http://wrds-web.wharton.upenn.edu/wrds
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GLP_trades.asc acquired from www.tickdata.com. Both files contain respectively the trade
and quote data for the ”GLP” stock for ”2011-01-11” up to ”2011-03-11”. The data can then
easily be converted into on-disk xts objects as follows:

from = "2011-01-11";

to = "2011-03-11";

datasource = "~/raw_data";

datadestination = "~/xts_data";

convert(from=from, to=to, datasource=datasource,

datadestination=datadestination, trades = TRUE,

quotes = TRUE, ticker="GLP", dir = TRUE, format = "%d/%m/%Y %H:%M:%OS",

extension = "tickdatacom", header = TRUE, onefile = TRUE );

At this point, the folder ~/xts_data now contains three folders, one for each day in the sam-
ple, i.e. ”2011-01-11”, ”2011-02-11”, ”2011-03-11”. Each of these folders contains a file named
GLP_trades.RData in which the trades for that day can be found and a file GLP_quotes.RData
in which the quotes for that day can be found, both saved as xts object. Notice the
format = '%d/%m/%Y %H:%M:%OS' argument that allows for timestamps more accurate than
seconds, e.g. milliseconds in this case. As a final step, the function TAQLoad can be used to
load the on-disk data into your R workspace. You can for example get the trade data for the
first day of the sample as follows:

> options("digits.secs"=3); #Show milliseconds

> xts_data = TAQLoad(tickers="GLP", from="2011-01-11", to="2011-01-11",

+ trades=T, quotes=F,

+ datasource=datadestination)

> head(xts_data)

SYMBOL EX PRICE SIZE COND CORR G127

2011-01-11 09:30:00.338 "GLP" "T" "18.0700" " 500" "O X" "0" ""

2011-01-11 09:30:00.338 "GLP" "T" "18.0700" " 500" "Q" "0" ""

2011-01-11 09:33:49.342 "GLP" "T" "18.5000" " 150" "F" "0" ""

2011-01-11 09:39:29.280 "GLP" "N" "19.2000" "4924" "O" "0" ""

2011-01-11 09:39:29.348 "GLP" "D" "19.2400" " 500" "@" "0" "T"

2011-01-11 09:39:29.411 "GLP" "N" "19.2400" " 200" "F" "0" ""

Typical trades and quotes: data description:
Both trades and quotes data should thus be xts objects (Ryan and Ulrich 2009), if you want
to use the functionality of highfrequency. Table 1 reports the information (i.e. columns)
typically found in trades and quotes data objects.

3. Manipulation of highfrequency data

In this section we discuss two very common first steps in the manipulation of highfrequency
financial data: (i) the cleaning and (ii) aggregation of the data.

3.1. Cleaning of highfrequency data

For various reasons, raw trade and quote data contains numerous data errors. Therefore, the

www.tickdata.com
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Table 1: Elements of trade and quote data

All data
SYMBOL The stock’s ticker
EX Exchange on which the trade/quote occurred

Trade data
PRICE Transaction price
SIZE Number of shares traded
COND Sales condition code
CORR Correction indicator
G127 Combined ”G”, Rule 127, and stopped stock trade

Quote data
BID Bid price
BIDSIZ Bid size in number of round lots (100 share units)
OFR Offer price
OFRSIZ Offer size in number of round lots (100 share units)
MODE Quote condition indicator

data is not suited for analysis right-away, and data-cleaning is an essential step in dealing
with tick-by-tick data (Brownlees and Gallo 2006). highfrequency implements the step-by-
step cleaning procedure proposed by Barndorff-Nielsen et al. (2008). Table 2 provides an
overview of the cleaning functions. A user can either use a specific cleaning procedure or a
wrapper function that performs multiple cleaning steps. The wrapper functions offer on-disk
functionality: i.e. load on-disk raw data and save the clean data back to your hard disk. This
method is advisable in case you have multiple days of data to clean. Of course, the data
on your disk should be organized as discussed in the previous section to benefit from this
functionality. More specifically, these functions expect that the data is saved as xts objects
saved in a folder for each day (as the TAQLoad function does), which will always be the case
if you used the convert function to convert the raw data into xts objects.

To maintain some insight in the cleaning process, the functions tradesCleanup and quotesCleanup

report the total number of remaining observations after each cleaning step:

> data("sample_tdataraw");

> dim(sample_tdataraw);

[1] 48484 7

> tdata_afterfirstcleaning = tradesCleanup(tdataraw=sample_tdataraw,exchanges="N");

> tdata_afterfirstcleaning$report;

initial number no zero prices select exchange

48484 48479 20795

sales condition merge same timestamp

20135 9105

> dim(tdata_afterfirstcleaning$tdata)

[1] 9105 7
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Table 2: Cleaning functions
Function Function Description

All Data:
ExchangeHoursOnly Restrict data to exchange hours
selectexchange Restrict data to specific exchange

Trade Data:
noZeroPrices Delete entries with zero prices
autoSelectExchangeTrades Restrict data to exchange with highest trade volume
salesCondition Delete entries with abnormal Sale Condition
mergeTradesSameTimestamp Delete entries with same time stamp and use median price
rmTradeOutliers Delete entries with prices above/below ask/bid +/- bid/ask spread

Quote Data:
noZeroQuotes Delete entries with zero quotes
autoSelectExchangeQuotes Restrict data to exchange with highest bidsize + offersize
mergeQuotesSameTimestamp Delete entries with same time stamp and use median quotes
rmNegativeSpread Delete entries with negative spreads
rmLargeSpread Delete entries if spread > maxi*median daily spread
rmOutliers Delete entries for which the mid-quote is outlying with respect to

surrounding entries

Wrapper cleanup functions (perform sequentially the following for on-disk data)
tradesCleanup noZeroPrices, selectExchange, salesCondition, mergeTradesSameTimestamp.
quotesCleanup noZeroQuotes, selectExchange, rmLargeSpread, mergeQuotesSameTimestamp

rmOutliers
tradesCleanupFinal rmTradeOutliers (based on cleaned quote data as well)

3.2. Aggregation of highfrequency data

Prices are typically not recorded at equispaced time points, while e.g. many realized volatility
measures rely on equispaced returns. Furthermore, prices are often observed at different points
in time for different assets, while e.g. most multivariate realized volatility estimators rely on
synchronized data (see e.g. Table 3). There several ways to force these asynchronously and/or
irregularly recorded series to a synchronized and/or equispaced time grid.

