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Abstract

This vignette describes the R hglm package via a series of applications that may be
of interest to applied scientists. The hglm package implements the estimation algorithm
for hierarchical generalized linear models. it also produces diagnostics such as deviances
and leverages. The package fits generalized linear models with random effects, where
the random effect may come from a conjugate exponential-family distribution (Gaussian,
Gamma, Beta or inverse-Gamma). The design matrices both for the fied and random
effects can be explicitly specified, which allows fitting correlated random effects as well as
random regression models. Fixed effects may also be modeled in the dispersion parameter.
The hglm package produces estimates of fixed effects, random effects, variance components
as well as their standard errors. Model diagnostics such as deviances and leverages can
be visualized.
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1. Introduction

The hglm package implements the estimation algorithm for hierarchical generalized linear
model (HGLM; Lee and Nelder 1996). The package fits generalized linear models (GLM;
McGullagh and Nelder 1989) with random effects, where the random effect may come from
a conjugate exponential-family distribution (normal, gamma, beta or inverse-gamma). The
user may explicitly specify the design matrices both for the fixed and random effects, which
means that correlated random effects as well as random regression models can be fitted. Fixed
effects may also be modeled in the dispersion parameter.

Generalized linear mixed models (GLMM) have previously been implemented in several R (R
Development, Core Team 2009) function, such as the glmer() function in the Ime4 library
and in the glmmPQL() function in the MASS library. In GLMM, the random effects are
assumed to be Gaussian whereas the hglm() function allow for other distributions for the
random effect. The hglm() function also extends the fitting algorithm of Gordon Smyth’s
dglm package by including random effects in the linear predictor for the mean. Moreover, the
model specification in hglm() can be given as a formula or alternatively in terms of y, X, Z and
X.disp, where y is the vector of observed responses, X and Z are the design matrices for the
fixed and random effects, respectively, in the linear predictor for the mean, and X.disp is the
design matrix for the fixed effects in the dispersion parameter. This enables a more flexible
modeling of the random effects than spe ng the model by an R formula. Consequently,
this option is not as user friendly but gives the user a possibility to fit random regre:
models and random effects with known correlation structure.
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Table 1: hglm functions.

Function Description Reference

Beta Extended usage of the Beta family

GLM. MME Internal IWLS estimation for hgln() Lee, Nelder, and Pawitan (2006)
hglm Fitting hierarchical generalized linear models | Lee and Nelder (1996)

inverse.gamma | Extended usage of the inverse-Gamma family

- Utilities -
plot Plot individual deviances and hatvalues
for the fitted hglm o
print Produce basic statistics from hglm estimation
in a simplified way
sunmary Produce standard summary statistics

for the fitted hglm objects

The hglm package produces estimates of fixed offects, random effects, variance components
as well as their standard errors. In the output it also produces diagnostics such as deviances
and leverages.

2. Important implementation details

2.1. Brief overview of the fitting algorithm

The fitting algorithm is described in detail in Lee et al. (2006) and we summarize it here. Let
n be the number of observations and k be the number of levels in the random effect. The
algorithm is then given by:

1. Initialize starting values;

2. Construct an augmented model with response Yauy = ( Ezju) ) B

3. Use a GLM to estimate 3 and v given the vector ¢ and the dispersion parameter for
the random effect \. Save the deviances and leverages from the fitted model;

4. Use a gamma GLM to estimate (33 from the first n deviance residuals d and leverages
h obtained from the previous model. The response variable and weights for this model
are d/(1 —h) and (1 — h)/2, respectively. Update the dispersion parameter by putting
@ equal to the predicted response values for this model;

5. Use a similar GLM as in Step 4 to estimate A from the last k& deviance residuals and
leverages obtained from the GLM in Step 3;

6. Tterate between steps 3-5 until convergence.
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2.2. The h-likelihood theory

Let y be the response and u an unobserved random effects. The hglm package fits a hierarchical
model ylu ~ fin(p,¢) and u ~ fg(¥,\) where fp, and fy are specified distributions for the
mean and dispersion parts of the model.

