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Preface

This document is intended to be a more in-depth overview of the functionality contained in the gstudio package. This
package is released under the GPL so if you have particular additions you would like to make to it, feel free to submit them
to rjdyer@vcu.edu.
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Chapter 1

Getting Genetic Data Into R

1.1 Synopsis

Here you will learn to get genetic data files into the R environment using the gstudio package. This package was
designed to handle marker-based genetic data (e.g., not sequences per se though it can use SNP’s and haplotypes) as well
as additional data that is typically collected along with individuals.

To get started, first import the gstudio package as:

> require(gstudio)

1.2 The Locus Class

The locus class is the fundamental class that handles marker-based genetic data. At present it can handle dominant and
co-dominant marker types at any ploidy level. Internally, alleles are stored as a character vector and by default they are
not sorted so that the alleles will be presented in the order that you import them (e.g., a 3:1 locus instead of a 1:3 locus).
I do not sort these because it may be necessary to know the phase of the alleles in a locus and sorting them would remove
that information. If you abhor the sight of a genotype 3:1 then sort it earlier and then try to figure out why you have this
affliction.

> loc1 <- Locus( c(120,122) )

> loc1

120:122

> loc2 <- Locus( c("A","T") )

> loc2

A:T

Note, that internally the alleles are translated into character objects. In all the functions dealing with alleles both
integer and character arguments are accepted. There are several methods associated with the Locus, the main ones
that you will be working with are shown below by example. See help("Locus-class") for a complete discussion.

> loc3 <- Locus( c(122,122) )

> loc3

122:122

> is.heterozygote( loc3 )

[1] FALSE

> loc3[2]

[1] "122"

1



> loc3[2] <- "124"

> is.heterozygote( loc3 )

[1] TRUE

> length( loc3 )

[1] 2

> summary( loc3 )

Class : Locus

Ploidy : 2

Aleleles : 122,124

Another useful method of the Locus class is the as.multivariate function. This translates the locus into a multivariate
coding vector so you can do some real statistics with it. Here is an example:

> loc4 <- Locus( c("A","C") )

> loc4

A:C

> all.alleles <- c("A","G","C","T")

> all.alleles

[1] "A" "G" "C" "T"

> as.vector( loc4, all.alleles )

[1] 1 0 1 0

1.3 The Population Class

You can think of a Population is a collection of one or more individuals. While no man is an island, an individual is just
a population of N = 1. Each individual, can have any number of Locus objects along with other non-genetic information
associated with them (e.g., latitude, longitude, dbh, hair color, etc.). You create a population by passing it data columns
in much the same way as how you create a data.frame (in fact, the Population class is just a data.frame that knows
how to deal with Locus objects and how to give you population genetic summaries).

> strata <- c("A","A","B","B","B")

> TPI <- c(Locus(c(1,2)),Locus(c(2,3)),Locus(c(2,2)),Locus(c(2,2)),Locus(c(1,3)))

> PGM <- c(Locus(c(4,4)),Locus(c(4,3)),Locus(c(4,4)),Locus(c(3,4)),Locus(c(3,3)))

> Env <- c(12,20,14,18,10)

> thePop <- Population( Pop=strata, Env=Env, TPI=TPI, PGM=PGM )

> thePop

Pop Env TPI PGM

1 A 12 1:2 4:4

2 A 20 2:3 3:4

3 B 14 2:2 4:4

4 B 18 2:2 3:4

5 B 10 1:3 3:3

> summary(thePop)

Pop Env TPI PGM

Length:5 Min. :10.0 1:2:1 3:3:1

Class :character 1st Qu.:12.0 1:3:1 3:4:2

Mode :character Median :14.0 2:2:2 4:4:2

Mean :14.8 2:3:1

3rd Qu.:18.0

Max. :20.0



> names(thePop)

[1] "Pop" "Env" "TPI" "PGM"

