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Abstract

This vignette describes the R hglm package via a series of applications that may be
of interest to applied scientists. The hglm package implements the estimation algorithm
for hierarchical generalized linear models. The package fits generalized linear models with
random effects, where the random effect may come from a conjugate exponential-family
distribution (Gaussian, Gamma, Beta or inverse-Gamma). The design matrices both for
the fixed and random effects can be explicitly specified, which allows fitting correlated
random effects as well as random regression models. Fixed effects may also be modeled in
the dispersion parameter. The hglm package produces estimates of fixed effects, random
effects, variance components as well as their standard errors. Model diagnostics such as
deviances and leverages can be visualized. At the end of this vignette, estimates from
the hglm package are compared to the ones from GenStat for several examples previously
published by Lee and Nelder.
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1. Introduction

The hglm package implements the estimation algorithm for hierarchical generalized linear
model (HGLM; Lee and Nelder 1996). The package fits generalized linear models (GLM;
McCullagh and Nelder 1989) with random effects, where the random effect may come from
a conjugate exponential-family distribution (normal, gamma, beta or inverse-gamma). The
user may explicitly specify the design matrices both for the fixed and random effects, which
means that correlated random effects as well as random regression models can be fitted. Fixed
effects may also be modeled in the dispersion parameter.

Generalized linear mixed models (GLMM) have previously been implemented in several R (R
Development Core Team 2009) function, such as the glmer() function in the lme4 library
and in the glmmPQL() function in the MASS library. In GLMM, the random effects are
assumed to be Gaussian whereas the hglm() function allow for other distributions for the
random effect. The hglm() function also extends the fitting algorithm of Gordon Smyth’s
dglm package by including random effects in the linear predictor for the mean. Moreover, the
model specification in hglm() can be given as a formula or alternatively in terms of y, X, Z and
X.disp, where y is the vector of observed responses, X and Z are the design matrices for the
fixed and random effects, respectively, in the linear predictor for the mean, and X.disp is the
design matrix for the fixed effects in the dispersion parameter. This enables a more flexible
modeling of the random effects than specifying the model by an R formula. Consequently,
this option is not as user friendly but gives the user a possibility to fit random regression
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Table 1: hglm functions.
Function Description Reference
Beta Extended usage of the Beta family
GLM.MME Internal IWLS estimation for hglm() Lee, Nelder, and Pawitan (2006)
hglm Fitting hierarchical generalized linear models Lee and Nelder (1996)
inverse.gamma Extended usage of the inverse-Gamma family

- Utilities -
plot Plot individual deviances and hatvalues

for the fitted hglm objects
print Produce basic statistics from hglm estimation

in a simplified way
summary Produce standard summary statistics

for the fitted hglm objects

models and random effects with known correlation structure.

The hglm package produces estimates of fixed effects, random effects, variance components
as well as their standard errors. In the output it also produces diagnostics such as deviances
and leverages.

2. Important implementation details

2.1. Brief overview of the fitting algorithm

The fitting algorithm is described in detail in Lee et al. (2006) and we summarize it here. Let
n be the number of observations and k be the number of levels in the random effect. The
algorithm is then given by:

1. Initialize starting values;

2. Construct an augmented model with response yaug =

(
y

E(u)

)
;

3. Use a GLM to estimate β and v given the vector φ and the dispersion parameter for
the random effect λ. Save the deviances and leverages from the fitted model;

4. Use a gamma GLM to estimate βd from the first n deviance residuals d and leverages
h obtained from the previous model. The response variable and weights for this model
are d/(1− h) and (1− h)/2, respectively. Update the dispersion parameter by putting
φ equal to the predicted response values for this model;

5. Use a similar GLM as in Step 4 to estimate λ from the last k deviance residuals and
leverages obtained from the GLM in Step 3;

6. Iterate between steps 3-5 until convergence.
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2.2. The h-likelihood theory

Let y be the response and u an unobserved random effects. The hglm package fits a hierarchical
model y|u ∼ fm(µ, φ) and u ∼ fd(ψ, λ) where fm and fd are specified distributions for the
mean and dispersion parts of the model.

We follow the notation of Lee and Nelder (1996), which is based on the GLM terminology
by McCullagh and Nelder (1989). We also follow the likelihood approach where the model is
described in terms of likelihoods. The conditional (log-)likelihood for y given u has the form
of a GLM:

l(θ′, φ; y|u) =
yθ′ − b(θ′)
a(φ)

+ c(y, φ) (1)

where θ′ is the canonical parameter, φ is the dispersion term, µ′ is the conditional mean of y
given u where η′ = g(µ′), i.e. g(.) is a link function for the GLM. The linear predictor µ′ is
given by η′ = η+ v where η = Xβ and v = v(u) for some strict monotonic function of u. The
hierarchical likelihood (h-likelihood) is defined by:

h = l(θ′, φ; y|u) + l(α; v) (2)

where l(α; v) is the log density for v with parameter α. The estimates of β and v are given by
∂h
∂β = 0 and ∂h

∂v = 0. The dispersion components are estimated by maximizing the adjusted
profile h-likelihood:

hp =
(
h+

1
2
log|2πH−1|

)
β=β̂,v=v̂

(3)

where H is the Hessian matrix of the h-likelihood. The dispersion term φ can be connected
to a liner predictor Xdβd given a link function gd(.) with gd(φ) = Xdβd. The adjusted profile
likelihoods of l and h may be used for inference of β, v and the dispersion parameters φ and
λ (pp. 186 in Lee et al. 2006).