We follow the notation of Lee and Nelder (1996), which is based on the GLM terminology
by McGullagh and Nelder (1989). We also follow the likelihood approach where the model is
described in terms of likelihoods. The conditional (log-)likelihood for y given u has the form
of a GLM:

WD s o) o

where ' is the canonical parameter, ¢ is the dispersion term, 4’ is the conditional mean of y
given u where i = g(1'), i.e. g(.) is a link function for the GLM. The linear predictor 4 is
given by 7 =1+ v where ) = X3 and v = v(u) for some strict monotonic function of u. The
hierarchical likelihood (h-likelihood) is defined by:

1O, dsylu) =

h=1(0, ¢;ylu) + (s v) (2)

where I(; v) is the log density for v with parameter . The estimates of 3 and v are given by
Q 0 and gg = 0. The dispersion components are estimated by maximizing the adjusted

profile h-likelihood:

hy = (h+ 1109\%114\) @)
2 8=,

where H is the Hessian matrix of the h-likelihood. The dispersion term ¢ can be connected

to a liner predictor Xgf3q given a link function gq(.) with g4(¢) = X484. The adjusted profile

likelihoods of I and h may be used for inference of 3, v and the dispersion parameters ¢ and

A (pp. 186 in Lee et al. 2006).

2.3. Detailed description of the fitting algorithm for a linear mixed model
with heteroscedastic residual variance

In this section we describe the fitting algorithm in detail for a linear mixed model where fixed
effects are included in the model for the residual variance. The extension to other distributions
than Gaussian are described at the end of the section.

Lee and Nelder (1996) showed that linear mixed models can be fitted using a hierarchy of
GLM by using an augmented linear model. The linear mixed model

y=XB+Zu+e

V =270} + Ro?

where R is a diagonal matrix, and in the first iteration of the HGLM algorithm R is equal to
the identity matrix. The model may be written as an augmented weighted linear model:

Ya=Tad +e, (4)

where



4 The hglm Package

Here, ¢ is the number of columns in Z, 0y is a vector of zeros of length ¢, and I, is the identity
matrix of size ¢ x ¢. The variance-covariance matrix of the augmented residual vector is given

by
Ro2 0
V<ea>:< o ch,z)
1

Given o2 and 02, this weighted linear model gives the same estimates of the fixed and random
effects (8 and u respectively) as Henderson (1976)’s mixed model equations.

The estimates from weighted least squares are given by:
TWITS - T,W ly,

where W = V(e,).
The two variance components are estimated iteratively by applying a gamma GLM to the
residuals e? and u? with intercept terms included in the linear predictors. The leverages h;
for these models are calculated from the diagonal elements of the hat matrix:

H, = To(T,W™'T,) ' T, W (5)
A gamma GLM is used to fit the dispersion part of the model with response

va = /(1= hi) )

where E(yq) = pta and jig = ¢ (ie. o2 for a Gaussian response). The GLM model for the
dispersion parameter is then specified by the link function g4(.) and the linear predictor X/,
with prior weights (1 — hy)/2, for

ga(pa) = Xaba (7
Similarly, a gamma GLM is fitted to the dispersion term a (ie. o2 for a GLMM) for the
random effect v, with

Yaoj = 13/ (1 = hnsj) ®)
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and

Jala) = A ©)
where the prior weights are (1 — hy;)/2 and the estimated dispersion term for the random
effect is given by & = g7'(A).
The algorithm iterates by updating R = diag(¢) and going back to eq. (4).
For a non-Gaussian response variable y, the estimates are obtained simply by fitting a GLM
instead of eq. (4) and by replacing e? and u? with the deviance residuals from the augmented
model (Lee et al. 2006).
Based on log fg(y|v), Lee and Nelder (1996) proposed using the scaled deviance for the
goodness-of-fit test, having the estimated degrees of freedom, d.f. = n — pp, where

pp = trace{ (T4, 3, Ty) " YT, 25 T
and 35! = W, {diag(®7',0)}. m represents the mean model. Lee and Nelder (1996)

showed that, under the assumed model, degrees of freedom can be estimated as E(D) ~ n—pp.
This extends the scaled deviance test for GLMs to HGLMs.