1.3.1 Accessing Population Elements

You can also add data to a Population or remove it

> WXY <- c(Locus(c(122,124)),Locus(c(124,126)),Locus(c(124,124)),Locus(c(122,124)),Locus(c(126,126)))

> thePop$WXY <- WXY

> thePop

Pop Env TPI PGM WXY

1 A 12 1:2 4:4 122:124

2 A 20 2:3 3:4 124:126

3 B 14 2:2 4:4 124:124

4 B 18 2:2 3:4 122:124

5 B 10 1:3 3:3 126:126

> thePop$WXY <- NULL

> thePop

Pop Env TPI PGM

1 A 12 1:2 4:4

2 A 20 2:3 3:4

3 B 14 2:2 4:4

4 B 18 2:2 3:4

5 B 10 1:3 3:3

Similar to the previous constructs, you can access elements within a Population using either numerical indexes, slices, or
names.

> ind3 <- thePop[3,]

> ind3

Pop Env TPI PGM

1 B 14 2:2 4:4

> thePop[ thePop$Pop=="B", ]

Pop Env TPI PGM

1 B 14 2:2 4:4

2 B 18 2:2 3:4

3 B 10 1:3 3:3

> thePop[ thePop$Env<15 , ]

Pop Env TPI PGM

1 A 12 1:2 4:4

2 B 14 2:2 4:4

3 B 10 1:3 3:3

> TPI <- thePop[,3]

> print(TPI)

[[1]]

1:2

[[2]]

2:3

[[3]]

2:2



[[4]]

2:2

[[5]]

1:3

1.3.2 Getting Data Types within Population Objects

Since a Population can hold several types of data and the main way to get data from one is to know its name, the
method column.names can provide you quick access to all the data names of a specific R class.

> strata <- column.names(thePop,"character")

> strata

[1] "Pop"

> column.names(thePop,"Locus")

[1] "TPI" "PGM"

> column.names(thePop,"numeric")

[1] "Env"

1.3.3 Partitioning Population Objects

A Population object can contain individuals with several other categorical data variables (e.g., population, region, habitat,
etc.) and it is relatively easy to get single elements (as shown in the slicing above) as well as complete partitions. It
should be pointed out that when you partition a Population on some stratum, it will remove that stratum from all
the partitions though it will leave the other partitions in the subpopulations.

> subpops <- partition(thePop,stratum="Pop")

> print(subpops)

$A

Env TPI PGM

1 12 1:2 4:4

2 20 2:3 3:4

$B

Env TPI PGM

1 14 2:2 4:4

2 18 2:2 3:4

3 10 1:3 3:3

1.3.4 Generic Population Functions

The following generic functions are available for the Population class and work just like they do using other data structures.

length The number of Individual objects (rows) in the Population.

dim The number or row and columns in the Population.

names The data column names.

summary A summary of the data columns in the Population.

show Dumps the Population to the terminal.

row.names Returns the names of the rows (they are integers so this isn’t too exciting).



1.4 Importing Data

OK, so typing all this stuff in is rather monotonous and will be a total pain if you have a real data set with hundreds or
thousands of individuals and a righteous amount of loci.

The main function for importing data from a text file into a Population object is read.population and assumes the
following about your data:

1. You have your data in a TEXT file that is comma separated (*.csv).

2. You have a header row on your file with the names of each column of data. Headers should not have spaces in them,
R will replace them with a period.

3. Genetic marker that have more than one allele are encoded using a colon ”:” separating alleles. This means that the
diploid microsatellite locus with alleles 122 & 128 would be in a single column as 122:128. This allows you to have
triploid, tetraploid, etc markers with not other encoding.

4. Haploid markers are do not need a ”:”, just put in the haplotype. With haploid data, searching for ”:” won’t work so
you need to pass the number of haploid loci as the optional parameter num.haploid to read.population. The
haploid loci must be the last num.haploid right-most columns in your data set.