2.3. Detailed description of the fitting algorithm for a linear mixed model
with heteroscedastic residual variance

In this section we describe the fitting algorithm in detail for a linear mixed model where fixed
effects are included in the model for the residual variance. The extension to other distributions
than Gaussian are described at the end of the section.

Lee and Nelder (1996) showed that linear mixed models can be fitted using a hierarchy of
GLM by using an augmented linear model. The linear mixed model

y = Xβ + Zu + e

V = ZZ′σ2
u + Rσ2

e

where R is a diagonal matrix, and in the first iteration of the HGLM algorithm R is equal to
the identity matrix. The model may be written as an augmented weighted linear model:

ya = Taδ + ea (4)

where
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ya =

(
y
0q

)

Ta =

(
X Z
0 Iq

)

δ =

(
β
u

)

ea =

(
e
−u

)

Here, q is the number of columns in Z, 0q is a vector of zeros of length q, and Iq is the identity
matrix of size q×q. The variance-covariance matrix of the augmented residual vector is given
by

V (ea) =

(
Rσ2

e 0
0 Iqσ2

u

)

Given σ2
e and σ2

u, this weighted linear model gives the same estimates of the fixed and random
effects (β and u respectively) as Henderson (1976)’s mixed model equations.

The estimates from weighted least squares are given by:

T′aW
−1Taδ̂ = T′aW

−1ya

where W ≡ V (ea).

The two variance components are estimated iteratively by applying a gamma GLM to the
residuals e2i and u2

i with intercept terms included in the linear predictors. The leverages hi
for these models are calculated from the diagonal elements of the hat matrix:

Ha = Ta(T′aW
−1Ta)−1T′aW

−1 (5)

A gamma GLM is used to fit the dispersion part of the model with response

yd,i = e2i /(1− hi) (6)

where E(yd) = µd and µd ≡ φ (i.e. σ2
e for a Gaussian response). The GLM model for the

dispersion parameter is then specified by the link function gd(.) and the linear predictor Xdβd,
with prior weights (1− hi)/2, for

gd(µd) = Xdβd (7)

Similarly, a gamma GLM is fitted to the dispersion term α (i.e. σ2
u for a GLMM) for the

random effect v, with
yα,j = u2

j/(1− hn+j) (8)
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and
gα(µα) = λ (9)

where the prior weights are (1 − hn+j)/2 and the estimated dispersion term for the random
effect is given by α̂ = g−1

α (λ̂).
The algorithm iterates by updating R = diag(φ̂) and going back to eq. (4).
For a non-Gaussian response variable y, the estimates are obtained simply by fitting a GLM
instead of eq. (4) and by replacing e2i and u2

j with the deviance residuals from the augmented
model (Lee et al. 2006).
Based on log fθ(y|v), Lee and Nelder (1996) proposed using the scaled deviance for the
goodness-of-fit test, having the estimated degrees of freedom, d.f. = n− pD, where

pD = trace{(T′mΣ−1
m Tm)−1}T′mΣ−1

0 Tm

and Σ−1
0 = Wma{diag(Φ−1, 0)}. m represents the mean model. Lee and Nelder (1996)

showed that, under the assumed model, degrees of freedom can be estimated as E(D) ≈ n−pD.
This extends the scaled deviance test for GLMs to HGLMs.

2.4. Distributions and link functions

There are two important classes of models that can be fitted in hglm: GLMM and conjugate
HGLM. In GLMM we have a Gaussian random effect, whereas the conjugate HGLM has
also been commonly used since explicit formulas for the marginal likelihood exist. HGLMs
can also be used to fit models in survival analysis (frailty models), where for instance the
complementary-log-log link function can be used on binary responses (e.g. Carling, Rönneg̊ard,
and Roszbach 2004; Alam and Carling 2008). The gamma distribution plays an important
role in modeling responses with a constant coefficient of variation (see Chapter 8 in McCullagh
and Nelder 1989), and for such responses with a gamma distributed random effect we have
a gamma-gamma model. A summary of the most important models are given in Tables 2.4
and 3.

Table 2: Commonly used distributions and link functions possible to fit with hglm()
Model name y|u distribution Link g(µ) u distribution Link v(u)
Linear mixed model Gaussian identity Gaussian identity
Binomial conjugate Binomial logit Beta logit
Binomial GLMM Binomial logit Gaussian identity
Binomial frailty Binomial comp-log-log Gamma log
Poisson GLMM Poisson log Gaussian identity
Poisson conjugate Poisson log Gamma log
Gamma GLMM Gamma log Gaussian identity
Gamma conjugate Gamma inverse Inverse-Gamma inverse
Gamma-Gamma Gamma log Gamma log

2.5. Interacting with the hglm function

The main function is hglm() and the input is specified in a similar manner as for glm(). For
instance, to fit a logit model for y with week as fixed effect and ID represents the clusters for
a normally distributed random intercept, we run
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Table 3: hglm() code for commonly used models
Model name hglm() code: family = hglm() code: rand.family =
Linear mixed model gaussian(link = identity) gaussian(link = identity)
Beta-Binomial binomial(link = logit) Beta(link = logit)
Binomial GLMM binomial(link = logit) gaussian(link = identity)
Binomial frailty binomial(link = cloglog) Gamma(link = log)
Poisson GLMM poisson(link = log) gaussian(link = identity)
Poisson frailty poisson(link = log) Gamma(link = log)
Gamma GLMM Gamma(link = log) gaussian(link = identity)
Gamma conjugate Gamma(link = inverse) inverse.gamma(link = inverse)
Gamma-Gamma Gamma(link = log) Gamma(link = log)

R> hglm(fixed = y ~ week , random = ~ 1|ID ,
+ family = binomial(link = logit ))

Given an hglm object, the standard generic functions are print(), summary() and plot().
For this example, hglm allows an alternative command if the user would like to define
the design matrices directly. If the design matrices of week and ID have been defined as
fixed.design and random.design, respectively, we may run the following command instead.