2.4. Distributions and link functions

There are two important s of models that can be fitted in hglm: GLMM and conjugate
HGLM. In GLMM we have a Gaussian random effect, whereas the conjugate HGLM has
also been commonly used since explicit formulas for the marginal likelihood exist. HGLMs
can also be used to fit models in survival analysis (frailty models), where for instance the
complementary-log-log link function can be used on binary responses (e.g. Carling, Ronnegard,
and Roszbach 2004; Alam and Carling 2008). The gamma distribution plays an important
role in modeling responses with a constant coefficient of variation (see Chapter 8 in McGullagh
and Nelder 1989), and for such responses with a gamma distributed random effect we have
a gamma-gamma model. A summary of the most important models are given in Tables 2.4
and 3.

Table 2: Commonly used distributions and link functions possible to fit with hglm()

Model name y[u distribution  Link g(y1) u distribution _ Link v(u)
Linear mixed model  Gaussian identity Gaussian identity
Binomial conjugate  Binomial logit Beta logit
Binomial GLMM Binomial logit Gaussian identity
Binomial frailty Binomial comp-log-log ~ Gamma log
Poisson GLMM Poisson log Gaussian identity
Poisson conjugate  Poisson log Gamma log
Gamma GLMM Gamma log Gaussian identity
Gamma conjugate  Gamma inverse Inverse-Gamma  inverse
Gamma-Gamma Gamma log Gamma log

2.5. Interacting with the hglm function

The main function is hglm() and the input is specified in a similar manner as for glm(). For
instance, to fit a logit model for y with week as fixed effect and ID represents the clusters for
a normally distributed random intercept, we run
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Table 3: hglm() code for commonly used models

Model name hgln() code: family = hgln() code: rand. family =
Linear mixed model ~ gaussian(link = identity) gaussian(link = identity)
Beta-Binomial binomial(link = logit) Beta(link = logit)

Binomial GLMM binomial (1ink = logit) gaussian(link = identity)
Binomial frailty binomial(link = cloglog)  Gamma(link = log)

Poisson GLMM poisson(link = log) gaussian(link = identity)
Poisson frailty poisson(link = log) Gamma (link = log)

Gamma GLMM Gamma(link = log) gaussian(link = identity)
Gamma conjugate  Gamma(link = inverse) inverse.gamma(link = inverse)
Gamma-Gamma Gamma(link = log) Gamma (link = log)

R> hglm(fixed = y ~ week, random = ~ 1[ID,
+ family = binomial(link = logit))

Given an hglm object, the standard generic functions are print (), summary() and plot().
For this example, hglm allows an alternative command if the user would like to define
the design matrices directly. If the d s of week and ID have been defined as
fixed.design and random.design, respectively, we may run the following command instead.

R> hglm(X = fixed.design, y = response, X = random.design,
+ family = binomial(link = logit))

Now we analyze the bacteria data available in the MASS library using a binomial GLMM.
The data consists of observations on the presence of H.influenzae at five occasions (at weeks
0, 2, 4, 6 and 11) on 50 individuals. Thirty observations
total 220 observations. The model diagnostics produced by the hglm() function are shown
in Figures 1 and 2. In Figure 1 there are two random effects with leverages > 0.7, which
correspond to two individuals that only have two observations each. We also see that the
assumption of the deviance residuals being gamma distributed is acceptable (Figure 2). The
variance of the random individual effect was estimated to 1.559 and the algorithm converged
in nine iterations.

were not reported and there are in

R> library (MASS)
R> data(bacteria)
R> g1 <- hglm(fixed = y ~ week,

+ random = ~ 1/ID,

+ data = bacteria,

+ family = binomial (link = logit))

R> summary (g1)

R> plot(gl)

