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Design-based inference

Design-based
estimator

N̂ = n
Pa

N = Abundance
n = # of animals
counted
Pa = proportion of
area sampled



Design-based inference

If all animals are not
detectable in our strip,
we need to estimate
detection probability,
Pd.

⇒ One approach:
relate detectability to
distance from transect
line



Design-based inference

Distance estimator
(design-based)

N̂ = n
PaP̂d



Design-based inference

Large improvements to design-based abundance estimators
over the last few decades

• Account for multiple covariates influencing detection
probability

• Model data from multiple observers to minimize
assumption violations

• Difficult to make inferences about the effects of habitat
covariates on underlying density (only possible with two
step approach)

• Requires preset sampling design
• Requires static population
• Difficult to incorporate spatial or temporal autocorrelation
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Model-based inference

Challenges with
wildlife surveys

• Weather and
logistics often
influence where
sampling occurs

• Abundance isn’t
static in time or
space



Model-based inference

Conceptualize data collected as having arisen from two
conceptually distinct processes, providing a model for each:

• Process model Describes how abundance or a surrogate
(density, abundance intensity) varies over time or space

• Observation model Describes the data collection process -
how underlying abundance is translated into data
(realization of stochastic sampling process)

Need to estimate the parameters of each model and predict
abundance over a surface!
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Model-based inference

Types of model-based analyses for animal transect data

Thinned point
process

• Hedley and
Buckland
(2004)

• Johnson et al.
(2010), R
package dspat

Highfalutin
Poisson GLMM

• Moore and
Barlow (2011)

• Chelgren et al.
(2011)

Data
augmentation

• Royle and
Dorazio (2008)

• Schmidt et al.
(2011)

• †Conn et al.
(2012), R
package
HierarchicalDS

†Accounts for double observers
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Introduction

An additional challenge: Partial observability and errors in
species assignment

Obs1 Obs2 Distance Group size
Bearded Bearded 1 2
Bearded 0 5 1
Bearded Unknown 1 2
Unknown Unknown 2 3
Unknown Unknown 4 8

0 Spotted 4 1
Spotted Bearded 2 2



Introduction

Model-based approaches to estimation
• Inference based on prediction (e.g. on spatial surface)
• Sampling design can focus on minimizing prediction error

(regular placement of transects) but not strictly necessary
• Hierarchical extensions possible (spatial, temporal

variation in abundance)
• Separation of process and observation models lends itself

to modular approach to model building



Introduction

Goals for modeling
Develop hierarchical framework for line transect sampling that
permits

• Straightforward inclusion of temporal/spatial effects on
abundance

• Multiple observers with possible observer dependence
• Estimation of individual covariate distributions (e.g. group

size)
• Possible extensions for species misidentification/partial

observation



Math

Start by discretizing
time & space
Let D1, D2, . . . , DS

form a partition of
some area of interest,
D.



Math

Consider separate processes for:
1 Spatial and temporal dynamics of abundance at cell level

(Process model)

2 Abundance in a specific transect/grid cell combination
(Local abundance model)

3 Observations in a particular cell at a particular time
(Observation model)
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Math: Process model

Group abundance (Gs) is difficult to work with
• integer valued

• dependent upon spatial support
• possible disconnect with observation model (later)

⇒ Assume that abundance is Poisson distributed, and work
with the log of abundance intensity, νst:

Gs ∼ Poisson(λs),

λs = As exp(νs)

where λs gives abundance intensity in cell s, and As gives area
of cell s proportional to mean cell area
⇒ How does ν change over time and space?
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Math: Process model

One possibility (implemented in R package hierarchicalDS:)

ν ∼ Normal(Xβ + η, τ−1ν ), where

X gives a design matrix,

β is a vector of regression coefficients,

η is a vector of spatially structured random effects (stay tuned),
and

τν is the precision associated with overdispersion relative to the
Poisson distribution.

Other possibilities: cellular automata, resource selection
models



Math: Local abundance model

• Data are partitioned into grid
cell/transect combinations

• Area surveyed in each transect
used to scale λs to the actual
area surveyed λst = Pstλs

• Posterior predictions can be
generated for areas of cells not
sampled:
Gs,−t ∼ Poisson ((1−

∑
t Pst)λst)

(Note that Pst could also be modified to incorporate availability!)
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Math: Local abundance model

For areas of cells that are sampled, update abundance based
on a whole bunch of things (this is where the rubber meets the
road):

• Predicted abundance, Pstλst

• Simultaneously estimated detection parameters (stay
tuned)

• Individual covariate values & distributions (stay tuned)
• Data augmentation with RJMCMC (e.g. Durban and Elston

JABES 2005)
⇒ Model unobserved animals & their covariates
probabilistically
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Math: Observation model (Data,
finally!)