R> hglm(X = fixed.design , y = response , X = random.design ,
+ family = binomial(link = logit ))

Now we analyze the bacteria data available in the MASS library using a binomial GLMM.
The data consists of observations on the presence of H.influenzae at five occasions (at weeks
0, 2, 4, 6 and 11) on 50 individuals. Thirty observations were not reported and there are in
total 220 observations. The model diagnostics produced by the hglm() function are shown
in Figures 1 and 2. In Figure 1 there are two random effects with leverages > 0.7, which
correspond to two individuals that only have two observations each. We also see that the
assumption of the deviance residuals being gamma distributed is acceptable (Figure 2). The
variance of the random individual effect was estimated to 1.559 and the algorithm converged
in nine iterations.

R> library(MASS)
R> data(bacteria)
R> g1 <- hglm(fixed = y ~ week ,
+ random = ~ 1|ID,
+ data = bacteria ,
+ family = binomial(link = logit ))
R> summary(g1)
R> plot(g1)

Call:
hglm.formula(fixed = y ~ week , random = ~1 | ID , data = bacteria ,
family = binomial(link = logit))
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DISPERSION MODEL
WARNING: h-likelihood estimates through EQL can be biased.
Model estimates for the dispersion term :[1] 0.761503

Model estimates for the dispersion term:
Link = log
Effects:
Estimate Std. Error
-0.2725 0.1018

Dispersion = 1 is used in Gamma model on deviances to
calculate the standard error(s).
Dispersion parameter for the random effects
[1] 1.559

Dispersion model for the random effects:
Link = log
Effects:
Estimate Std. Error

0.4440 0.2838

Dispersion = 1 is used in Gamma model on deviances to
calculate the standard error(s).
MEAN MODEL
Summary of the fixed effects estimates

Estimate Std. Error t value Pr(>|t|)
(Intercept) 2.27761 0.33280 6.844 7.7e-11 ***
week -0.13343 0.04114 -3.243 0.00137 **
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Summary of the random effects estimate
Estimate Std. Error

IDX01 0.7271 0.9701
IDX02 -0.2728 0.8311
...
IDZ26 -0.1250 0.8023

EQL estimation converged in 9 iterations.

2.6. Possible future developments

In the current version of hglm() it is possible to a include a single random effect in the mean
part of the model. An important development would be to include several random effects in
the mean part of the model and also to include random effects in the dispersion parts of the
model. The latter class of models are called Double HGLM and have been shown to be a
useful tool for modeling heavy tailed distributions Lee and Nelder (2006).

The algorithm of hglm() gives true marginal likelihood estimates for conjugate HGLM,
whereas for other models the estimates are approximated. Lee and co-workers (see Lee et al.
2006, and references therein) have developed higher-order approximations, which give very
good estimates. These higher-order approximations are not implemented in the current ver-
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Figure 1: Leverages (i.e. diagonal elements of the augmented hat-matrix) for each observation 1 to
220 , and for each level in the random effect (index 221-282).
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Figure 2: Deviance diagnostics for each observation and level in the random effect.
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sion of the hglm package. For these possible future extensions, we refer to the commercially
available GenStat software and also to coming updates of the hglm package.

3. Linear mixed model with fixed effects in the residual variance

We consider a normal-normal model with heteroscedastic residual variance. In biology, for
instance, this is important if we wish to model a random genetic effect (e.g. Rönneg̊ard and
Carlborg 2007) for a trait y and where the residual variance is different between sexes.

For the response y and observation number i we have:

yi|β, u, βd ∼ N(Xiβ + Ziu, exp(Xd,iβd))

u ∼MVN(0, Iσ2
u)

where β and u are the fixed and random effects in the mean part of the model, βd is the fixed
effect in the residual variance part of the model. The variance of the random effect u is given
by σ2

u. The subscript i for the matrices X, Z, and Xd indicate the i:th row. Here, a log link
function is used for the dispersion term (i.e. the residual variance) and the model for the
residual variance is therefore given by exp(Xd,iβd). In the more general GLM notation the
dispersion term φ is given by the residual variance here and log(φi) = Xd,iβd.

This model is not possible to fit in the dglm package, for instance, because we have random
effects in the mean part of the model and it is also an improvement compared to the glmer()
function since we allow a model for the residual variance.

We simulate data where there are five clusters with 20 observations in each cluster. For the
mean part of the model, The simulated intercept value is µ = 0 and the variance for the
random effect is σ2

u = 0.2. Given the explanatory variable xd, the simulated residual variance
is 1.0 for xd = 0 and 2.72 for xd = 1. In this example, and the following ones, we show how
the input code can be given in terms of the model matrices y, X, Z and X.disp instead of
using R formula. The output shows that the variance of the random effect is 0.606, and that
β̂d = (0.354, 0.505).