The most popular method, previous tick aggregation, forces prices to an equispaced grid by
taking the last price realized before each grid point. highfrequency provides users with the
aggregatets function for fast and easy previous tick aggregation:

> library("highfrequency");

> # Load sample price data

> data("sample_tdata");

> ts = sample_tdata$PRICE;

> # Previous tick aggregation to the 5-minute sampling frequency:

> tsagg5min = aggregatets(ts,on="minutes",k=5);

> head(tsagg5min);

PRICE

2008-01-04 09:35:00 193.920

2008-01-04 09:40:00 194.630

2008-01-04 09:45:00 193.520

2008-01-04 09:50:00 192.850
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2008-01-04 09:55:00 190.795

2008-01-04 10:00:00 190.420

> # Previous tick aggregation to the 30-second sampling frequency:

> tsagg30sec = aggregatets(ts,on="seconds",k=30);

> tail(tsagg30sec);

PRICE

2008-01-04 15:57:30 191.790

2008-01-04 15:58:00 191.740

2008-01-04 15:58:30 191.760

2008-01-04 15:59:00 191.470

2008-01-04 15:59:30 191.825

2008-01-04 16:00:00 191.670

In the example above the prices are forced to a regular equispaced time grid of respectively 5
minutes and 30 seconds. Furthermore, the aggregatets function is build into all realized mea-
sures (see Section 4) and can be called by setting the arguments align.by and align.period.
In that case, first the price(s) are forced the an equispaced regular time grid and then the
realized measure is calculated based on the returns over these regular time periods to which
the observations were forced. This has the advantage that the user can input the original
price series into the realized measures without having to worry about the asynchronicity or
the irregularity of the price series.

Another synchronization method (not integrated into the realized measures) is refresh time,
initially proposed by Harris et al. (1995) and recently advocated in Barndorff-Nielsen et al.
(2011). The function refreshTime in highfrequency can be used to force time series (very
fast) to a synchronized but not necessarily equispaced time grid. The so-called refresh times
are the time points at which all assets have traded at least once since the last refresh point.
More specifically, the first refresh time corresponds to the first time at which all stocks have
traded. The subsequent refresh time is defined as the first time when all stocks have been
traded again. This process is repeated until the end of one time series is reached.

Illustration on price aggregation with refresh time and subsequent volatility calculation:

> data("sample_tdata");

> data("sample_qdata");

> #We assume that stock1 and stock2 contain price data on imaginary stocks:

> stock1 = sample_tdata$PRICE;

> stock2 = sample_qdata$BID;

> #Previous-tick aggregation to one minute:

> mPrice_1min = cbind(aggregatePrice(stock1),aggregatePrice(stock2));

> #Refresh time aggregation:

> mPrice_Refresh = refreshTime(list(stock1,stock2));

> #Calculate a jump robust volatility measures

> #based on synchronized data:

> rbpcov1 = rBPCov(mPrice_1min,makeReturns=TRUE);

> rbpcov2 = rBPCov(mPrice_Refresh,makeReturns=TRUE);
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> #Calculate a jump and microstructure noise robust volatility measure

> #based on nonsynchronous data:

> rtscov = rTSCov(list(stock1,stock2));

4. Realized volatility measures

The availability of high-frequency data has enabled researchers to estimate the ex post realized
volatility based on squared intraday returns (Andersen et al. 2003). In practice, the main
challenges in univariate volatility estimation are dealing with (i) jumps in the price level
and (ii) microstructure noise. Multivariate volatility estimation is additionally callenging
because of (i) the asynchronicity of observations between assets and (ii) the need for a positive
semidefnite covariance matrix estimator. The highfrequency package implements many
recently proposed realized volatility and covolatility measures3

An overview of the univariate and multivariate volatility estimators implemented in
highfrequency is given in Table 3. The first two columns indicate whether the estimator
can be applied to univariate or multivariate price series. The following two columns indicate
whether the estimator is robust with respect to jumps and microstructure noise respecitively.
The next column reports whether asynchronic price series can/should be used as input. The
last column indicates whether the estimator always yields a positive semidefinite matrix in
the multivariate case. All realized measures have (at least) the following arguments:

� rdata: The return data.

– In the univariate case: an xts object containing the (tick) data for one day.

– In the multivariate case:

* In case of synchronized observations: a (M x N) matrix/zoo/xts object con-
taining the N return series over period t, with M observations during t.

* In the case of asynchronous observations: a list. Each list-item i contains an
xts object with the intraday data of stock i for day t.

� align.by: a string, align the tick data to ”seconds”|”minutes”|”hours”.

� align.period: an integer, align the tick data to this many [seconds|minutes|hours].

� makeReturns: boolean, should be TRUE when rdata contains prices instead of returns.
FALSE by default.

� Arguments relevant for multivariate case (i.e. realized covolatility measures):

– cor: boolean, in case it is TRUE, the correlation is returned. FALSE by default.

– makePsd: boolean. Non positive semidefinite estimates can be transformed into
a positive semidefinite matrix by setting this argument to TRUE. The eigenvalue
method is used.

� ...: additional arguments depending on the type of realized measure.
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Table 3: Overview of Volatility estimators
Estimator Univariate Multivariate Jump Microstructure Tick-by-tick Positive

robust noise robust returns as input semidefinite

medRV (Andersen et al. 2012) x x /
minRV (Andersen et al. 2012) x x /
rCov (Andersen et al. 2003) x x x
rBPCov (Barndorff-Nielsen and Shephard 2004) x x x
rOWCov (Boudt et al. 2011a) x x x x
rThresholdCov (Gobbi and Mancini 2009) x x x
rTSCov (Zhang 2011) x x x x
rRTSCov (Boudt and Zhang 2010) x x x x x
rAVGCov (Ait-Sahalia et al. 2005) x x x x x
rKernelCov (Barndorff-Nielsen et al. 2004) x x x x x
rHYCov (Hayashi and Yoshida 2005) x x

5. Spot volatility estimation

While realized measures can be used to estimate the volatility over a specified time period,
it is also interesting to estimate the ’instantaneous’ volatility at any given moment. This
is called the spot volatility. The spotvol function offers several methods to estimate spot
volatility and its intraday seasonality, using high-frequency data. The spot volatility σt,n
can be described as the the volatility of returns on a certain moment n during day t. These
returns rt,n are commonly modeled as

rt,n = σt,nεt,n, (1)

where εt,n ∼ IID(0, 1
N ) is a white noise process. N denotes the number of intraday periods,

and we will denote the number of days with T .

