
h5 - An Object Oriented Interface to HDF5

Mario Annau

h5 version 0.9.7 as of May 11, 2016

Abstract

h5 provides a flexible object–oriented interface to HDF5 and facilitates fast storage and retrieval
of R objects to binary files in a language independent data–format. HDF5 files support partial
and parallel I/O and can handle data sets of multiple terrabytes. Using HDF5 to serialize large
time series objects can lead to significant I/O speedups compared to binary R files. Additional
examples show how time series created from Matlab and Python (PyTables) can be read using h5.

1 Introduction

The Hierarchical Data Format 5 (HDF5) is a binary data format and API created by the
HDF-Group (1997—2016) to better meet ever–increasing data storage demands of the scientific
computing community. HDF5 files store homogeneous, multidimensional data sets organized
in groups similar to the folder structure of a file system. As a self–describing file format HDF5
objects can be annotated with meta data using attributes. Compared to R’s integrated binary
format HDF5 has various advantages.

Language Independence HDF5 is implemented in C and includes APIs for a wide range of
programming languages like e.g. C++, Fortran, Python and Matlab.

Partial I/O HDF5 files support direct access to parts of the file without first parsing the entire
contents, thus can process data sets not fitting into memory.

Optimization Access performance to parts of the HDF5 file can be further tuned by specifying
the memory layout. The defined chunks can be cached in memory to further improve access
times for subsequent queries.

Package Repository First Release Status
h5r CRAN 2011-10-23 Archived
ncdf4 CRAN 2010-02-24 Active
rgdal CRAN 2003-11-24 Active
hdf5 CRAN 2000-02-02 Archived
rhdf5 BioC >10.5 Years Active

Table 1: Packages on CRAN and Bioconductor supporting the HDF5 file format.

1

1.1 Related Work

The CRAN and Bioconductor repositories host three actively maintained packages supporting
HDF5 files as shown in Table 1. However, only the rhdf5 directly supports HDF5 files1. Although
rhdf5 supports reading/writing of datasets it is lacking various features like direct exposure of
HDF5 objects, subsetting data sets using operators or CRAN availability. h5 fills that gap and
provides an easy–to–use object oriented interface to HDF5. It uses the HDF5 C++ API through
Rcpp (Eddelbuettel, François, Allaire, Ushey, Kou, Chambers, and Bates (2015)) and represents
objects like Files, Groups, Datasets and Attributes as S4-classes.

2 The h5 Package

2.1 Overview

All relevant objects exposed by the HDF5 C++ API are direcly represented in h5 through S4
classes. The most important ones are H5File, H5Group, DataSet and Attribute.

H5File holds a reference to the binary HDF5 file.

H5Group can hold various HDF5 objects like DataSets and other H5Groups.

DataSet stores homogeneous data like vectors, matrices and arrays.

Attribute stores metadata about other HDF5 objects.

H5Files and H5Groups can be accessed using the subset operator and a path in a POSIX–like
syntax. Applying the subset operator with integer indices on a DataSet returns/sets specified
parts. Attributes are accessed using h5attr(). The following example shows how all these
objects are created using h5. It creates a file in append mode, creates a Group and Dataset
holding a numeric vector and closes the file.

> f <- h5file("test.h5")

> f["testgroup/testset"] <- rnorm(100)

> testattr <- LETTERS[round(runif(100, max=26))]

> h5attr(f["testgroup/testset"], "testattr") <- testattr

> f["testgroup/testset"]

DataSet 'testset' (100)

type: numeric

chunksize: 100

maxdim: UNLIMITED

compression: H5Z_FILTER_DEFLATE

Attributes:

A testattr

> h5close(f)

1ncdf4 supports the NetCDF 4 format which specifies a layer on top of HDF5; rgdal needs to be compiled accordingly
and is optimized for geospacial data.

2

2.2 Data Types

Storing and retrieving data using h5 requires a mapping of available data types from R to HDF5.
Except for the complex and raw type all basic data types are mapped to HDF5. Although most
mappings should be intuitive, the following decisions have been made:

1. 64Bit Integers are converted to double (numeric).

2. Logical values are mapped to an Enumeration Type to save space and support NA values

3. Variable Length (VLen) data types are stored and retrieved as lists of lists.

In addition to data type mappings the representation of NA values has been considered. In
the case numeric types the ANSI/IEEE 754 Floating-Point Standard is applied which is used by
R and HDF5. For integer the default minimum integer value is used2. Since logical values
are stored as an Enumeration Type NA values are directly represented and retrieved through
the type. For character we simply use the string "NA".

2.3 Supported R Objects

h5 currently supports storage and retrieval of homogeneous Datasets consisting of only one data
type like vectors, matrices and arrays. HDF5 also supports compound data types which could
be used for data.frame objects. Support for compound types is planned in the near future.

3 Examples

This Section shows the functionality of h5 with a focus on time series. It covers basic HDF5
dataset manipulations of a datasets and the serialization of zoo objects. Finally, we describe how
to read time series created from Matlab and Python.