R> n.cluster <- 5
R> n.per.cluster <- 20
R> sigma2_u <- .2
R> sigma2_e <- 1
R> beta.disp <- 1
R> mu <- 0
R> n <- n.cluster*n.per.cluster
R> set.seed (1234)
R> X <- matrix(1, n, 1)
R> Z <- diag(n.cluster )%x%rep(1, n.per.cluster)
R> a <- rnorm(5, 0, sqrt(sigma2_u ))
R> X_d <- matrix(1, n, 2)
R> X_d[,2] <- rbinom(n, 1, .5)
R> e <- rnorm(n, 0, sqrt(sigma2_e*exp(beta.disp*X_d [ ,2])))
R> y <- mu + Z%*%a + e
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R> simul1 <- hglm(y = y, X = X, Z = Z, X.disp = X_d)
R> summary(simul1)

Call:
hglm.default(X = X, y = y, Z = Z, X.disp = X_d)

DISPERSION MODEL
WARNING: h-likelihood estimates through EQL can be biased.
Model estimates for the dispersion term:
Link = log
Effects:

Estimate Std. Error
1 0.0247 0.1859
2 0.5047 0.2958

Dispersion = 1 is used in Gamma model on deviances to
calculate the standard error(s).
Dispersion parameter for the random effects
[1] 0.2982

Dispersion model for the random effects:
Link = log
Effects:
Estimate Std. Error
-1.2100 0.7755

Dispersion = 1 is used in Gamma model on deviances to
calculate the standard error(s).
MEAN MODEL
Summary of the fixed effects estimates

Estimate Std. Error t value Pr(>|t|)
X.1 -0.004131 0.268339 -0.015 0.988

Summary of the random effects estimate
Estimate Std. Error

Z.1 0.0454 0.3167
Z.2 0.0284 0.3187
Z.3 0.4314 0.3177
Z.4 -0.8336 0.3167
Z.5 0.3284 0.3133

EQL estimation converged in 4 iterations.

4. Poisson model with Gamma distributed random effects

For dependent count data it is common to model a Poisson distributed response with a gamma
distributed random effect (Lee et al. 2006). If we assume no overdispersion conditional on u
and thereby have a fixed dispersion term, this model may be specified as:

E(yi|β, u) = exp(Xiβ + Ziv)
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where a level j in the random effect v is given by vj = log(uj) and uj are iid with gamma
distribution having mean and variance: E(uj) = 1, var(uj) = λ.

This model is also possible to fit with the hglm package and extends other GLMM functions
(e.g. glmer()) to allow for non-normal distributions for the random effect.

We simulate a Poisson model with random effects and test if there are differences in the
dispersion term for an explanatory variable xd. This example uses the data from the previous
example. Hence, the simulated parameters and matrices mu, a and Z are the same. The
estimated variance of the random effect is 0.056. The output also gives the estimate and
standard error (0.551) of log(σ2

u). (Code continued from the previous example)

R> eta <- exp(mu + Z%*%a)
R> y <- rpois(length(eta), eta)
R> simul.pois <- hglm(y = y, X = X, Z = Z, X.disp = X_d ,
+ family = poisson(link = log))
R> summary(simul.pois)

Call:
hglm.default(X = X, y = y, Z = Z, family = poisson(link = log),
X.disp = X_d)

DISPERSION MODEL
WARNING: h-likelihood estimates through EQL can be biased.
Model estimates for the dispersion term:
Link = log
Effects:

Estimate Std. Error
1 -0.0367 0.1859
2 0.3426 0.2963

Dispersion = 1 is used in Gamma model on deviances to
calculate the standard error(s).
Dispersion parameter for the random effects
[1] 0.5254

Dispersion model for the random effects:
Link = log
Effects:
Estimate Std. Error
-0.6436 0.7513

Dispersion = 1 is used in Gamma model on deviances to
calculate the standard error(s).
MEAN MODEL
Summary of the fixed effects estimates

Estimate Std. Error t value Pr(>|t|)
X.1 -0.07421 0.34566 -0.215 0.83

Summary of the random effects estimate
Estimate Std. Error

Z.1 -0.7049 0.4208
Z.2 0.3631 0.3762
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Z.3 0.8089 0.3655
Z.4 -0.7180 0.4216
Z.5 0.2509 0.3767

EQL estimation converged in 3 iterations.

5. Poisson-Gamma model with an offset for the mean model

The pump failure data of Gaver and O’Muircheartaigh (1987) contains the number of failures
yi and the period of operation ti recorded for each of 10 pumps, so that the empirical failure
rate is yi/ti. Gaver and O’Muircheartaigh (1987) mentioned that there are two groups of the
pumps, where 4 pumps were operated continuously, and the rest intermittently. We fit the
conjugate Poisson-Gamma HGLM with the group effects as fixed effects, the effects of the
pumps as random effects, and an offset of log ti. On a log scale, the dispersion estimate of
the random effects is log(4.208) = 1.437.

R> data(pump)
R> offset.model <- hglm(fixed = S ~ factor(Gr), random = ~ 1|System ,
+ offset = log(t), fix.disp = 1, family = poisson(),
+ rand.family = Gamma(), data = pump)
R> print(offset.model)

Call:
hglm.formula(fixed = S ~ factor(Gr), random = ~1 | System , data = pump ,
family = poisson(), rand.family = Gamma(), fix.disp = 1, offset = log(t))

Fixed effects:
(Intercept) factor(Gr)1
0.07489386 -1.66482225

Random effects:
[1] -1.22103099 -2.21582586 -0.83886531 -0.57567471 -0.51280226
[6] 0.99715091 -0.06423281 -0.06423281 0.43330668 0.62818508

Dispersion parameter for the mean model :[1] 1
Dispersion parameter for the random effects :[1] 1.046970

Estimation converged in 3 iterations

6. Linear mixed model with a correlated random effect

In animal breeding, it is important to estimate variance components prior to ranking of animal
performances (Lynch and Walsh 1998). In such models the genetic effect of each animal is
modelled as a level in a random effect and the correlation structure A is a matrix with known
elements calculated from the pedigree information. The model is given by

yi|β, u ∼ N(Xiβ + Ziu, σ
2
e)

u ∼MVN(0,Aσ2
u)
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Figure 3: Histogram and qqplot for the analyzed trait.