5.1. General usage

The spot volatility estimates σ̂t,n can be estimated from these returns using the spotvol

function. The estimates are stored as the variable spot in a spotvol object, which is a list
containing certain outputs of the function, depending on the method used. These following
example shows how to call the spotvol function, using sample data of 5-minute prices, that
the class of the output is indeed ’spotvol’, and how to assign the spot volatility estimates
spot to a new variable:

library(highfrequency)

data(sample_real5minprices)

out <- spotvol(sample_real5minprices)

class(out)

## [1] "spotvol"

sigma_hat <- out$spot

3 Throughout we use the terms realized volatility and realized variance interchangeably to denote high-
frequency data based estimators for the daily variation in the returns. All outputted values should be inter-
preted as variances, unless they clearly indicate standard deviations, e.g. in the spotvol function.
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Input data: prices or returns

The spotvol function accepts two sorts of input:

1. An xts object containing price data.

2. A matrix containing return data.

The first can be used for raw price data, i.e. from the NYSE TAQ database. The highfrequency
package offers several methods to process data files into xts format. The spotvol function
will then aggregate this price data to the frequency specified by the user and calculate the
return series.

str(sample_real5minprices)

## An 'xts' object on 2005-03-04 09:30:00/2005-06-01 16:00:00 containing:

## Data: num [1:4819, 1] 105 105 105 105 104 ...

## Indexed by objects of class: [timeDate] TZ:

## xts Attributes:

## NULL

out <- spotvol(sample_real5minprices)

The second way of inputting data is through a matrix, which can be convenient if your
data has already been processed. No further permutations will be made to the data, as it is
assumed to be in the right format. Therefore, it should satisfy the following restrictions:

� The returns should be equispaced, i.e. the time between each pair of observations should
be equal.

� Each row of the matrix should correspond to a day.

� Each column of the matrix should correspond to an intraday time interval.

For example, a matrix containing 5-minute returns of 60 days of 24h exchange rate data
should have 60 rows and 288 columns:

data(sample_returns_5min)

str(sample_returns_5min)

## num [1:60, 1:288] 0.00404 -0.02825 0.03223 0.00806 0.04056 ...

## - attr(*, "dimnames")=List of 2

## ..$ : NULL

## ..$ : chr [1:288] "X2" "X3" "X4" "X5" ...

out <- spotvol(sample_returns_5min)
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Market opening times and time zones

Working with xts objects means that every observation in your data should have a times-
tamp. This is convenient, but can also pose some problems (e.g. with timezones). The
spotvol function does not require the data to be timestamped: you can also supply raw
return data in matrix form.

Market opening and closing times can be specified by the arguments marketopen and marketclose.
They should be entered in 24h format and in the timezone specified by tz, which should also
be the timezone of your xts data. If your xts object does not have a timezone attribute
specified, it will be assigned value tz. Note that all of your data must be in the same time-
zone. Problems can arise when using a daylight saving dependent timezone, such as CET,
which changes to CEST during summer. It is advised to use a timezone which is invariant to
daylight saving, such as GMT/UTC.

The time entered as marketopen should always be before marketclose. This can be a prob-
lem in case of 24h data, which lacks open and close times, or the opening time would be the
same as the closing time. As the spotvol function processes the data on a daily basis, some
problems arise when a 24h-period of data spans multiple days. There are two ways around
this: either have your data always start at 0:00:00, or avoid time issues by entering your data
as a matrix.

Method specific parameters

The spotvol function offers several methods to estimate the spot volatility. These are all
listed in the help pages of the function and package. The user can specify the method to be
used with the method argument, which accepts the following values:

� "detper" (default)

� "stochper"

� "kernel"

� "piecewise"

Each of these has different parameters to be specified by the user. These can all be entered as
arguments to the spotvol function, although they will only be accepted if they are actually
used by the specified method. The ’Details’ section of the spotvol help page lists which
parameters are used by each method. It is not required to specify all parameters; the function
will even work if none are entered, by using default values.

Output

The spotvol function returns an object of the spotvol class. This is a list of which the
contents depend on the used method. In any case, it includes the variable spot, which
contains all spot volatility estimates as an xts or matrix object (depending on the input).
The following example shows the different outputs for methods "detper" and "stochper":
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out1 <- spotvol(sample_real5minprices, method = "detper")

out2 <- spotvol(sample_real5minprices, method = "stochper")

names(out1)

## [1] "spot" "daily" "periodic"

names(out2)

## [1] "spot" "par"

Plotting

To get a quick overview of the output, the plot function can be called on spotvol objects.
The S3 method plot.spotvol has been implemented to show the spot volatility estimates,
as well as any other components of the spotvol object that can be visually represented,
depending on the used method. An additional argument that can be passed to plot.spotvol

is length, which can limit the amount of data points to be plotted. Examples are shown in
section 5.2.

5.2. Methods

Each method implemented in the spotvolatility package has been proposed in an academic
paper. For detailed descriptions, refer to these papers written by the original authors of the
methods. References can be found at the end of this document or in the help page of this
package, where you can also find a short overview of each method. In this section, we show
some examples for each method.

Deterministic periodicity - "detper"

This is the default method. The spot volatility is decomposed into a deterministic periodic
factor fi (identical for every day in the sample) and a daily factor st (identical for all ob-
servations within a day). Both components are then estimated separately. For more details,
see Taylor and Xu (1997) and Andersen and Bollerslev (1997). The jump robust versions by
Boudt et al. (2011b) have also been implemented.