Call:

hgln.formula(fixed = y ~ week, random = ~1 | ID, data = bacteria,

family = binomial(link = logit))
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DISPERSION MODEL
WARNING: h-likelihood estimates through EQL can be biased.
Model estimates for the dispersion term:[1] 0.761503

Model estimates for the dispersion term:

Link = log
Effects:
Estimate Std. Error
-0.2725 0.1018
Dispersion = 1 is used in Gamma model on deviances to

calculate the standard error(s).
Dispersion parameter for the random effects
[1] 1.559

Dispersion model for the random effects:

Link = log
Effects:
Estimate Std. Error

0.4440 0.2838
Dispersion = 1 is used in Gamma model on deviances to
calculate the standard error(s).
MEAN MODEL

Summary of the fixed effects estimates
Estimate Std. Error t value Pr(>[tl)

(Intercept) 2.27761 0.33280 6.844 7.T7e-11 **x
week -0.13343 0.04114 -3.243 0.00137 =*x
Signif. codes: 0 's*x' 0.001 '*x' 0.01 'x' 0.05 '.' 0.1 ' ' 1

Summary of the random effects estimate
Estimate Std. Error

IDX01 0.7271 0.9701
IDX02 -0.2728 0.8311
IDZ26 -0.1250 0.8023

HL estimation converged in 9 iterations.

2.6. Possible future developments

In the current version of hglm() it is possible to a include a single random effect in the mean
part of the model. An important development would be to include several random effects in
the mean part of the model and also to include random effects in the dispersion parts of the
model. The latter class of models are called Double HGLM and have been shown to be a
useful tool for modeling heavy tailed distributions Lee and Nelder (2006).

true marginal likelihood estimates for conjugate HGLM,
whereas for other models the estimates are approximated. Lee and co-workers (see Lee et al.
2006, and references therein) have developed higher-order approximations, wh
good estimates. These higher-order approximations are not implemented in the current ver-

The algorithm of hglm() gives

give very
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Figure 1: Leverages (i.e. diagonal elements of the augmented hat-matrix) for each observation 1 to
220 , and for each level in the random effect (index 221-282).
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Figure 2: Deviance diagnostics for each observation and level in the random effect.

sion of the hglm package. Furthermore, in the current version of hglm(), we have not included
the possibility to specify models with offsets. For these possible future extensions, we refer to
the commercially available GenStat software and also to coming updates of the hglm package.

3. Linear mixed model with fixed effects in the residual variance

‘We consider a normal-normal model with heteroscedastic residual variance. In biology, for
instance, this is important if we wish to model a random genetic effect (e.g. Ronnegard and
Carlborg 2007) for a trait y and where the residual variance is different between sexes.

For the response y and observation number i we have:

il B, B ~ N(Xif + Ziu, exp(Xa,ifa))

u~ MVN(0,I02)

where 3 and u are the fixed and random effects in the mean part of the model, 3; is the fixed
effect in the residual variance part of the model. The variance of the random effect u is given
by 2. The subscript i for the matrices X, Z, and Xy indicate the i:th row. Here, a log link
function is used for the dispersion term (i.e. the residual variance) and the model for the
dual variance is therefore given by exp(Xq84). In the more general GLM notation the
ersion term ¢ is given by the residual variance here and log(¢;) = Xu4.

This model is not possible to fit in the dglm package, for instance, because we have random
effects in the mean part of the model and it is also an improvement compared to the glmer ()
we allow a model for the residual variance.
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‘We simulate data where there are five clusters with 20 observations in each cluster. For the
mean part of the model, The simulated intercept value is g = 0 and the variance for the
random effect is Uﬁ = 0.2. Given the explanatory variable x4, the simulated residual variance
is 1.0 for x4 = 0 and 2.72 for x4y = 1. In this example, and the following ones, we show how
the input code can be given in terms of the model matrices y, X, Z and X.disp instead of
using R formula. The output shows that the variance of the random effect is 0.606, and that
Ba = (0.354,0.505).