Link and Barker (2010) suggest the following observation model
likelihood for distance data:

[Gobs
j |Gj , pij ] =

(
Gj
Gobs
j

) Gj∏
i=1

p
Yij
ij (1− pij)(1−Yij),

where
pij is the probability of observing group i while surveying
transect j
Gj is the number of animal groups in transect j
Gobs
j is the number of observed groups in transect j



Math: Observation model (Data,
finally!)

For us, pij is the probability that a group of animals is seen by
at least one observer. With two observers (and a probit link
function):

probit

(
pij1
pij2

)
=

[
Ỹij1
Ỹij2

]
∼ MVN

([
Xdet
ij1β

det

Xdet
ij2β

det

]
,

[
1 ρij
ρij 1

])
,

Yijk = 1 iff Ỹijk > 0,

pij =

∫ ∞
0

∫ ∞
0

MVN

([
x
y

]
;

[
Xdet
ij1β

det

Xdet
ij2β

det

]
,

[
1 ρij
ρij 1

])
dxdy



Math: Observation model (Data,
finally!)

Observer dependence: ρij = f(distance), with y-intercept
constrained to be 0 [the point independence assumption], and
maximum ≤ 1.

In HierarchicalDS,

discrete distance:

ρij =
(dij − 1)

max(dij − 1)
,

continuous distance:

ρij =
dij

max(dij)
.
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Math: Observation model (Data,
finally!)

Why choose a probit model?
• Constrains detection probability to (0,1)

• Efficient Gibbs sampling (Albert & Chib 1993 JASA). With
one observer,

Ỹijk ∼ Normal
(
[Xdetβdet]ijk, 1

)
where Ỹijk < 0, while Ỹijk > 0 if Yijk = 1. ⇒ Simulate Ỹ
directly using truncated normal pdfs.

[βdet| . . .] = Normal
(
(X′X)−1X′Ỹ, (X′X)−1

)
.
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Math: Covariate models

Individual covariate pdfs, g(θ), in HierarchicalDS
• Poisson
• Poisson-lognormal mixture
• Zero-truncated Poisson
• Zero-truncated Poisson-lognormal mixture
• Categorical
• Normal



Math: Estimation

RJMCMC algorithm:
1 Update (add or subtract) latent animals

• Propose increase or decrease with probability 0.5
• Propose Num to increase/decrease from U(0,a) distribution
• Propose individual covariate values from g(θ)
• Accept joint proposal according to MH ratio (posterior

proportional to a product of local abundance, observation,
covariate models and prior distributions)

2 Update covariates for unobserved animals according to
[g(θ)|Y = 0]

3 Simulate Ỹ values for new additions
Other parameters updated via Gibbs or Metropolis-Hastings
steps
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RJMCMC Algorithm

Y1 Y2 Ỹ1 Ỹ2 Distance Species Gr size
1 1 2.3 2.0 1 A 2
1 0 1.0 -0.4 3 A 1
1 1 0.6 0.3 4 A 1
0 0 -0.5 -0.8 3 A 2
0 0 -1.2 -1.6 5 A 1
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Y1 Y2 Ỹ1 Ỹ2 Distance Species Gr size
1 1 2.3 2.0 1 A 2
1 0 1.0 -0.4 3 A 1
1 1 0.6 0.3 4 A 1
0 0 -0.5 -0.8 3 A 2
0 0 -1.2 -1.6 5 A 1
0 0 NA NA 3 A 2
0 0 NA NA 1 A 1
0 0 NA NA 5 A 1



RJMCMC Algorithm
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RJMCMC Algorithm

Y1 Y2 Ỹ1 Ỹ2 Distance Species Gr size
1 1 2.3 2.0 1 A 2
1 0 1.0 -0.4 3 A 1
1 1 0.6 0.3 4 A 1
0 0 -0.5 -0.8 3 A 2
0 0 -1.2 -1.6 5 A 1
0 0 -0.6 -0.2 2 A 1
0 0 -1.0 -1.8 4 A 1
0 0 -3.7 -2.8 5 A 1



Well great, but how does this work in practice?
1 Simulated data, no spatial structure
2 Known population of golf tees (no spatial structure)
3 Simulated data (Matern process), spatial structure



Simulated data: no spatial structure
Simulation study

• Simulated data for two species: (a) linearly increasing
trend in abundance as a function of a covariate, and (b)
abundance as a quadratic function of a covariate.

• Group size simulated from a zero-truncated Poisson
distribution

• Detection probability a function of observer (categorical),
distance (categorical; 5 bins), group size (continuous), and
species (categorical).