5. All alleles will be treated internally as a character string (except for in a few cases such as estimating ladder-
distance). So you can use all alphanumeric characters for alleles but stay away from punctuation.

6. Missing data should be encoded as NA (for the whole genotype NA:NA is just silly).

7. If you have a mixture of genetic data types, columns with ”:” will be automatically interpreted as Locus objects.
You can mix in haploid data types by putting them in the last, right-most, columns and pass the optional parameter
num.haploid with the number columns to put as haploid.

1.4.1 Reading From a Text File

An example data file may look like:

Population,Lat,Lon,PGM,TPI

Loreto,22.25,-102.01,120:122,A:T

Loreto,22.25,-102.01,122:124,A:C

Cabo,22.88,-109.9,120:120,A:A

Cabo,22.88,-109.9,NA,A:T

This file can be loaded as (assuming getwd() contains the file)

> pop <- read.population(file="testData.csv")

> summary(pop)

Population Lat Lon PGM TPI

Cabo :2 Min. :22.25 Min. :-109.9 120:120:1 A:A:1

Loreto:2 1st Qu.:22.25 1st Qu.:-109.9 120:122:1 A:C:1

Median :22.57 Median :-106.0 122:124:1 A:T:2

Mean :22.57 Mean :-106.0 NA's :1

3rd Qu.:22.88 3rd Qu.:-102.0

Max. :22.88 Max. :-102.0

In general, if you can open your file using read.table, then read.population should work.

1.4.2 Using Google Spreadsheets To Share Data

One of the really great things about google docs is that you can use it to share information and documents with others
and here we will be examining how to use it to keep public data available for analysis in R.

The first step is to provide a bit of data to share. The following example uses the shared Cornus florida data set. This
consists of adults and offspring.



To share a document, click the ”Share”button and you will be presented with a popup window giving you options on what
to do similar to Figure 1.4.2.

Figure 1.1: Settings to adjust sharing options for google document.

Where it says Private select the ”Change...” option and change the Visibility Options to ”Anyone with the link” and hit
save. It will then return to the Sharing Settings (Figure 1.4.2) page and provide you a unique link to the document.

This gives individuals access to the spreadsheet as a whole, but what we would like to do is to get to the contents of it as
a *.csv file. In the spreadsheet, select File → Publish to the Web and select the following options in the dialog:

1. Sheets to Publish → All sheets

2. Check the box Automatically republish when changes are made

3. Select Start publishing.

This will make the bottom part of the dialog active and you’ll need to make the following changes:

1. Change type from Web → CSV

2. Change All Sheets → Sheet1

3. Change All Cells → the range that you want to share. Here you need to use Excel-like notation such as A1:I63

for the box from column A, first row to column I, 63nd row.

The dialog provides a URL for these data, the one above is:

https://docs.google.com/spreadsheet/pub?hl=en_US&hl=en_US&key=0Aq-lsUWPDuZtdF9xMXZGQWNtbk1F

NTVWd3F3U0FDdXc&single=true&gid=0&range=A1%3AG63&output=csv

1.5 Getting Data Into R from GoogleDocs

Now we have a data set that is available on the web and we can get to it from within R using the the getURL, read.csv,
and textConnection functions as follows (n.b. I truncated the URL as it goes off the end of the page, it is the one from
above.)

> spreadsheetURL <- "https://docs.google.com/spreadsheet/pub?hl=en_US&hl=en_US&key=0Aq-..."

> dogwood <- read.population( googleURL=dogwoodURL )

And there you go, you have now used your Google Account to host data that is available to everyone... No go forth and
share.



1.5.1 Example Data Sets

The gstudio package comes with some example data sets already loaded. To access these data sets, use the data function
and they will be put into your workspace (already formatted as Population objects).