First, we can use the plot function to get a quick view of the results. This will call the
plot.spotvolatility function, which automatically shows all relevant results contained in
the spotvol object. When estimated by the deterministic method, it plots the general spot
volatility estimates in the top panel, and the intraday periodicity pattern and daily volatilies
in the bottom panels:

data(sample_returns_5min)

vol_detper <- spotvol(sample_returns_5min, method = "detper")

plot(vol_detper)
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Now, to get a better look at the spot volatility estimates, we need to zoom in. This time, we
only plot the first 3 days of the spot volatility. Recall that since we entered the input as a
matrix, the output vol_detper$spot is also a matrix, with each row representing 1 day of
estimates:

plot(as.numeric(t(vol_detper$spot[1:3,])), type = "l")
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Now, it is easier to see how this method works. The estimated periodicity pattern (the second
panel in the previous plot) is repeated every day, and it is multiplied by the estimate of the
daily volatility (the third panel in the previous plot). To get the plot to zoom in, we also
could have run

plot(vol_detper, length = 3*288)

Stochastic periodicity - "stochper"

This method by Beltratti and Morana (2001) assumes the periodicity factor to be stochastic.
The spot volatility estimation is split into four components: a random walk, an autoregressive
process, a stochastic cyclical process and a deterministic cyclical process. The model is esti-
mated using a quasi-maximum likelihood method based on the Kalman Filter. The package
FKF (Luethi et al. 2014) is used to apply the Kalman filter. In addition to the spot volatility
estimates, all parameter estimates are returned.

Like most stochastic volatility models, this model can be difficult to estimate. Optimization
can take a long time, and results can depend on the initial values used in the estimation of
the parameters. Therefore, these values can be specified by the user, as well as optimization
restrictions:

init <- list(sigma = 0.03, sigma_mu = 0.005, sigma_h = 0.007,

sigma_k = 0.06, phi = 0.194, rho = 0.986, mu = c(1.87, -0.42),

delta_c = c(0.25, -0.05, -0.2, 0.13, 0.02), delta_s = c(-1.2,

0.11, 0.26, -0.03, 0.08))

vol_stochper <- spotvol(sample_returns_5min, method = "stochper",

init = init, control = list(maxit = 20))
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The control argument will be passed down to optim, so it will accept all options listed in
?optim. We can now compare the spot volatility estimates of the stochastic method to those
calculated previously by the deterministic model:

plot(as.numeric(t(vol_detper$spot[1:3,])), type = "l")

lines(as.numeric(t(vol_stochper$spot[1:3,])), col = "red")
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Nonparametric filtering - "kernel"

This method by Kristensen (2010) filters the spot volatility in a nonparametric way by ap-
plying kernel weights to the standard realized volatility estimator. Different kernels and
bandwidths can be used to focus on specific characteristics of the volatility process.

Estimation results heavily depend on the bandwidth parameter h, so it is important that this
parameter is well chosen. However, it is difficult to come up with a method that determines
the optimal bandwidth for any kind of data or kernel that can be used. Although some esti-
mation methods are provided, it is advised that you specify h yourself, or make sure that the
estimation results are appropiate.

An easy way to get a quick estimate of h is to use the R function bw.nrd0. The kernels will
be calculated on a daily basis using the time index of each data point. Therefore, the band-
width should be calculated from the same data, i.e. a vector of intraday times, for example
in seconds. For data consisting of 5-minute returns, this would be

h1 = bw.nrd0((1:nrow(sample_returns_5min))*(5*60))

vol3 <- spotvol(sample_returns_5min, method = "kernel", h = h1)

Another quick estimator has been implemented, one that multiplies the above simple es-
timate by the quarticity of the returns on each day. It can be used by the option est =
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"quarticity". The quarticity is a measure of the variance of the spot volatility. Days with
higher quarticity will be assigned a larger bandwidth, to reduce the influence of single large
returns. When using the method ”kernel”, in addition to the spot volatility estimates, all used
values of the bandwidth h are returned, so we can compare them to the quarticity values:

quarticity = (nrow(sample_returns_5min)/3) * rowSums(sample_returns_5min^4)

vol4 <- spotvol(sample_returns_5min, method = "kernel", est = "quarticity")

plot(log(quarticity), vol4$par$h)
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One way to estimate h, is by using cross-validation. For each day in the sample, h is chosen
as to minimize the Integrated Square Error, which is a function of h. However, this function
often has multiple local minima, or no minima at all (h → ∞). To ensure a reasonable
optimum is reached, strict boundaries have to be imposed on h. These can be specified by
lower and upper, which by default are 0.1n−0.2 and n−0.2 respectively, where n is the number
of observations in a day. Crossvalidation can be used by specifying the option est = "cv":

vol5 <- spotvol(sample_returns_5min, method = "kernel", est = "cv")

Now, we can easily compare the estimates of each bandwidth selection method by adding
them to the same plot (plot.spotvol does not show any additional plots besides the spot
volatility estimates for this method):

plot(vol3, length = 2880)

lines(as.numeric(t(vol4$spot))[1:2880], col = "red")

lines(as.numeric(t(vol5$spot))[1:2880], col = "blue")

legend("topright", c("h = simple estimate", "h = quarticity corrected",

"h = crossvalidated"), col = c("black", "red", "blue"), lty = 1)
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This plot compares the spot volatility estimates of the first 10 days. The simple estimator
usually yields the smallest bandwidth, which makes it more sensitive to shocks. On the 2nd
and 6th day (observations 289-576 and 1441-1728 in the plot, respectively), the crossvalidation
estimate has hit its upper boundary, meaning the minimization problem had no feasible
solution on those days.

Piecewise constant volatility - "piecewise"

This nonparametric method by Fried (2012) assumes the volatility to be piecewise constant
over local windows. Robust two-sample tests are applied to detect changes in variability
between subsequent windows. The spot volatility can then be estimated by evaluating regular
realized volatility estimators within each local window.

An example from Fried (2012) consists of simulated data from the student’s t-distribution.
The volatility is equal to

√
(5/3) for the first 1000 observations, 1.5

√
(5/3) from 1001 to 2000,

2
√

(5/3) from 2001 to 2500, and
√

(5/3) again for the last 500 observations. We organize
these simulated values in a matrix containing 500 observations per row:

simdata <- matrix(sqrt(5/3) * rt(3000, df = 5), ncol = 500, byrow = TRUE)

simdata <- c(1, 1, 1.5, 1.5, 2, 1) * simdata

When we apply the piecewise constant volatility method the resulting spotvol object will
contain both the spot volatility estimates and the detected change points in the volatility
level. When plotting it, these change points will be visualized:

vol6 <- spotvol(simdata, method = "piecewise", m = 200, n = 100,

online = FALSE)

## Detecting change points...
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## Change detected at observation 968 ...