3.1 Manipulate Matrix

This example shows how HDF5 data sets can be created, altered, extended and removed3. The
resulting matrix contains the replaced values in the second column and a third column as a result
of cbind().

2The minimum value equals to -.Machine$integer.max-1 or -2147483648 for 32Bit integers.
3Note, that h5unlink() does not remove the actual data from the file. To reduce file size the command line tool

h5repack is required.

3

> f <- h5file("test.h5")

> f["testmat"] <- matrix(rep(1L, 6), nrow=3)

> f["testmat"][c(1, 3), 2] <- rep(2L, 2)

> cbind(f["testmat"], matrix(7:9, nrow=3))

DataSet 'testmat' (3 x 3)

type: integer

chunksize: 3 x 2

maxdim: UNLIMITED

compression: H5Z_FILTER_DEFLATE

> f["testmat"][]

[,1] [,2] [,3]

[1,] 1 2 7

[2,] 1 1 8

[3,] 1 2 9

> h5unlink(f, "testmat")

[1] TRUE

> h5close(f)

3.2 Time Series and Chunking

This example shows how to store and retrieve zoo time series with h5 and the speedup achieved
through partial I/O and chunking. For an introduction to chunking see also HDF-Group (2015).

We generate a zoo object with three series covering one year and a constant interval of one
second. The resulting object has 31.5M rows and 4 columns (including the datetime index). The
chunk size is chosen so that each chunk covers one day for each series. Only the first day for
one instrument (including the datetime index) is retrieved, thus there is no overhead through
chunking. Compared to an approach using serialized R objects which needs to read all data
elements into memory a speedup of 30 is achieved (see also the benchmark results in Section 5.1).
Note, that the chunksize has been finely tuned to match the access pattern and speedups are
probably lower in real–world examples.

> library(zoo)

> datevec <- seq(as.POSIXct("2015-12-01"), as.POSIXct("2016-01-01"), by

= "secs")

> tsdat <- zoo(matrix(rnorm(length(datevec) * 3), ncol=3), or-

der.by=datevec)

> f <- h5file("test.h5", "a")

> f["testseries", chunksize=c(86400, 1)] <- cbind(index(tsdat), core-

data(tsdat))

> h5flush(f)

> tssub <- zoo(f["testseries"][1:86400, 2], order.by=as.POSIXct(f["testseries"][1:86400,

1], origin="1970-01-01"))

> identical(tssub, tsdat[1:86400, 1, drop=FALSE])

[1] TRUE

> h5close(f)

4

3.3 Read Times Series from Matlab

As of version 7.3 Matlab uses an HDF5 based format per default to store data to .mat files. Using
h5 we can therefore read any new mat–file. However, we need to transpose any multidimensional
data since Matlab reads and writes data directly in column–major order (HDF5 is row–major)4.

This small example shows how to read a time series data matrix created in Matlab using h5.
First we need to create and save the matrix in Matlab. Finally, the data set is read and required
conversions for the data matrix (transpose) and the time vector (subtraction) is applied.

tstart = datenum(2010, 1, 1);

tend = datenum(2016, 1, 1);

td = (tstart:tend)’;

tseries = [td, randn(length(td), 3)];

save(’ex-matlab.mat’, ’tseries’, ’-v7.3’);

> f <- h5file("ex-matlab.mat", "r")

> dates <- as.Date(f["tseries"][1, 1:3] - 719529)

> zoo(t(f["tseries"][2:4, 1:3]), order.by=dates)

2010-01-01 -0.1319692 -1.2185794 -1.5287349

2010-01-02 -0.4669825 0.1781066 0.4650538

2010-01-03 0.6076260 -0.2878577 0.4175950

3.4 Read Times Series from Python

This example shows how to read time series created from PyTables using pandas. The Python
code below generates the dataset of interest.

from pandas import date_range, DataFrame

from numpy import random

t = date_range(’2010-01-01’, ’2016-01-01’, freq=’D’).date

df = DataFrame(random.standard_normal((len(t), 3)), index=t)

df.to_hdf("ex-pandas.h5", "testset")

Objects serialized using pandas and Pytables have a more complicated structure and dataset
names can vary for different DataFrames. In this example we read the first three rows including
the time index from axis1 and actual data from block0_values.

> f <- h5file("ex-pandas.h5", "r")

> dates <- as.Date(f["testset/axis1"][1:3] - 719163, origin="1970-01-

01")

> zoo(f["testset/block0_values"][1:3,], order.by=dates)

2010-01-01 0.9302118 0.8508929 -1.1483052

2010-01-02 -0.1424808 0.2883631 0.2483735

2010-01-03 -0.7597725 -0.3645527 0.2428528

4Since R also stores data in column–major–order h5 transposes higher dimensional data (matrices, arrays) per
default

5

4 Conclusion

h5 provides a flexible interface to handle HDF5 files. It directly exposes HDF5 objects and
implements subset operators for easy data handling. In addition to R objects like vectors, matrices
and arrays we also showed examples to store and retrieve time series objects. Depending on the
use case and chunk size significant speedups can be achieved through partial I/O. Examples
showed that h5 can also be used to exchange data with other programming languages like Matlab
and Python.