> data(araptus_attenuatus)

> summary(araptus_attenuatus)

Species Cluster Pop Individual Lat

CladeA: 75 CBP-C :150 32 : 19 101_10A: 1 Min. :23.08

CladeB: 36 NBP-C : 84 75 : 11 101_1A : 1 1st Qu.:24.59

CladeC:252 SBP-C : 18 Const : 11 101_2A : 1 Median :26.25

SCBP-A: 75 12 : 10 101_3A : 1 Mean :26.25

SON-B : 36 153 : 10 101_4A : 1 3rd Qu.:27.53

157 : 10 101_5A : 1 Max. :29.33

(Other):292 (Other):357

Long LTRS WNT EN EF

Min. :-114.3 01:01:147 03:03 :108 01:01 :225 01:01:219

1st Qu.:-113.0 01:02: 86 01:01 : 82 01:02 : 52 01:02: 52

Median :-111.5 02:02:130 01:03 : 77 02:02 : 38 02:02: 90

Mean :-111.7 02:02 : 62 03:03 : 22 NA : 2

3rd Qu.:-110.5 NA : 11 01:03 : 7

Max. :-109.1 03:04 : 8 03:04 : 6

(Other): 15 (Other): 13

ZMP AML ATPS MP20

01:01: 46 08:08 : 51 05:05 :155 05:07 : 64

01:02: 51 07:07 : 42 03:03 : 69 07:07 : 53

02:02:233 07:08 : 42 09:09 : 66 18:18 : 52

NA : 33 04:04 : 41 02:02 : 30 05:05 : 48

NA : 23 07:09 : 14 05:06 : 22

07:09 : 22 08:08 : 9 11:11 : 12

(Other):142 (Other): 20 (Other):112



Chapter 2

Summarizing Genetic Data

2.1 Synopsis

There are several ways you can summarize genetic data and here we will cover some simple approaches and introduce
another class that aids in the analysis of population genetic data.

2.2 The Frequencies Class

The Frequencies class was designed to help out with allele frequency issues and provide a single interface from which
you can extract frequency-related information. At its most basic level, a new Frequencies object is created from a list
of Locus objects.

> require(gstudio)

> loc1 <- Locus( c(1,2) )

> loc2 <- Locus( c(2,2) )

> loc3 <- Locus( c(2,2) )

> freqs <- Frequencies( c( loc1, loc2, loc3) )

> freqs

Allele Frequencies:

1 = 0.1666667

2 = 0.8333333

Estimates of allele frequencies can be extracted from the Frequencies class using the get.frequencies method. This
method needs to have the object and an optional list of alleles you are interested in getting frequencies for. If you do not
pass the second parameter, it will give you the frequencies for all the alleles it currently has. If you do, it will give you the
observed frequency of each (notice the value for the ’42’ allele)

> names(freqs)

[1] "1" "2"

> length(freqs)

[1] 2

> get.frequencies( freqs )

1 2

0.1666667 0.8333333

> get.frequencies( freqs, c("1","42") )

1 42

0.1666667 0.0000000
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2.3 Heterozygosities

A fundamental component of many population genetic analysis is the estimation of heterozygosity. There are two basic
types of heterozygosity, that which is expected under Hardy-Weinberg Equilibrium and that which was observed. For
simplicity, these are denoted as He and Ho in many common texts.

Observed heterozygosity is probably the simplest of the two and it is simply the fraction of genotypes in the group you are
looking at (could be a population or a region or a site) that are heterozygotes. In terms of the Locus class, the function
is.heterozygote returns TRUE if the locus has at least two alleles (allowing for ploidy levels in excess of 2) and at least
two different alleles are present. As part of the data accumulation process in the construction of an AlleleFrequency

object, observed heterozygosity is recorded.

Expected heterozygosity requires an assumption of equilibrium (in the most simple case). For a diploid locus with alleles
A & B and frequencies of each allele denoted as pA & pB, genotypes are expected to occur at a frequency of:

AA → p2
A

AB → 2 ∗ pA ∗ pB
BB → p2

B

From the example set of loci we used above, the observed and expected frequencies are:

> ho( freqs )

ho

0.3333333

> he( freqs )

he

0.2777778

2.4 Allele Frequencies

The estimation of allele frequencies for a single site or population is probably one of the least informative summary
approaches available. It is the differences among sites & populations and the various evolutionary and demographic
processes that create these differences that are often of interest.