## Change detected at observation 2000 ...

## Change detected at observation 2471 ...

## Change detected at observation 2883 ...

plot(vol6)
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Note that these results depend on randomly generated values, which can vary when you repeat
this example. Here, we applied ex post estimation, using all observations between two change
points to estimate the volatility. Another option is to apply online estimation, where only
observations up to point t are used in the estimation of the volatility at point t. This results
in slowly changing estimates, depending on the lengths m and n of the reference and test
windows:

vol7 <- spotvol(simdata, method = "piecewise", m = 200, n = 100,

online = TRUE, volest = "tau")

## Detecting change points...

## Change detected at observation 968 ...

## Change detected at observation 2000 ...

## Change detected at observation 2471 ...

## Change detected at observation 2883 ...

plot(vol7)
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This can lead to a few unreliable estimates after each change point, when only a couple of
observations are available. We also used a different estimator of the volatility for this plot. It
can be specified by the option volest.

GARCH with intraday seasonality - "garch"

The package also includes an option to apply GARCH models, implemented by the rugarch
package (Ghalanos 2014), to estimate spot volatility from intraday data. This is done by
including external regressors in the GARCH model. These regressors are based on a flexible
Fourier form, which was also used in the stochastic and deterministic periodicity estimation
methods.

The rugarch package offers several GARCH specifications, which can be chosen from using the
model argument in the spotvol function. Depending on the data, some models will not reach
convergence in the minimization algorithm though, so it is advised to try multiple specifica-
tions. As an example, we will compare a standard GARCH(1,1) model to an eGARCH(1,1)
specification:

vol8 <- spotvol(sample_returns_5min, method = "garch", model = "sGARCH",

solver.control = list(maxeval = 1000))

## Fitting sGARCH model...

vol9 <- spotvol(sample_returns_5min, method = "garch", model = "eGARCH",

solver.control = list(maxeval = 1000))

## Fitting eGARCH model...

plot(as.numeric(t(vol8$spot))[6000:7000], type = "l")

lines(as.numeric(t(vol9$spot))[6000:7000], col = "red")

legend("topleft", c("GARCH", "eGARCH"), col = c("black", "red"),

lty = 1)
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This plot highlights the huge effect an outlier can have on the estimation. The GARCH
models seem particulary susceptible to these, the eGARCH in this case even more so than
the standard GARCH model.

6. Volatility forecasting

It is broadly accepted by academic researchers that, when appropriately managed, access
to high-frequency data leads to a comparative advantage in better predicting the volatility
of future price evolution and hence the generation of alpha through quantitative investment
models. Already in 2003 Fleming et al. (2003) estimated that an investor would be willing to
pay 50 to 200 basis points per year to capture the gains in portfolio performance, from using
high-frequency returns instead of daily returns for volatility forecasting. His findings were
later confirmed in a somewhat different setting by the research of De Pooter et al. (2008).

In this section we discuss 2 classes of univariate forecasting models implemented in the
highfrequency package that have highfrequency data as input: (i) the Heterogeneous Au-
toregressive model for Realized Volatility (HAR) discussed in Andersen et al. (2007) and
Corsi (2009a) and (ii) the HEAVY model (High frEquency bAsed VolatilitY) introduced in
Shephard and Sheppard (2010). The goal of both models is roughly speaking to predict the
next days volatility based on the highfrequency price evolutions prior to that day.

Although the HAR and the HEAVY model have the same goal, i.e. modeling the conditional
volatility, they take a different approach. Whereas the HAR model is focused on predicting
the open-to-close variation, the HEAVY model has two equations: one focused on the open-to-
close variation, one focused on the close-to-close variation. The main advantages of the HAR
model are among other things, that it is simple and easy to estimate (since it is essentially
a special type of linear model that can be estimated by least squares), even though it still
manages to reproduce typical features found in volatility such as the long memory, fat tails,
etc. The main advantages of the HEAVY model are among other things, that it models both
the close-to-close conditional variance, as well as the conditional expectation of the open-to-
close variation. Furthermore, the HEAVY model has momentum and mean reversion effects,
and it adjusts quickly to structural breaks in the level of the volatility process. In contrast to
the HAR model, the estimation of the HEAVY model is done by Guassian quasi-maximum
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likelihood, for both equations in the model separately.

The next two sections review the HAR model and HEAVY model each in more detail, and of
course discuss and illustrate how highfrequency can be used to estimate these models.

6.1. The HAR model

Corsi (2009b) proposed the Heterogeneous Autoregressive (HAR) model for Realized Volatil-
ity. As a first step, intraday returns are used to measure the daily volatility using e.g. simply
Realized Volatility and typically ignoring the overnight return. As a second step, the realized
volatility is parameterized as a linear function of the lagged realized volatilities over differ-
ent horizons. Typically, the daily, weekly and monthly horizons are chosen to aggregate the
realized volatility over. The simplest version of the model, as proposed in Corsi (2009b), is
referred to as the HAR-RV model. In an interesting paper, Andersen et al. (2007) extend the
model of Corsi (2009b) by explicitly including the contribution of jumps to the daily Realized
Volatility in the model. Their analysis suggests that the volatility originating from jumps in
the price level is less persistent than the volatility originating from the continuous component
of Realized Volatility, and that separating the rough jump moves from the smooth continuous
moves enables better forecasting results. They propose mainly two ways to model this idea,
and both are implemented in the highfrequency package. In what follows, we first discuss
the different versions of the HAR model in more detail, and then we discuss and illustrate
how highfrequency can be used to estimate them.

The harModel function in highfrequency implements the Heterogeneous Autoregressive
model for Realized Volatility discussed in Andersen et al. (2007) and Corsi (2009a). Let
rt,i the i-th intraday return on day t, for i = 1, . . . ,M with M the number of intraday returns

per day. The realized volatility is then given by RVt =
∑M

i=1 r
2
t,i. Denote by

RVt,t+h = h−1[RVt+1 +RVt+2 + . . .+RVt+h],

the Realized volatility aggregate over h days. Note that by definition RVt,t+1 ≡ RVt+1.