• Correlation in probit-scale responses of each observer
linearly increasing from 0 to a maximum of 0.5 as a
function of distance

• Two MCMC chains of length 270,000 with first 20,000 of
each discarded as burnin



Simulated data: no spatial structure
Directed, acyclic graph

habβ

ν

Process 
model 

G x

θ

N

ε

detβ

ρ

Y

Individual 
covariate 
model 

Observation 
model 

υτ



Simulated data: no spatial structure
Results: Posteriors (truth in red)

Posterior

D
en

si
ty

cor

Det.Dist4

Det.Obs3

Hab.Lin.sp2

Cov.mu.size.sp1

Det.Dist5

Det.Sp2

Hab.Quad.sp2

Cov.mu.size.sp2

Det.Group

Hab.Interc.sp1

N.sp1

Det.Dist2

Det.Interc

Hab.Interc.sp2

N.sp2

Det.Dist3

Det.Obs2

Hab.Lin.sp1



Simulated data: no spatial structure
Results: Abundance by transect



Golf tee example
Example II: A ‘real’ population

• Known population of golf tees at University of St. Andrews
• Random placement within two strata (density higher in

Strata 2)
• Tee clusters differed by # of tees (Poisson distributed),

color, and exposure
• Surveyed by two independent groups of students using line

transect design
• Analyzed extensively to demonstrate distance sampling

methods in several text books (Borchers et al. 2002
Estimating Animal Abundance, Laake & Borchers chapter
in Advanced Distance Sampling)

• Detection probability modeled as a function of group size,
tee color, exposure



Golf tee example

• Black - Yellow tees
Gray - Green tees

• Square - ‘Exposed’
Triangle - ‘Not
exposed’

• Group size (1-8) - size
of symbol

• Closed - Observed
• Open - Not observed

Strata 1

Strata 2



Golf tee example
Results: Abundance by color & exposure (truth in red; Laake et
al. estimates in blue)

Posterior

D
en

si
ty

A. Green, not exposed

C. Yellow, not exposed

B. Green, exposed

D. Yellow, exposed



Golf tee example
Results: True and estimated group sizes



Simulated data with spatial structure

Example III: Patchy population
• Simulated abundance on a grid using a Matern process
• Transect placement determined according to a generalized

random-tessellation stratified design (spatially balanced
sampling)

• Detection a function of distance from centerline
(categorical, 5 levels), observer ID (categorical, 3 levels),
and group size (continuous)

• Intrinsic conditionally autoregressive (ICAR) model
(Gaussian Markov Random Field) used to account for
spatial dependence



Simulated data with spatial structure
DAG for Example III: Patchy population

habβ
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model 
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N

ε

detβ
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Y

Individual 
covariate 
model 

Observation 
model 

υτ

ητ

η



Simulated data with spatial structure
Truth

True N = 148800

Mean posterior predictions

N̂1 = 304000,N̂2 = 2418000



Simulated data with spatial structure

Yikes!!! What happened?
• Model “trying" to fit observed data
• Sharp breaks in abundance only reconcilable with high

variance associated with spatial random effects
• Multiple spatial patterns may fit the data nicely
• Nothing really holding abundance back in unsampled cells

⇒ Predicted abundance over the landscape biased high
⇒ Need to provide more structure on spatial random effects!



Simulated data with spatial structure

One approach (Hughes & Haran ArXiv 1101.6649v1 [stat.ME]):
• Calculate the residual projection matrix,

P⊥ = I−X(X′X)−1X′.
• Determine the Moran operator matrix,

Ω = SP⊥CP⊥/sum(C).
• Determine the eigenvalues, λ, and eigenvectors, V, of Ω.
• Use a criterion on λ to limit the number of “effective" spatial

random effects. For instance, limiting V to those for which
accompanying eigenvalues are greater than p.

• Reassemble the selected eigenvectors from V into a new,
reduced dimensional matrix K.

• Calculate η = Kθ, where [θ|τη] = MVN(0,K′QK).



Simulated data with spatial structure
Truth

True N = 148800

Mean posterior predictions

N̂1 = 158000,N̂2 = 168000



Spatial prediction

• Collecting covariates thought to influence animal density
important!!

• Example illustrates possible issues with “estimating"
abundance via posterior prediction when there are large
levels of residual autocorrelation: positive bias

• Spatial smoothing may help in these cases



Future extensions and final thoughts

• I hope I’ve convinced you of the utility of using hierarchical
models for transect data (with multiple observers or
otherwise)

• Lots of room left for future work!
• Species misidentification



Future extensions and final thoughts
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