There are several helper functions and methods that can be used to examine allele frequencies across strata.

2.4.1 Getting Frequencies from Populations

The Population class has a method for returning an AlleleFrequency object for a particular locus. This is mostly a con-
venience method that goes through all the Indiviudal objects in the Population and creates a new AlleleFrequency

object for you. As a single population you can grab it using the allele.frequencies routine.

> data(araptus_attenuatus)

> araptus.ltrs.freq <- allele.frequencies(araptus_attenuatus,"LTRS")

> araptus.ltrs.freq

$LTRS

Allele Frequencies:

01 = 0.523416

02 = 0.476584

If you do not pass get.frequencies the optional loci parameter, it will return a list of Frequency objects for all loci.

> all.freqs <- allele.frequencies(araptus_attenuatus)

> print(all.freqs[1:2])



$LTRS

Allele Frequencies:

01 = 0.523416

02 = 0.476584

$WNT

Allele Frequencies:

01 = 0.3579545

03 = 0.4303977

04 = 0.02698864

02 = 0.1818182

05 = 0.002840909

With the partition method, you can take the entire data set and easily find allele frequencies for subsets of data.

> clades <- partition(araptus_attenuatus,"Species")

> names(clades)

[1] "CladeA" "CladeB" "CladeC"

> cladeC.freqs <- allele.frequencies(clades$CladeC)

> summary(cladeC.freqs)

Length Class Mode

LTRS 2 Frequencies S4

WNT 4 Frequencies S4

EN 5 Frequencies S4

EF 2 Frequencies S4

ZMP 2 Frequencies S4

AML 10 Frequencies S4

ATPS 6 Frequencies S4

MP20 8 Frequencies S4

> summary(cladeC.freqs$AML)

Class : Frequencies

N : 252

A : { 01, 02, 05, 06, 07, 08, 09, 10, 11, 13 }

ho : 0.4677419

he : 0.7284242

> get.frequencies(cladeC.freqs$AML, 11)

11

0.002016129

> allele.frequencies( araptus_attenuatus[ araptus_attenuatus$Lat > 26.3 ,], loci="AML" )

$AML

Allele Frequencies:

08 = 0.308642

09 = 0.2592593

07 = 0.2407407

10 = 0.02469136

06 = 0.03703704

11 = 0.08333333

02 = 0.00308642

13 = 0.00308642

05 = 0.00308642

01 = 0.00308642

12 = 0.03395062



2.4.2 Plotting Frequencies

The combination of Population and Frequencies can easily be used to explore population structure. In the next snippet,
we partition the dataset into populations along the Baja Peninsula and plot their locations (n.b., the bty option to plot
removes the box around the image and the asp makes the axes equal).

> baja <- araptus_attenuatus[araptus_attenuatus$Species!="CladeB",]

> pop.coords <- unique( cbind( baja$Long, baja$Lat ) )

> plot(pop.coords, bty="n", xlab="Longitude", ylab="Latitude",asp=1)
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Next, we can adjust the size of the symbol by diversity at any locus (below LTRS is used). Here the lapply function is
used to apply a function to the elements of the baja.pops list. If you are not familiar with this function, you should look
it up. The resulting heterozyosity estimates are scaled and used as symbol size (via cex; Figure 2.1).

> baja.pops <- partition( baja, "Pop" )

> pop.he <- lapply( baja.pops, function(x) he( Frequencies( x$LTRS ) ) )

> summary( unlist(pop.he) )

Min. 1st Qu. Median Mean 3rd Qu. Max.