The model may be reformulated as (e.g. Lee et al. 2006; Rönneg̊ard and Carlborg 2007)

yi|β, u ∼ N(Xiβ + Z∗i u
∗, σ2

e)

u∗ ∼MVN(0, Iσ2
u)

where Z∗ = ZL and L is the Cholesky factorization of A.

The model can be fitted with the hglm() function since the input matrix Z is user-specified.
Now we analyze the data set QTLMAS included in the hglm package as an example. The data
consists of 2025 individuals from two generations where 1000 individuals have observed trait
values y that are approximately normal (Figure 3). The data we analyze was simulated for
the QTLMAS 2009 Workshop (Coster, Bastiaansen, Calus, Maliepaard, and Bink 2009)1.

A longitudinal growth trait was simulated but for simplicity we analyze only the values given
on the third occasion at age 265 days. We fitted a model with a fixed intercept and a random
animal effect, a, where the correlation structure of a is given by the additive relationhip
matrix A (which is obtained from the available pedigree information). A design matrix Z0

was constructed giving relating observation id-number in the pedigree. For observation yi
coming from individual j in the ordered pedigree file Z0[i, j] = 1, and all other elements
are 0. Let L be the Cholesky factorization of A, and Z = Z0L. The design matrix for the
fixed effects, X, is a column of ones. The estimated variance components are σ̂2

e = 2.21 and
σ̂2
u = 1.50.

R> data(QTLMAS)

1http://www.qtlmas2009.wur.nl/UK/Dataset

http://www.qtlmas2009.wur.nl/UK/Dataset
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R> y <- QTLMAS [,1]
R> Z <- QTLMAS [ ,2:2026]
R> X <- matrix(1, 1000, 1)
R> test0 <- hglm(y = y, X = X)
R> test1 <- hglm(y = y, X = X,Z = Z)
R> print(test1)

Call:
hglm.default(X = X, y = y, Z = Z)

Fixed effects:
X.1

7.279766

Random effects:
V1 V2 V3 V4

-1.191733707 1.648604776 1.319427376 -0.928258503
...

Variance of common error term :[1] 2.211169
Variance of the random effects :[1] 1.502516

Estimation converged in 2 iterations

7. Random regression with a Gamma distributed random effect

The observed trait values y are the same as the previous example. Here we model a Gamma
distributed random marker effect on chromosome 1. The incidence matrix Zm is 1000 × 90
since there are 1000 observed phenotypes and 90 genetic markers on chromosome 1 in this
data set. An element Zm[i, j] is given by the number of copies (0, 1 or 2) for marker j in
individual i. The design matrix for the fixed effects, X, is a column of ones. The marker with
the highest estimated random effect (Figure 4) was close to the main genetic effect simulated
on chromosome 1. (Code continued from the previous example)

R> Z.markers <- QTLMAS [ ,2027:2116]
R> test2 <- hglm(y = y, X = X, Z = Z.markers ,
+ rand.family = Gamma(link = log))
R> plot(log(test2$ranef ))

8. Binomial model with a Beta distributed random effect

The seed germination data presented by Crowder (1978) has previously been analyzed using
a binomial GLMM (Breslow and Clayton 1993) and a binomial-beta HGLM (Lee and Nelder
1996). The data consists of 831 observations from 21 germination plates. The effect of seed
variety and type of root extract was studied in a 2× 2 factorial lay-out. We fit the binomial-
beta HGLM used by Lee and Nelder (1996) and setting the convergence criteria in hglm() to
0.005 produces the same estimates for the fixed effects as the ones obtained by Lee and Nelder
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Figure 4: Estimated random effects for the 90 markers on chromosome 1 for trait values at 265 days.
The main genetic effect was simulated close to marker number 40.
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(with differences < 10−2). The beta distribution parameter α in Lee and Nelder (1996) was
defined as 1/(2a) where a is the dispersion term obtained from hglm(). The output from the
R code given below gives â = 0.026 and the corresponding estimate given in Lee and Nelder
(1996) is â = 1/(2α̂) = 0.023.

R> data(seeds)
R> germ <- hglm(fixed = r/n ~ extract*I(seed == "O73"),
+ weights = n, data = seeds ,
+ random = ~1|plate , family = binomial(),
+ rand.family = Beta(), fix.disp = 1)
R> summary(germ)

Call:
hglm.formula(family = binomial(), rand.family = Beta(), fixed = r/n ~

extract * I(seed == "O73"), random = ~1 | plate , data = seeds ,
weights = n, fix.disp = 1)

DISPERSION MODEL
WARNING: h-likelihood estimates through EQL can be biased.
Model estimates for the dispersion term :[1] 1

Model estimates for the dispersion term:
Link = log
Effects:
[1] 1

Dispersion = 1 is used in Gamma model on deviances to
calculate the standard error(s).
Dispersion parameter for the random effects
[1] 0.02483

Dispersion model for the random effects:
Link = log
Effects:

Estimate Std. Error
-3.6956 0.5304

Dispersion = 1 is used in Gamma model on deviances to
calculate the standard error(s).
MEAN MODEL
Summary of the fixed effects estimates

Estimate Std. Error t value Pr(>|t|)
(Intercept) -0.5421 0.1928 -2.811 0.018429 *
extractCucumber 1.3386 0.2733 4.898 0.000625 ***
I(seed == "O73")TRUE 0.0751 0.3114 0.241 0.814264
ex...:I(seed == "O73")TRUE -0.8257 0.4341 -1.902 0.086343 .
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Note: P-values are based on 10 degrees of freedom
Summary of the random effects estimate

Estimate Std. Error
[1,] -0.2333 0.2510
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[2,] 0.0085 0.2328
...
[21,] -0.0499 0.2953

EQL estimation converged in 7 iterations.