The HARRV model

The most basic volatility model discussed Andersen et al. (2007) and Corsi (2009a) is given
by:

RVt,t+h = β0 + βDRVt + βWRVt−5,t + βMRVt−22,t + εt,t+h,

for t = 1, 2, . . . , T . Typically h = 1, and the model simplifies to

RVt+1 = β0 + βDRVt + βWRVt−5,t + βMRVt−22,t + εt+1.

The HARRVJ model

In the presence of jumps in intraday price process, the traditional realized volatility measures
are dominated by the contribution of the jumps to volatility. Therefore, robust measure
of volatility were developed in order to estimate only the ”smooth” price variation (roughly
speaking). The contribution of the jumps to the quadratic price process can then be estimated
by Jt = max[RVt −BPVt, 0]. The HAR-RV-J model is then given by

RVt,t+h = β0 + βDRVt + βWRVt−5,t + βMRVt−22,t + Jt + εt,t+h.
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The HARRVCJ model

Andersen et al. (2007) argue that it may be desirable to treat small jumps as measurement
errors, or part of the continuous sample path variation process, associating only large values
of (RVt −BPVt) with the jump component. Therefore, they define Zt as

Zt = (1/n)−1/2 × (RVt −BPVt)RV −1
t

[(µ−4
1 + 2µ−2

1 − 5) max{1, TQtBPV −2
t }]1/2

, (2)

where TQt = M × µ−3
4/3

∑M
j=3 |rt,j |4/3|rt,(j−1)|4/3|rt,(j−2)|4/3, with µp = E(|z|p). Suppose you

identify the ”significant” jumps by the realizations of Zt in excess of some critical value, say
Φα,

Jt = I[Zt < Φα]RVt + I[Zt ≤ Φα]BPVt,

where I[·] denotes the indicator function. To ensure that the estimated continuous sample
path component variation and jump variation sum to the total realized variation, we follow
Andersen et al. (2007) in estimating the former component as the residual,

Ct = I[Zt ≤ Φα]RVt + I[Zt > Φα]BPVt.

The HAR-RV-CJ model is then given by:

RVt,t+h = β0 + βCDCt + βCWCt−5,t + βCMCt−22,t + Jt + εt,t+h.

Usage and arguments

The harModel function in highfrequency takes as data input an xts object containing the
intraday returns. You can specify the type of HAR model that you want to estimate by setting
the type argument. By default, the most basic model is chosen type='HARRV'. Other valid
options are type='HARRVJ' or type='HARRVCJ' (see above for a discussion of these models).

Based on the intraday returns, daily realized measures are calculated. With the argument
RVest, you can set which volatility estimators should be used to estimate both the daily
integrated variance (non-jump-robust) and the continuous component of volatility. By default,
total daily volatility is measured by Realized Volatility and the continuous component is
measured by the Realized Bipower Variation, hence RVest=c(rCov, rBPCov), but users can
set estimators to their liking (see Section 4 for a discussion on the implemented Realized
Volatility measures).

The daily volatility measures are subsequently aggregated over different time horizons. Use the
arguments to periods and periodsJ to specify the horizons over which the continuous/total
volatility and the jump component should be aggregated. Typically, the daily, weekly and
monthly frequency are used, i.e. one, five and twenty-two days which translates into the
default setting: periods=c(1,5,22) and periodsJ=c(1,5,22).

Corsi and Reno (2012) propose to further extend the HAR model with a leverage component
(Leverage Heterogeneous Auto-Regressive model). This allows to take into account that
negative returns affect future volatility differently than positive returns. By default, the
leverage effect is not taken into account and the argument leverage=NULL. In case you want
to mimic the analysis in Corsi and Reno (2012), with leverage components aggregated on the
daily, weekly and monthly frequency, just set leverage=c(1,5,22).
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In the HARRVCJ a test determines whether the contribution of the jumps is statistically signif-
icant. The argument jumptest should be set to the function name of the test to determine
whether the jump variability is significant that day. By default jumptest='ABDJumptest',
hence using the test statistic in Equation (2) (or Equation (18) of Andersen et al. (2007)).
The argument alpha can then be used to set the confidence level used in testing for jumps,
which is set to the traditional ” 5%” by default.

Often, the object will be to model the volatility for the next day, but this needn’t be the case.
Use the argument h to set the time horizon over which you want to aggregate the dependent
variable, e.g. h=5 in case you are interested in modeling the weekly realized volatility.

To conclude, we note that in applications of the HAR model sometimes the dependent and
explanatory variables are transformed by taking the logarithm or the square root. Set the
argument transform='log' or transform='sqrt' or any other function to transform all vari-
ables right before the linear model is estimated. By default, no transformation is done and
transform=NULL.

Examples

Fitting the HARRV model on the Dow Jones Industrial Average in 2008
As a first step, we load the daily realized volatility for the Dow Jones Industrial average and
select only 2008. The sample dataset realized_library in highfrequency contains a very
rich set of realized volatility measures computed by Heber et al. (2009). highfrequency only
contains a subset of the full realized library, which can be found on their website: http:

//realized.oxford-man.ox.ac.uk.

> data(realized_library); #Get sample daily Realized Volatility data

> DJI_RV = realized_library$Dow.Jones.Industrials.Realized.Variance; #Select DJI

> DJI_RV = DJI_RV[!is.na(DJI_RV)]; #Remove NA's

> DJI_RV = DJI_RV['2008'];

As a second step, we compute the traditional Heterogeneous AutoRegressive model (HAR).
The output of the model is an S3 object. Since the HAR-model is simply a special type
of linear model, it is also implemented that way: the output of the harModel function is a
sublclass harModel of lm, the standard class for linear models. Figure 1 plots the output
object of the harModel function, which has time on the horizontal axis and the observed
realized volatility and the forecasted realized volatility on the vertical axis (of course this
analysis is in-sample, but the estimated coefficients of the model can be used for real out-of-
sample forecasts obviously). It is clear from a visual inspection of Figure 1 that one of the
features of the harModel is that it can adapt relatively fast to changes in the volatility level,
which explains its popularity in recent years.