R> n.cluster <- §

R> n.per.cluster <- 20

R> sigma2_u <- .2

R> sigma2_e <- 1

R> beta.disp <- 1

B> mu <- 0

R> n <- n.clusterxn.per.cluster

R> set.seed (1234)

B> X <- matrix(1, n, 1)

R> Z <- diag(n.cluster)jxJrep(l, n.per.cluster)

R> a <- rnorm(5, 0, sqrt(sigma2_u))

R> X_d <- matrix(1, n, 2)

R> X_d[,2] <- rbinom(an, 1, .5)

R> e <- rnorm(a, 0, sqrt(sigma2_e*exp(beta.disp*X_d[,2])))
R> y <- mu + Zj*ja + e

R> simull <- hglm(y =y, X = X, Z = Z, X.disp = X_d)
R> summary(simul1)

Call:
hglm.default(X = X, y =y, Z

Z, X.disp = X_d)

DISPERSION MODEL
WARNING: h-likelihood estimates through EQL can be biased.
Model estimates for the dispersion term:

Link = log
Effects:
Estimate Std. Error
1 0.0247 0.1859
2 0.5047 0.2958
Dispersion = 1 is used in Gamma model on deviances to

calculate the standard error(s).
Dispersion parameter for the random effects
[1] 0.2982

Dispersion model for the random effects:

Link = log
Effects:
Estimate Std. Error
-1.2100 0.7755
Dispersion = 1 is used in Camma model on deviances to

calculate the standard error(s).
MEAN MODEL



Lars Ronnegard, Xia Shen, Moudud Alam 11

Summary of the fixed effects estimates
Estimate Std. Error t value Pr(>[tl)
X.1 -0.004131  0.268339 -0.015 0.988

Summary of the random effects estimate
Estimate Std. Error

zZ.1 0.0454 0.3167
z.2 0.0284 0.3187
z.3 0.4314 0.3177
Z.4 -0.8336 0.3167
Z.5 0.3284 0.3133

HL estimation converged in 4 iterations.

4. Poisson model with Gamma distributed random effects

For dependent count data it is common to model a Poisson distributed response with a gamma
distributed random effect (Lee et al. 2006). If we assume no overdispersion conditional on u
and thereby have a fixed dispersion term, this model may be specified as:

Bl ,u) = exp(Xi6 + Zv)

where a level j in the random effect v is given by v; = log(u;) and u; are iid with gamma
distribution having mean and variance: E(u;) =1, var(u;) = A.

This model is also possible to fit with the hglm package and extends other GLMM functions
(e.g. glmer()) to allow for non-normal distributions for the random effect.

We simulate a Poisson model with random effects and test if there are differences in the
dispersion term for an explanatory variable z4. This example uses the data from the previous
example. Hence, the simulated parameters and matrices mu, a and Z are the same. The
estimated variance of the random effect is 0.056. The output also gives the estimate and
standard error (0.551) of log(c2). (Code continued from the previous example)

R> eta <- exp(mu + Z%x*%a)

R> y <- rpois(length(eta), eta)

R> simul.pois <- hglm(y =y, X =X, Z = Z, X.disp = X_d,
+ family = poisson(link = log))

R> summary (simul.pois)

Call:
hglm.default(X = X, y =y, Z = Z, family = poisson(link = log)
X.disp = X_d)

DISPERSION MODEL
WARNING: h-likelihood estimates through EQL can be biased.
Model estimates for the dispersion term:
Link = log
Effects:

Estimate Std. Error
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1 -0.0367 0.1859
2 0.3426 0.2963
Dispersion = 1 is used in Gamma model on deviances to

calculate the standard error(s).
Dispersion parameter for the random effects
[1] 0.5254

Dispersion model for the random effects:

Link = log
Effects:
Estimate Std. Error
-0.6436 0.7513
Dispersion = 1 is used in Gamma model on deviances to
calculate the standard error(s).
MEAN MODEL

Summary of the fixed effects estimates
Estimate Std. Error t value Pr(>|tl)
X.1 -0.07421 0.34566 -0.215 0.83

Summary of the random effects estimate
Estimate Std. Error

Z.1 -0.7049 0.4208
z.2 0.3631 0.3762
z.3 0.8089 0.3655
Z.4 -0.7180 0.4216
Z.5 0.2509 0.3767

HL estimation converged in 3 iterations.