0.0000 0.0000 0.1800 0.2036 0.3457 0.4800

> plot(pop.coords, bty="n", xlab="Longitude", ylab="Latitude",asp=1,cex=2*unlist(pop.he)+1, main="Heterozygosity of LTRS")



> baja.pops <- partition( baja, "Pop" )

> pop.he <- lapply( baja.pops, function(x) he( Frequencies( x$LTRS ) ) )

> summary( unlist(pop.he) )

Min. 1st Qu. Median Mean 3rd Qu. Max.

0.0000 0.0000 0.1800 0.2036 0.3457 0.4800

> plot(pop.coords, bty="n", xlab="Longitude", ylab="Latitude",asp=1,cex=2*unlist(pop.he)+1, main="Heterozygosity of LTRS")
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Figure 2.1: Heterozygosity of Araptus attenuatus populations (depicted by symbol size) on the peninsula of Baja California.



Chapter 3

Genetic Diversity

3.1 Synopsis

Genetic diversity is measure of within stratum variance and there are several methods available for the estimation of
diversity. In a general sense, we will be using measures of allelic richness from the Baja California data set, which can
easily be found my examining the Frequencies of the loci.

> require(gstudio)

> data(araptus_attenuatus)

> baja <- araptus_attenuatus[araptus_attenuatus$Species != "CladeB",]

> freqs <- allele.frequencies(baja)

> freqs$LTRS

Allele Frequencies:

01 = 0.5519878

02 = 0.4480122

> freqs$MP20

Allele Frequencies:

07 = 0.2892308

05 = 0.2969231

15 = 0.001538462

08 = 0.02769231

06 = 0.08923077

04 = 0.009230769

18 = 0.1784615

19 = 0.009230769

17 = 0.04153846

10 = 0.01384615

11 = 0.04153846

16 = 0.001538462

In this data set, the raw allelic diversity across all the samples range from 2 - 12 alleles. However, using a base approach
such as this falls short for several reasons:

1. We are only looking at the number of alleles across the entire data set and there are many cases where it may
be of interest to look at allelic diversity within substrata. It is possible to use the partition function along with
allele.frequencies to get to the number of alleles at partitions but the problem with that is:

2. The raw number of alleles depends upon the number of individuals sampled. It is not statistically sound to compare
raw diversity of stratum with different numbers of individuals. This is where rarefaction comes in.

3. The sole number of alleles present may not be as important as other measures of genetic diversity such as the
diversity of non-rare alleles, or the average ’effective’ number of alleles.
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To overcome both of these issues, the genetic.diversity function is used.

3.1.1 Rarefaction

Before we get into the nitty-gritty, the basic concept of rarefaction should be examined. Rarefaction is a permutation
technique that can be used to standardize samples based upon sample allocation and is an old friend to ecologists.

For our purposes, we will consider rarefaction as a subsampling of alleles in strata standardized by the size of the smallest
stratum. So if we have one population with 10 individuals (20 alleles if the locus is diploid) and the rest of the populations
have 50 individuals (100 alleles), a rarefied comparison of diversity should be based upon sampling of 20 alleles.

The function genetic.diversity takes random samples of the alleles within each population and recomputes the re-
quested allelic diversity statistic. While in many ecological studies, rarefaction is depicted as an accumulation curve (they
are generally interested in sampling intensity), genetic.diversity only reports the distribution at the largest size where
all strata are equal (e.g., the number of alleles present in the smallest population).

3.2 Allelic Diversity: A

The parameter A is solely a measure of the number of alleles at a locus. If a population has a single individual with a single
copy of allele A and everyone else has allele C, A = 2, which is the same case as if half the population was homozygous for
A and the remaining individuals were homozygous for C. The function genetic.diversity returns an object that can
be both printed and examined in plot fashion (by default it is a boxplot)

> A <- genetic.diversity(baja,stratum="Cluster",loci="MP20",mode="A")

> A

Geneic Diversity:

Estimator: A

Stratum: Cluster

Loci: { MP20 }

Locus = MP20

CBP-C A = 5 ; Rarefaction A = 4.16716716716717

NBP-C A = 6 ; Rarefaction A = 3.51751751751752

SBP-C A = 2 ; Rarefaction A = 2

SCBP-A A = 4 ; Rarefaction A = 3.01601601601602

> plot(A)
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The plot itself is a horizontal boxplot. If you conduct the analysis with either the loci missing or as a list of loci, the
results from each locus will be displayed in the terminal and the plotting will cycle through each locus requiring some input
from the keyboard. It is also possible to plot just a single locus by passing the locus name as a second parameter to the
plot command.

3.3 Allelic Diversity of Non-Rare Alleles: A95

The parameter A95 ignores rare alleles by not counting those whose frequencies are below 95% within the stratum. So
alleles locally rare will not be counted and in general A >= A95.

> A95 <- genetic.diversity(baja,stratum="Cluster",loci="MP20",mode="A95")

> A95

Geneic Diversity:

Estimator: A95

Stratum: Cluster

Loci: { MP20 }

Locus = MP20

CBP-C A95 = 4 ; Rarefaction A95 = 3.65065065065065

NBP-C A95 = 2 ; Rarefaction A95 = 2.36436436436436

SBP-C A95 = 2 ; Rarefaction A95 = 2

SCBP-A A95 = 2 ; Rarefaction A95 = 2.45345345345345



> plot(A95)
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3.4 Effective Allelic Diversity: Ae

The last diversity statistic is Ae, which is another frequency corrected allelic diversity statistic. For a locus with ` alleles,
each of which occurs at a frequency of pi , the effective number of alleles is:

Ae =
1∑`
i=1 p

2
i

(3.1)

And for the example data:

> Ae <- genetic.diversity(baja,stratum="Cluster",loci="MP20",mode="Ae")

> Ae

Geneic Diversity:

Estimator: Ae

Stratum: Cluster

Loci: { MP20 }

Locus = MP20

CBP-C Ae = 2.93481610504455 ; Rarefaction Ae = 2.8455801976292

NBP-C Ae = 1.97536394176932 ; Rarefaction Ae = 1.95448118785927



SBP-C Ae = 1.6 ; Rarefaction Ae = 1.58736774866187

SCBP-A Ae = 1.58205596962453 ; Rarefaction Ae = 1.5793060658481

> plot(Ae)
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One obvious difference in Ae from the others is that it is not an integer value (both A and A95 are integers) and as such
can show a bit more granularity.



Chapter 4

Genetic Distance

4.1 Synopsis

The analysis of genetic data is largely an analysis of distances; distances among frequencies, distances among centroids of
populations, etc.

4.2 Genetic Distances Among Individuals

In these examples, the data from Araptus attenuatus will be used again but this time we’ll use the subset of individuals
from ”CladeB” (mainland populations).

> require(gstudio)

> data(araptus_attenuatus)

> sonora <- araptus_attenuatus[ araptus_attenuatus$Species=="CladeB" , ]

> summary(sonora)

Species Cluster Pop Individual Lat Long

CladeB:36 SON-B:36 101: 9 101_10A: 1 Min. :26.38 Min. :-110.6

102: 8 101_1A : 1 1st Qu.:26.64 1st Qu.:-109.6

32 :19 101_2A : 1 Median :26.64 Median :-109.3

101_3A : 1 Mean :26.90 Mean :-109.6

101_4A : 1 3rd Qu.:26.95 3rd Qu.:-109.3

101_5A : 1 Max. :27.91 Max. :-109.1

(Other):30

LTRS WNT EN EF ZMP AML ATPS

01:01: 1 01:01:29 01:01: 7 01:01:23 01:01: 1 08:08: 1 02:02:28

01:02:17 01:03: 1 01:03: 2 01:02:11 02:02:19 08:11: 1 02:03: 1

02:02:18 NA : 6 03:03:19 NA : 2 NA :16 08:12: 1 02:04: 2

03:04: 6 10:11: 1 02:09: 3

04:04: 1 11:11:12 04:04: 1

NA : 1 12:12: 5 09:09: 1

NA :15

MP20

12:12 : 6

03:13 : 4

11:12 : 3

13:13 : 3

NA : 3

02:10 : 2

(Other):15
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4.2.1 Jaccard Distance