9. Gamma HGLM with a structured dispersion

In this example, we analyze the semiconductor data taken from Myers, Montgomery, and
Vining (2002), which involves a designed experiment in a semiconductor plant. Six factors,
lamination temperature, lamination time, lamination pressure, firing temperature, firing cycle
time and firing dew point, are employed, and we are interested in the curvature of the substrate
devices produced in the plant. The curvature measurement is made four times on each device
produced. Each design variable in taken at two levels. The measurement is known to be non-
normally distributed, and the measurements taken on the same device are correlated. Myers
et al. (2002) considered a gamma response model with a log link and used a GEE method
assuming an AR(1) working correlation.

We consider a gamma HGLM by adding a random effect for the device in the mean model

logµ = β0 + x1β1 + x3β3 + x5β5 + x6β6.

And the dispersion model is
log φ = γ0 + x2γ2 + x3γ3

The variance λ of random effects represents the between-group variance, while φ represents
the within-group variance. Results are shown as follows, and residual plots for the mean and
dispersion models are in Figures (5, 6, 7). The estimates are the same as those obtained using
EQL in GenStat.

R> data(semiconductor)
R> gamma.model <- hglm(fixed = y ~ x1 + x3 + x5 + x6 ,
+ random = ~ 1|Device ,
+ family = Gamma(link = log),
+ disp = ~ x2 + x3, data = semiconductor)
R> summary(gamma.model)
R> plot(gamma.model , cex = .6, pch = 1,
+ cex.axis = 1/.6, cex.lab = 1/.6,
+ cex.main = 1/.6, mar = c(3 ,4.5 ,0 ,1.5))

Call:
hglm.formula(fixed = y ~ x1 + x3 + x5 + x6 , random = ~1 | Device ,
data = semiconductor , family = Gamma(link = log), disp = ~x2 + x3)

DISPERSION MODEL
WARNING: h-likelihood estimates through EQL can be biased.
Model estimates for the dispersion term:
Link = log
Effects:

Estimate Std. Error
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(Intercept) -2.5910 0.1974
x2 -0.6815 0.1973
x3 -0.4989 0.1973

Dispersion = 1 is used in Gamma model on deviances to
calculate the standard error(s).
Dispersion parameter for the random effects
[1] 0.0496

Dispersion model for the random effects:
Link = log
Effects:
Estimate Std. Error
-3.0037 0.5139

Dispersion = 1 is used in Gamma model on deviances to
calculate the standard error(s).
MEAN MODEL
Summary of the fixed effects estimates

Estimate Std. Error t value Pr(>|t|)
(Intercept) -4.71131 0.06819 -69.088 < 2e-16 ***
x1 0.20871 0.06769 3.083 0.00311 **
x3 0.32853 0.06819 4.818 1.05e-05 ***
x5 -0.17288 0.06769 -2.554 0.01326 *
x6 -0.35693 0.06766 -5.276 1.98e-06 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Summary of the random effects estimate
Estimate Std. Error

as.factor(Device )1 0.2852 0.1807
as.factor(Device )2 0.0113 0.1807
...
as.factor(Device )16 0.2178 0.1525

EQL estimation converged in 2 iterations.

Summary

The hierarchical generalized linear model approach gives new possibilities to fit generalized
linear models with random effects. The hglm package extends existing GLMM fitting al-
gorithms to include fixed effects in a model for the residual variance, fit models where the
random effect distribution is not necessarily Gaussian and estimate variance components for
correlated random effects. For such models there are important applications in, for instance:
genetics (Noh, Yip, Lee, and Pawitan 2006), survival analysis (Ha and Lee 2005), count data
(Lee et al. 2006) and dichotomous responses (Noh and Lee 2007). We therefore expect that
this new package will be of use for applied statisticians in several different fields.
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Figure 5: Residual plots of the mean model for the semiconductor data.



20 The hglm Package

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

0.05 0.10 0.15 0.20 0.25

−
1.

5
−

0.
5

0.
5

1.
5

Dispersion Model (a)

Fitted Values

S
ta

nd
ar

di
ze

d 
D

ev
ia

nc
e 

R
es

id
ua

ls

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

0.05 0.10 0.15 0.20 0.25

0.
0

0.
5

1.
0

1.
5

Dispersion Model (b)

Fitted Values

|S
ta

nd
ar

di
ze

d 
D

ev
ia

nc
e 

R
es

id
ua

ls
|

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

−2 −1 0 1 2

−
1.

5
−

0.
5

0.
5

1.
5

Dispersion Model (c)

Normal Quantiles

R
es

id
ua

l Q
ua

nt
ile

s

Dispersion Model (d)

Standardized Deviance Residuals

F
re

qu
en

cy

−2 −1 0 1 2

0
5

10
15

Figure 6: Residual plots of the dispersion model for the semiconductor data.
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Figure 7: Diagnostics plots of the hat-values and deviances for the semiconductor data.
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10. Discussions on h-likelihood theory

For the users not previously acquainted with h-likelihood theory, we summarize here the
discussions in Lee and Nelder (1996), Lee, Nelder, and Noh (2007), Lee and Nelder (2006)
and the collection of discussion papers in Statistical Science vol. 24 no. 3 (Lee and Nelder
2009a; Meng 2009; Louis 2009; Molenberghs, Kenward, and Verbeke 2009; Lee and Nelder
2009b). We try to keep this summary objective to reflect the most important parts of the
discussions. Thereafter, we give our view of which parts of the discussion that has not been
settled yet and may have consequences on the hglm package.