6

5 Appendix

5.1 Benchmark Example Time Series and Chunking

Code to produce benchmark results for the example in Section 3.2. To compare raw I/O
performance the conversion to POSIXct has been omitted.

> library(zoo)

> library(microbenchmark)

> datevec <- seq(as.POSIXct("2015-12-01"), as.POSIXct("2016-01-01"), by

= "secs")

> tsdat <- zoo(matrix(rnorm(length(datevec) * 3), ncol=3), or-

der.by=datevec)

> f <- h5file("testbm.h5", "a")

> f["testseries", chunksize=c(86400, 1)] <- cbind(index(tsdat), core-

data(tsdat))

> h5close(f)

> save(tsdat, file="test.rda")

> readRda <- function() {

+ load("test.rda")

+ tsdat[1:86400, 1:2]

+ }

> readH5 <- function() {

+ f <- h5file("test.h5", "r")

+ f["testseries"][1:86400, 1:2]

+ h5close(f)

+ }

> bm <- microbenchmark(readRda(), readH5(), times = 10L)

> summary(bm)$median[1] / summary(bm)$median[2]

[1] 35.74347

7

References

Francesc Alted, Ivan Vilata, et al. PyTables: Hierarchical datasets in Python, 2002–2016. URL
http://www.pytables.org/.

Mario Annau. h5: Interface to the HDF5 Library, 2015. URL http://CRAN.R-Project.org/

package=h5. R package version 0.9.4.

Mario Annau. hdf5: Interface to the HDF5 Library, 2016. URL https://github.com/mannau/

h5/. R package version 0.9.5.

James Bullard. h5r: Interface to HDF5 Files, 2013. URL http://CRAN.R-Project.org/

package=h5r. R package version 1.4.7.

Marcus G. Daniels. hdf5: HDF5, 2009. URL http://CRAN.R-Project.org/package=hdf5. R
package version 1.6.9.

Dirk Eddelbuettel, Romain François, JJ Allaire, Kevin Ushey, Qiang Kou, John Chambers, and
Douglas Bates. Rcpp: Seamless R and C++ Integration, 2015. URL http://CRAN.R-Project.

org/package=Rcpp. R package version 0.12.2.

Roger Bivand et al. rgdal: Bindings for the Geospatial Data Abstraction Library, 2015. URL
http://CRAN.R-Project.org/package=rgdal. R package version 1.1-3.

Bernd Fischer and Gregoire Pau. rhdf5: HDF5 interface to R, 2015. URL http://bioconductor.

org/packages/release/bioc/html/rhdf5.html. R package version 2.14.0.

The HDF Group. Data structures for statistical computing in python. In Stéfan van der Walt
and Jarrod Millman, editors, Proceedings of the 9th Python in Science Conference, pages 51 –
56, 2010.

The HDF-Group. Hierarchical data format, version 5, 1997—2016. URL http://www.hdfgroup.

org/HDF5/.

The HDF-Group. Chunking in hdf5, 2015. URL https://www.hdfgroup.org/HDF5/doc/

Advanced/Chunking/.

David Pierce. ncdf4: Interface to Unidata netCDF (Version 4 or Earlier) Format Data Files,
2015. URL http://CRAN.R-Project.org/package=ncdf4. R package version 1.15.

Wikipedia. Nan, 2015. URL http://en.wikipedia.org/wiki/NaN.

8

http://www.pytables.org/
http://CRAN.R-Project.org/package=h5
http://CRAN.R-Project.org/package=h5
https://github.com/mannau/h5/
https://github.com/mannau/h5/
http://CRAN.R-Project.org/package=h5r
http://CRAN.R-Project.org/package=h5r
http://CRAN.R-Project.org/package=hdf5
http://CRAN.R-Project.org/package=Rcpp
http://CRAN.R-Project.org/package=Rcpp
http://CRAN.R-Project.org/package=rgdal
http://bioconductor.org/packages/release/bioc/html/rhdf5.html
http://bioconductor.org/packages/release/bioc/html/rhdf5.html
http://www.hdfgroup.org/HDF5/
http://www.hdfgroup.org/HDF5/
https://www.hdfgroup.org/HDF5/doc/Advanced/Chunking/
https://www.hdfgroup.org/HDF5/doc/Advanced/Chunking/
http://CRAN.R-Project.org/package=ncdf4
http://en.wikipedia.org/wiki/NaN

	Introduction
	Related Work

	The h5 Package
	Overview
	Data Types
	Supported R Objects

	Examples
	Manipulate Matrix
	Time Series and Chunking
	Read Times Series from Matlab
	Read Times Series from Python

	Conclusion
	Appendix
	Benchmark Example Time Series and Chunking