5. Poisson-Gamma model with an offset for the mean model

The pump failure data of Gaver and O’Muircheartaigh (1987) contains the number of failures
y; and the period of operation ¢; recorded for each of 10 pumps, so that the empirical failure
rate is y;/t;. Gaver and O’Muircheartaigh (1987) mentioned that there are two groups of the
pumps, where 4 pumps were operated continuously, and the rest intermittently. We fit the
conjugate Poisson-Gamma HGLM with the group effects as fixed effects, the effects of the
pumps as random effects, and an offset of logt;. On a log scale, the dispersion estimate of
the random effects is log(4.208) = 1.437.

R> data (pump)

R> offset.model <- hglm(fixed = S ~ factor(Gr), random = ~ 1|System,
+ offset = log(t), family = poisson()

+ rand.family = Gamma(), data = pump)
R> print (offset.model)

Call:
hglm.formula(fixed = § ~ factor(Gr), random = ~1 | System, data = pump,
family = poisson(), rand.family = Gamma(), offset = log(t))
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Fixed effects:

(Intercept) factor(Gr)l

0.08801297 -1.63909609

Random effects:

as.factor (System)1 as.factor(System)2 as.factor(System)3
0.25013564 0.05840759 0.37517720

Dispersion parameter for the mean model:[1] 0.001927418
Dispersion parameter for the random effects:[1] 4.208412

Estimation converged in 5 iterations

6. Linear mixed model with a correlated random effect

In animal breeding, it is important to estimate variance components prior to ranking of animal
performances (Lynch and Walsh 1998). In such models the genetic effect of each animal is
modelled as a level in a random effect and the correlation structure A is a matrix with known
elements calculated from the pedigree information. The model is given by

yilByu ~ N(Xif + Ziu,0%)

u~ MVN(0,Ao?)

The model may be reformulated as (e.g. Lee et al. 2006; Ronnegard and Carlborg 2007)

yilB,u ~ N(Xif + Zfu*,0?)

u* ~ MVN(0,I02)

where Z* = ZL and L is the Cholesky factorization of A.

The model can be fitted with the hglm() function since the input matrix Z is user-specified.
Now we analyze the data set QTLMAS included in the hglm package as an example. The data
sts of 2025 individuals from two generations where 1000 individuals have observed trait
values y that are approximately normal (Figure 3). The data we analyze was simulated for
the QTLMAS 2009 Workshop (Coster, Bastiaansen, Calus, Maliepaard, and Bink 2009)".

A longitudinal growth trait was simulated but for simplicity we analyze only the values given
on the third occasion at age 265 days. We fitted a model with a fixed intercept and a random
animal effect, a, where the correlation structure of a is given by the additive relationhip
matrix A (which is obtained from the available pedigree information). A design matrix Zg
was constructed giving relating observation id-number in the pedigree. For observation y;
coming from individual j in the ordered pedigree file Zo[i,j] = 1, and all other elements

'http://www.qt1lmas2009. wur.nl/UK/Dataset
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Figure 3: Histogram and qqplot for the analyzed trait.

are 0. Let L be the Cholesky factorization of A, and Z = ZL. The design matrix for the
fixed effects, X, is a column of ones. The estimated variance components are 62 = 2.21 and

62 = 1.50.