> x = harModel(data=DJI_RV , periods = c(1,5,22), RVest = c("rCov"),

+ type="HARRV",h=1,transform=NULL);

> class(x);

[1] "harModel" "lm"

> x;

http://realized.oxford-man.ox.ac.uk
http://realized.oxford-man.ox.ac.uk


24 Highfrequency: Toolkit for the analysis of highfrequency financial data in R.

Model:

RV1 = beta0 + beta1 * RV1 + beta2 * RV5 + beta3 * RV22

Coefficients:

beta0 beta1 beta2 beta3

4.432e-05 1.586e-01 6.213e-01 8.721e-02

r.squared adj.r.squared

0.4679 0.4608

> summary(x);

Call:

"RV1 = beta0 + beta1 * RV1 + beta2 * RV5 + beta3 * RV22"

Residuals:

Min 1Q Median 3Q Max

-0.0017683 -0.0000626 -0.0000427 -0.0000087 0.0044331

Coefficients:

Estimate Std. Error t value Pr(>|t|)

beta0 4.432e-05 3.695e-05 1.200 0.2315

beta1 1.586e-01 8.089e-02 1.960 0.0512 .

beta2 6.213e-01 1.362e-01 4.560 8.36e-06 ***

beta3 8.721e-02 1.217e-01 0.716 0.4745

---

Signif. codes: 0 âĂŸ***âĂŹ 0.001 âĂŸ**âĂŹ 0.01 âĂŸ*âĂŹ 0.05 âĂŸ.âĂŹ 0.1 âĂŸ âĂŹ 1

Residual standard error: 0.0004344 on 227 degrees of freedom

Multiple R-squared: 0.4679, Adjusted R-squared: 0.4608

F-statistic: 66.53 on 3 and 227 DF, p-value: < 2.2e-16

> plot(x);

Fitting the HARRVCJ model on small example dataset
Using highfrequency, it is also very easy to estimate more sophisticated versions of the
harModel. For example, the HARRVCJ model discussed in Andersen et al. (2007) can be
easily estimated with a small example dataset as follows:

> data("sample_5minprices_jumps");

> data = sample_5minprices_jumps[,1];

> data = makeReturns(data); #Get the high-frequency return data

> x = harModel(data, periods = c(1,5,10), periodsJ=c(1,5,10),

+ RVest = c("rCov","rBPCov"), type="HARRVCJ",

+ transform="sqrt");

> x
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Figure 1: HAR-model for the Realized Volatility of the DJIA in 2008
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Model:

sqrt(RV1) = beta0 + beta1 * sqrt(C1) + beta2 * sqrt(C5) + beta3 * sqrt(C10)

+ beta4 * sqrt(J1) + beta5 * sqrt(J5) + beta6 * sqrt(J10)

Coefficients:

beta0 beta1 beta2 beta3 beta4 beta5

-0.8835 1.1957 -25.1922 38.9909 -0.4483 0.8084

beta6

-6.8305

r.squared adj.r.squared

0.9915 0.9661

This last example shows how easily a special type of HAR model can be estimated having
solely the intraday returns as input. Note that this last example purely serves a didactic
purpose: the high R-squared can be explained by the small number of observastions (i.e.
days) in the dataset.
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6.2. The HEAVY model

Shephard and Sheppard (2010) introduced the HEAVY model (High frEquency bAsed Volatil-
itY) to leverage highfrequency data for volatility modeling. Essentially, the model boils down
to two equations: Equation (3) models the close-to-close conditional variance, while Equation
(4) models the conditional expectation of the open-to-close variation. Denote by FHFt−1 the
past high frequency data (i.e. all intraday returns) and by FLFt−1 the past low frequency data
(i.e. daily returns). The HEAVY model is now based on FHFt−1 in contrast to traditional
GARCH models that use only FLFt−1.

Denote the daily returns:

r1, r2, . . . , rT .

Based on intraday data, one can calculate the daily realized measures:

RM1, RM2, . . . , RMT ,

with T the total number of days in the sample. The heavy model is given by:

Var(rt|FHFt−1 ) = ht = ω + αRMt−1 + βht−1, ω, α ≥ 0 and β ∈ [0, 1], (3)

E(RMt|FHFt−1 ) = θt = ωR + αRRMt−1 + βRθt−1, ωR, αR, βR ≥ 0 and αR + βR ∈ [0, 1]. (4)

Equation (3) models the close-to-close conditional variance, and equation (4) models the
conditional expectation of the open-to-close variation. In matrix notation, the model becomes:(

ht
θt

)
=

(
ω
ωR

)
+

(
0 α
0 αR

)(
r2t−1

RMt−1

)
+

(
β 0
0 βR

)(
ht−1

θt−1

)
. (5)

The function heavyModel in the highfrequency package implements the above model in very
general way. It enables the user the obtain the estimates for the parameters (ω, ωR, α;αR, β, βR)
using Quasi-maximum likelihood.4

Usage and arguments

The heavyModel5 takes a (T x K) matrix containing the data as input, with T the number
of days. For the traditional HEAVY model: K = 2, the first column contains the squared
demeaned daily returns, i.e. r21, . . . , r

2
T and the second column contains the realized measures,

i.e RM1, . . . , RMT .

As you can see in Equation (5), the matrix notation of the HEAVY model contains two
matrices with parameters named α and named β respectively. This matrix structure allows
to see that the traditional HEAVY model given in (5) is just a special case of a larger set of
models that can be written this way. You can use the arguments p and q from the heavyModel
function to specify for each of these two matrices: (i) which parameters in the matrix should
be estimated by setting a non-zero integer in that matrix cell (ii) how many lags should be
included in the model. More formally: p is a (K×K) matrix containing the lag length for the

4The implementation is (loosely) based on the matlab code from Kevin Sheppard: http://www.

kevinsheppard.com/wiki/MFE_Toolbox
5The implementation of the heavyModel is not completely finished. For the moment only bound constraints

on the parameters are imposed in the optimization. Future developments also include outputting standard
errors, and a c-implementation of the likelihood function to speed up the QML estimation.

http://www.kevinsheppard.com/wiki/MFE_Toolbox
http://www.kevinsheppard.com/wiki/MFE_Toolbox
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model innovations. Position (i, j) in the matrix indicates the number of lags in equation i of
the model for the innovations in data column j. For the traditional heavy model introduced
above p is given by (cfr. the matrix with the αs in Equation (5)):

p =

(
0 1
0 1

)
.