Summary of discussions by Clayton, Kuha and Firth following Lee and
Nelder (1996) and the Discussion section in Lee et al. (2007)

In the Discussions following Lee and Nelder (1996), it is claimed that: i) the h-likelihood is
not a true likelihood, ii) if there is little information on each of the random effects we can
expect the estimates to be biased, and iii) the h-likelihood could be interpreted in a Bayesian
viewpoint as a posterior distribution with uniform priors so that we can only expect the
estimates to be satisfactory if there is plenty of information on each of the random effects.

In Lee et al. (2007) the authors address these criticisms. Specifically they address the following
three points:

i) The h-likelihood is not a valid likelihood.

ii) The h-likelihood is not invariant to non-linear transformation of the random effects.

iii) There are problems in the analysis of binary matched pairs data.

The authors claim that the h-likelihood is a valid likelihood. Unlike the classical likelihood,
however, which contain the two objects: data (observed random variables) and unknown
fixed parameters, the h-likelihood also contains a third object, unobserved random variables.
Based on Bjornstad (1996) extended likelihood principle we should expect a joint likelihood,
including both fixed and random parameters, to carry all the information about these param-
eters. (For an excellent review on the extended likelihood principle, see Pawitan (2001)). In
Lee and Nelder (2005) the authors explained why they consider the h-likelihood to be a joint
likelihood appropriate for statistical inference of HGLMs.

Concerning the h-likelihood and invariance, here it is important to note that the h-likelihood
is not a general joint likelihood. In the h-likelihood it is imposed that a proper scale for the
random effects is chosen, and consequently the problem of invariance may be an issue for a
general joint likelihood but not for the h-likelihood.

One might expect that the h-likelihood has similar problems as the Penalized Quasi-Likelihood
(PQL) method (Breslow and Clayton 1993) for analysis of binary matched pairs (i.e. the
extreme case of having few observations for each of the random effects). The authors show
however that the estimation method they call HL(2) gives estimates very close to the marginal
likelihood estimates obtained by numerical integration. The method HL(2) is a higher order
approximation to the h-likelihood. Hence, there does not seem to be a major problem with
the h-likelihood itself but rather there is an issue of choosing a computational method that
produces correct h-likelihood results.
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This is not the only paper where binary outcomes with little information on each of the random
effects have been investigated for the h-likelihood. Noh et al. (2006) showed that the bias
in variance component estimates were very small, compared to PQL, for binary outcomes
in related individuals of small families. To obtain good estimates for the h-likelihood an
appropriate computational method was developed (similar to the HL(2) method in Noh and
Lee (2007)).

Summary of Firth’s discussion in Lee and Nelder (2006)

i) The choice of the function for the random effects cannot be made on grounds of additivity,
i.e. the transformation v(u) that makes fixed and random effects additive. Two simple
examples are given.

ii) The h-likelihood may lead to inconsistent estimators and it is not reasonable for Lee
and Nelder to claim that the h-likelihood gives a general method for generalized linear
models with random effects.

iii) The problem of bias should not be specific for binary outcomes but rather be a general
problem for situations where there is little information on each of the random effects.

The authors reply that it should be noted that although the choice of link function for the
random effects is difficult in the examples given by Firth, the adjusted profile h-likelihood
still gives satisfactory estimates for the fixed parameters.

Discussion in papers of Statistical Science vol. 24 no. 3

Lee and Nelder (2009a) base their argumentation on the extended likelihood principle (Bjorn-
stad 1996) to explain why the h-likelihood should be used for inference of models with unob-
servable random effects. The idea of the h-likelihood is that the marginal likelihood should
be used for estimating fixed effects, the h-likelihood should be maximized to estimate random
effects and the adjusted profile likelihood for the estimation of dispersion parameters. When
the marginal likelihood is difficult to compute, the adjusted profile h-likelihood (with profiling
over the random effects) is proposed as an alternative.

They criticize the use of estimation methods that are not included in a probabilistic frame-
work, such as GEE and empirical Bayes methods. It is emphasized that the h-likelihood
inference can be made without the necessity of inventing priors, as opposed to Bayesian
methods.

By using the example of Bayarri, DeGroot, and Kadane (1988), they illustrate the importance
of choosing the scale for the random effects so that the maximization of the h-likelihood
gives the MLE for the fixed effects. In this example the outcome y follows an exponential
distribution conditional on a random effect u, where u is also exponentially distributed. The
point of this example is that useless estimators are derived if the joint likelihood is maximized.
However, Lee and Nelder (2009a) claim that the h-likelihood is defined for the specific scale
v = log u, which is shown to produce sensible estimates of the fixed parameter and the random
effects. They admit that “the choice of the scale in defining the h-likelihood is important to
guarantee the meaningfulness of the mode estimation”. Furthermore: ”The (weak) canonical
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scale in HGLMs leads to an invariance of a certain extended likelihood. However, in general
the validity of such a scale has not been established.”

Louis (2009) considers the paper by Lee and Nelder as a piece of “over promotion” and “more
of an opinion-piece than a scientific comparison of approaches”. He agrees that h-likelihood
estimation can be valid and efficient under some settings but it is not globally valid.