R> data (QTLMAS)

R> y <- QTLMAS[,1]

R> Z <- QTLMAS[,2:2026]
R> X <- matrix(1, 1000, 1)
R> testO <- hglm(y = y, X
R> testl <- hglm(y = y, X
R> print(testl)

X,z = 2)
Call:

hgln.default (X = X, y =y, 2 = 2)
Fixed effects:

7.279766

Random effects:

V4
-1.191733707 1.648604776 1.319427376 -0.928258503

Variance of common error term:[1] 2.211169
Variance of the random effects:[1] 1.502516

Estimation converged in 2 iterations
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Figure 4: Estimated random effects for the 90 markers on chromosome 1 for trait values at 265 days.
The main genetic effect was simulated close to marker number 40.

7. Random regression with a Gamma distributed random effect

The observed trait values y are the same as the previous example. Here we model a Gamma
distributed random marker effect on chromosome 1. The incidence matrix Z,, is 1000 x 90
since there are 1000 observed phenotypes and 90 genetic markers on chromosome 1 in this
data set. An element Z,,[i, j] is given by the number of copies (0, 1 or 2) for marker j in
individual i. The design matrix for the fixed effects, X, is a column of ones. The marker with
the highest estimated random effect (Figure 4) to the main genetic effect simulated
on chromosome 1. (Code continued from the previous example)

R> Z.markers <- QTLMAS[,2027:2116]

R> test2 <- hglm(y =y, X = X, Z = Z.markers,

+ rand.family = Gamma(link = log))
R> plot(log(test2$ranerf))
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8. Binomial model with a Beta distributed random effect

The seed germination data presented by Crowder (1978) has previously been analyzed using
a binomial GLMM (Breslow and Clayton 1993) and a binomial-beta HGLM (Lee and Nelder
1996). The data consists of 831 observations from 21 germination plates. The effect of seed
variety and type of root extract was studied in a 2 x 2 factorial lay-out. We fit the binomial-
beta HGLM used by Lee and Nelder (1996) and setting the convergence criteria in hglm() to
0.005 produces the same estimates for the fixed effects as the ones obtained by Lee and Nelder
(with differences < 1072). The beta distribution parameter a in Lee and Nelder (1996) was
defined as 1/(2a) where a is the dispersion term obtained from hglm(). The output from the
R code given below gives @ = 0.026 and the corresponding estimate given in Lee and Nelder
(1996) is @ = 1/(2a4) = 0.023. We conclude that the hglm package can replicate the results
given by Lee and Nelder (1996).

R> data(seeds)
R> germ <- hglm(fixed = r/n ~ extract*I(seed=="073"),
+

weights = n, data = seeds,
+ random = ~1lplate, family = binomial ()

+ rand.family = Beta(), conv = 0.005)

R> summary (germ)

Call:

hglm.formula(fixed = r/n ~ extract * I(seed == "073"), random = ~1

plate, data = seeds, family = binomial(), rand.family = Beta()
conv = 0.005, weights = n)

DISPERSION MODEL
WARNING: h-likelihood estimates through EQL can be biased.
Model estimates for the dispersion term:[1] 1.166024

Model estimates for the dispersion term:
Link = log

Effects:

Estimate Std. Error

0.1536 0.4558

Dispersion = 1 is used in Gamma model on deviances to
calculate the standard error(s).

Dispersion parameter for the random effects

[1] 0.02577

Dispersion model for the random effects:

Link = log

Effects:

Estimate Std. Error

-3.6585 0.5209

Dispersion = 1 is used in Gamma model on deviances to
calculate the standard error(s).

MEAN MODEL

Summary of the fixed effects estimates
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Estimate Std. Error t value Pr(>[tl)

(Intercept) -0.54202 0.20541 -2.639 0.017243 *
extractCucumber 1.34061 0.29110 4.605 0.000252 *x*x
I(seed == "073") TRUE 0.07213 0.33057 0.218 0.829870
ex...:I(seed "073") TRUE -0.82877 0.46109 -1.797 0.090057

Signif. codes: 0 '#*x' 0.001 'xx' 0.01

0.05 '.' 0.1 " "1

Summary of the random effects estimate
Estimate Std. Error

as.factor(plate)l 0.4397 0.2685
as.factor (plate)2 0.5022 0.2486
as.factor (plate)21 0.4869 0.3179

HL estimation converged in 5 iterations.