Similarly to the matrix p, the matrix q is a (K ×K) matrix containing the lag length for the
conditional variances. Position (i, j) in the matrix indicates the number of lags in equation
i of the model for conditional variances corresponding to series j. For the traditional heavy
model introduced above q is given by (cfr. the matrix with the βs in Equation (5)):

q =

(
1 0
0 1

)
.

The starting values that will be used in the optimization can be set by the argument
startingvalues. The arguments LB and UB can be used to set the Upper and Lower Bound
for the parameters. By default, the lower bound is set to zero and the upperbound to infin-
ity. To specify how the estimation should be initialized you can use the backcast argument,
which will be set to the unconditional estimates by default. Finally, the compconst argument
is a boolean indicating how the ωs should be estimated. In case it is TRUE, ωs are estimated
in the optimization, and in case it is FALSE volatility targeting is done and ω is just 1 minus
the sum of all relevant αs and βs multiplied by the unconditional variance.

Output

The output of the heavyModel is a list. Most interestingly, the list-item estparams contains
a matrix with the parameter estimates and their names. The order in which the parameters
are reported is as follows: first the estimates for ω, then the estimates for the non-zero αs
with the most recent lags first in case max(p) > 1, then the estimates for the non-zero βs
with the most recent lag first in case max(q) > 1.

Whereas the loglikelihood list-item reports the total log likelihood, we offer users a bit more
insight with the list-item likelihoods containing an xts-object with the daily log likelihood
evaluated at the parameters. The list-item convergence provides more information on the
convergence of the optimization, see optim for more information.

The list-item condvar is a (T ×K) xts-object containing the conditional variances. For the
traditional HEAVY model, Figure 2 plots for example the conditional close-to-close variance
for the DJIA for 1996 up to 2009 (see next subsection for more information).

Examples

Fitting the HEAVY model on the Dow Jones Industrial Average from 1996 up to 2009
As a first step, we load the realized_library (Heber et al. 2009) which contains information
on the Dow Jones Industrial Average. We then select from this library the daily returns and
the daily Realized Kernel estimates (Barndorff-Nielsen et al. 2004). The data matrix that
serves as an input for the heavyModel now has the returns as the first column and the
Realized Kernel estimates in the second column. We further set the argument backcast to
the variance of the daily returns and the average realized kernel over the sample period.We
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now have all ingredients to estimate the HEAVY Model. Based on the output of the model,
Figure 2 plots the conditional open-to-close variance, as estimated by the second equation in
the model. Note the striking peak in 2008 at the start of the financial crisis.

> # Implementation of the heavy model on DJIA:

> data("realized_library");

> returns = realized_library$Dow.Jones.Industrials.Returns;

> rk = realized_library$Dow.Jones.Industrials.Realized.Kernel;

> returns = returns[!is.na(rk)]; rk = rk[!is.na(rk)]; # Remove NA's

> data = cbind( returns^2, rk );

> backcast = matrix( c(var(returns),mean(rk)) ,ncol=1);

>

> startvalues = c(0.004,0.02,0.44,0.41,0.74,0.56); # Initial values

> output = heavyModel( data = as.matrix(data,ncol=2), compconst=FALSE,

+ startingvalues = startvalues, backcast=backcast);

> output$estparams

[,1]

omega1 0.01750506

omega2 0.06182249

alpha1 0.45118753

alpha2 0.41204541

beta1 0.73834594

beta2 0.56367558

7. Liquidity

7.1. Matching trades and quotes

Trades and quotes are often supplied as separate data objects. For many research and practical
questions related to transaction data, one needs to merge trades and quotes. Since trades and
quotes can be subject to different reporting lags, this is not a straightforward operation (Lee
and Ready 1991). The function matchTradesQuotes can be used for matching trades and
quotes. One should supply the number of seconds quotes are registered faster than trades.
Based on the research of Vergote (2005), we set 2 seconds as the default.

7.2. Inferred trade direction

Many trades and quotes databases do not indicate whether individual trades are market buy
or market sell orders. highfrequency implements with getTradeDirection the Lee-Ready
rule (Lee and Ready 1991) to infer the trade direction based on the matched trades and
quotes.

7.3. Liquidity measures

Numerous liquidity measures can be calculated based on matched trade and quote data,
using the function tqLiquidity (see Bessembinder (2003), Boehmer (2005), Hasbrouck and



Jonathan Cornelissen, Kris Boudt, Scott Payseur, Maarten Schermer 29

Figure 2: HEAVY Model for the Realized Volatility of the DJIA in 2008.
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Seppi (2001) and Venkataraman (2001) for more information on the implemented liquidity
measures). The main implemented liquidity measures are listen in Table 4, and can be used
as arguments of the function tqLiquidity.

The example below illustrates how to: (i) match trades and quotes, (ii) get the trade direction
and (iii) calculate liquidity measures.

> #Load data samples

> data("sample_tdata");

> data("sample_qdata");

> #Match the trade and quote data

> tqdata = matchTradesQuotes(sample_tdata,sample_qdata);

> #Display information in tqdata

> colnames(tqdata)[1:6];

[1] "SYMBOL" "EX" "PRICE" "SIZE" "COND" "CORR"

> colnames(tqdata)[7:12];



30 Highfrequency: Toolkit for the analysis of highfrequency financial data in R.

Table 4: Overview of Liquidity measures

Argument(s) Liquidity measures

es, rs Compute effective (realized) spread
value trade Compute trade value (price × size)
signed value trade Compute signed trade value
signed trade size Compute signed trade size
di diff, di div Compute depth imbalance
pes, prs Compute proportional effective and realized spread
price impact, prop price impact Compute price impact
tspread, pts Compute half traded and proportional half-traded spread
qs, logqs Compute quoted spread
qsslope, logqslope Compute quoted slope

[1] "G127" "BID" "BIDSIZ" "OFR" "OFRSIZ" "MODE"

> #Get the inferred trade direction according to the Lee-Ready rule

> x = getTradeDirection(tqdata);

> #Calculate the proportional realized spread:

> prs = tqLiquidity(tqdata,sample_tdata,sample_qdata,type="prs");

> #Calculate the effective spread:

> es = tqLiquidity(tqdata,type="es");
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