Molenberghs et al. (2009) review different estimation methods for models with random effects
and to them it is clear that no method can “claim uniform superiority over all others”. They
also emphasis the importance of assessing a suite of models to judge, through sensitivity
analysis, how key inferences are vulnerable to model choice, which was neglected in Lee and
Nelder (2009a).

Meng (2009) derives the necessary constraints for the scale of the random effects to be used
in the h-likelihood. The similarity (and differences) to Bayesian analysis with uniform priors
is pointed out, and concludes that the h-likelihood is just an approximation to the Bayesian
posterior for the special case of having uniform priors.

In response, Lee and Nelder (2009b) note that both Louis and Meng say that the extended
likelihood such as the h-likelihood does carry information about the unobservables but that
the Bayesian approach is best suited for the inference. In contrast to the many possible
priors in the Bayesian framework, the authors say that “in our system there is only one
corresponding prior likelihood”, i.e. a uniform prior. Furthermore, the adjusted profile h-
likelihood is not merely a Laplace approximation to the marginal posterior distribution in a
Bayesian framework, because “it can also eliminate fixed unknowns”, and the authors argue
that the adjusted profile h-likelihood is quite different from the Bayesian marginal posterior.

Summary of points not settled yet and possible consequences

The conclusion that can be drawn from the studies performed by Lee, Nelder and co-workers
over the past 15 years is that we can expect the h-likelihood to give good estimates, but the
computational procedure to get good approximations for the maximum h-likelihood estimates
might be computationally demanding for data such as binary matched pairs. Uncertainty
measures, such as standard errors, have been shown to be possible to derive from the curvature
of the h-likelihood for many applications of HGLMs, but the general validity of using the h-
likelihood for inference is still being argued by several authors.

In the hglm package, we have implemented the Extended Quasi-Likelihood (EQL) procedure,
which is the one described in the book by Lee et al. (2006), where the estimates are obtained
by fitting an interconnected set of GLMs in a very elegant way. The dispersion components
are estimated by correcting for the leverages in the mean part of the model, which is a result
of applying an adjusted profile likelihood function to the EQL.

The EQL method can give biased results, which we clearly state in the output of the package,
but this is not a problem of the h-likelihood itself but rather that the EQL method may
sometimes give estimates that are substantially different from the maximum h-likelihood
estimates.

The most important point from the above discussions is that a proper scale for the random
effects is required by the h-likelihood to avoid problems of invariance. For many of the
commonly used HGLM this is not an issue, but the user of the hglm package should be aware
of this potential problem.
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Table 4: Comparison of estimates for a binomial-beta model using the seed germination data
presented in Lee and Nelder (1996).

GenStat: GenStat: hglm
HL(0,0)a EQL

Intercept -0.543 -0.542 -0.542
Seed 0.080 0.077 0.075
Extract 1.337 1.339 1.339
Interaction -0.822 -0.825 -0.826

Dispersion parameter for the random effects:
logα 3.096 3.022 3.003
a Same estimates as in Lee and Nelder (1996)

Table 5: Comparison of estimates for a Poisson-gamma model using the pump failure data
presented in Lee and Nelder (1996).

GenStat: GenStat: hglm
HL(0,0)a EQL

Intercept -1.599 -1.590 -1.590
Group(2) 1.668 1.665 1.665

Dispersion parameter for the random effects:
logα -0.165 0.046 0.046
a Same estimates as in Lee and Nelder (1996)

11. Comparison with estimates using GenStat

In the hglm package, interconnected GLMs are used to fit HGLMs. The algorithm was
implemented using the glm function in the R stats package and by following Table 7.1 and
Table 7.3 in Lee et al. (2006). An important part of the implementation was to define a
separate GLM function for HGLMs with gamma distributed random effects (as explained in
Table 7.1 and Example 6.3 in Lee et al. (2006)), and also to compute the deviance components
for beta distributed random effects according to Table 7.1 in Lee et al. (2006). For a linear
mixed model, this algorithm gives REML estimates, and for general HGLMs it gives EQL
estimates. The standard errors are the ones produced by the interconnected GLM functions
at convergence.

The estimates produced by the hglm function are very similar to the ones using the EQL
method implemented in GenStat. For a binomial-beta model using the seed germination data
presented in Lee and Nelder (1996) with fixed binomial dispersion parameter, the estimates
of fixed effects (Table 4) differed by less than 2× 10−3 to the EQL estimates in GenStat, and
the dispersion parameter differed by less than 1%.

For a Poisson-gamma model using the pump failure data presented in Lee and Nelder (1996),
the estimates (Table 5) differed by less than 1×10−3. By comparing to the HL(0,0) estimates,
we can see that here the EQL method seems to give a poor approximation for the dispersion
parameter.

For a gamma-normal model using the semiconductor data presented on page 218 of Lee et al.
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Table 6: Comparison of estimates for a gamma-normal model using the semiconductor data
presented in Lee et al. (2006).

GenStat: GenStat: hglm
HL(0,0)a EQL

Mean model
Intercept -4.711 -4.712 -4.711
x1 0.209 0.210 0.209
x3 0.328 0.329 0.329
x5 -1.174 -0.173 -0.173
x6 -0.357 -0.357 -0.357

Dispersion model
Intercept -2.610 -2.588 -2.591
x2 -0.673 -0.686 -0.682
x3 -0.492 -0.503 -0.499

Dispersion parameter for the random effects:
log λ -3.014 -3.028 -3.004
a Same estimates as on page 218 of Lee et al. (2006)

(2006), the estimates of fixed effects (Table 6) differed by less than 4 × 10−3 to the EQL
estimates in GenStat, and the dispersion parameter differed by less than 1%.
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