9. Gamma HGLM with a structured dispersion

In this example, we analyze the semiconductor data taken from Myers, Montgomery, and
Vining (2002), which involves a designed experiment in a semiconductor plant. Six factors,
lamination temperature, lamination time, lamination pressure, firing temperature, firing cycle
time and firing dew point, are employed, and we are interested in the curvature of the substrate
devices produced in the plant. The curvature measurement is made four times on each device
produced. Each design variable in taken at two levels. The measurement is known to be non-

normally distributed, and the measurements taken on the same device are correlated. Myers
et al. (2002) considered a gamma response model with a log link and used a GEE method
assuming an AR(1) working correlation.

‘We consider a gamma HGLM by adding a random effect for the device in the mean model

log 1 = fo + 71/ + 2305 +

And the dispersion model is
log ¢ = 0 + 2272 + 2

The variance A of random effects represents the between-group variance, while ¢ represents
the within-group variance. Results are shown as follows, and residual plots for the mean and
dispersion models are in Figures (5, 6, 7). The estimates are the same as those obtained using
EQL in GenStat.

R> data(semiconductor)
R> gamma.model <- hglm(fixed = y ~ x1 + x3 + x5 + x6,
-

random = ~ 1|Device,
+ family = Gamma(link = log),
+ disp = ~ x2 + x3, data = semiconductor)
R> summary (gamma.model)
R> plot(gamma.model, cex = .6, pch = 1,
+ cex.axis = 1/.6, cex.lab = 1/.6

+ cex.main = 1/.6, mar = c(3,4.5,0,1.5))
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Call:
hgln.formula(fixed = y ~ x1 + x3 + x5 + x6, random = ~1 | Device,
data = semiconductor, family = Gamma(link = log), disp = "x2 + x3)

DISPERSION MODEL
WARNING: h-likelihood estimates through EQL can be biased.
Model estimates for the dispersion term:

Link = log
Effects:

Estimate Std. Error
(Intercept) -2.5910 0.1974
x2 -0.6815 0.1973
x3 -0.4989 0.1973
Dispersion = 1 is used in Gamma model on deviances to

calculate the standard error(s).
Dispersion parameter for the random effects
[1] 0.0496

Dispersion model for the random effects:

Link = log
Effects:
Estimate Std. Error

-3.0037 0.5139
Dispersion = 1 is used in Gamma model on deviances to
calculate the standard error(s).
MEAN MODEL

Summary of the fixed effects estimates
Estimate Std. Error t value Pr(>[tl)

(Intercept) -4.71131 0.06819 -69.088 < 2e-16 **x*

x1 0.20871 0.06769 3.083 0.00311 *x

x3 0.32853 0.06819 4.818 1.05e-05 **x

x5 -0.17288 0.06769 -2.554 0.01326 *

x6 -0.35693 0.06766 -5.276 1.98e-06 **x

Signif. codes: 0 's*x' 0.001 '*x' 0.01 'sx' 0.05 '.' 0.1 ' ' 1

Summary of the random effects estimate
Estimate Std. Error

as.factor (Device)1l 0.2852 0.1807
as.factor (Device)2 0.0113 0.1807
as.factor (Device)16 0.2178 0.15625

HL estimation converged in 2 iterations.

Summary

The hierarchical generalized linear model approac bilities to fit generalized

linear models with random effects. The hglm package extends existing GLMM fitting al-

gives new p
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Figure 5: Residual plots of the mean model for the semiconductor data.
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22 The hglm Package

gorithms to include fixed effects in a model for the residual variance, fit models where the
random effect distribution is not necessarily Gaussian and estimate variance components for
correlated random effects. For such models there are important applications in, for instance:
genetics (Noh, Yip, Lee, and Pawitan 2006), survival analysis (Ha and Lee 2005), count data
(Lee et al. 2006) and dichotomous responses (Noh and Lee 2007). We therefore expect that
this new package will be of use for applied statisticians in several different fields.
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