Jaccard distance is a set-theoretic distance quantifying dissimilarity. Assuming that loci are sets of alleles, the Jaccard
dissimilarity between genotypes A and B is given by:

Jδ(A, B) =
|A
⋃
B| − |A

⋂
B|

|A
⋃
B|

(4.1)

Using the LTRS locus, we compute this distance as:

> d.jaccard <- genetic.distance(sonora,stratum="Pop",loci="EN",mode="Jaccard")

> dim(d.jaccard$LTRS)

NULL

YOu can look at the elements of the LTRS matrix (it is 36x36 so I am not printing it out here). With mode="Jaccard",
missing genotypes will result in NA rows and columns in the distance matrix. It is no entirely clear how this metric can
easily handle missing genotypes.

4.2.2 Bray-Curtis Distance

Bray-Curtis Distance (Bray & Curtis 1957) has been primarily used to quantify differences in species composition. It is
defined as the total number of species that are unique to either of the two sites standardized by the number of species in
both sites.

BCδ =
Si + Sj − 2Sij
Si + Sj

(4.2)

where Sx is the species count and Sij is the sum of minimum abundances. Lately, this has seen considerable use within
individual-based landscape genetic studies. Missing genotypes are set to average allele frequencies, that is to say that every
missing genotype is considered to have all the alleles present in the entire population, but with probability equal to their
global frequencies. Essentially, this removes the NA problem like in the mode="Jaccard" situation and does so by taking
the non-missing genotype’s genetic distance from the global genetic centroid (it’s cosmic man!). Here is the estimation
using two loci.

> d.bray <- genetic.distance(sonora,stratum="Pop",loci=c("LTRS","EN"),mode="Bray")

> summary(d.bray)

Length Class Mode

LTRS 1296 -none- numeric

EN 1296 -none- numeric

4.2.3 AMOVA Distance

The final individual-based approach is based upon the Analysis of Molecular Variance (AMOVA) analysis. A geometric
interpretation of this genetic distance is given in Figure 4.1 indicating distances among diploid genotypes.

Algebraically, we can define an individual locus using a multivariate vector as an allele coding vector. The Locus class has
a method, as.multivariate, that does the translation. The distance between the two alleles is defined as:

δ2
ij = 2(pi − pj)2 (4.3)

as shown below.

The amova distance is simply the vector distance between these two vectors as demonstrated below



> locAA <- Locus( c("A","A") )

> locBB <- Locus( c("B","B") )

> locAB <- Locus( c("A","B") )

> locBC <- Locus( c("B","C") )

> vAA <- as.vector( locAA, c("A","B","C") )

> vBB <- as.vector( locBB, c("A","B","C") )

> vAB <- as.vector( locAB, c("A","B","C") )

> vBC <- as.vector( locBC, c("A","B","C") )

> dist.AA.BB <- 2*( (vAA - vBB) %*% (vAA - vBB) )

> dist.AA.BB

[,1]

[1,] 16

> dist.AA.AB <- 2*( (vAA - vAB) %*% (vAA - vAB) )

> dist.AA.AB

[,1]

[1,] 4

> dist.AA.BC <- 2*( (vAA - vBC) %*% (vAA - vBC) )

> dist.AA.BC

[,1]

[1,] 12

While we will deal more with the AMOVA analysis in the section on Genetic Structure, the AMOVA genetic distance matrix
can be estimated as follows, this time using all the loci. This metric is additive across loci, so only a single distance matrix
is returned. The list key for the multilocus parameters is a list of the locus names, joined using a period.

> d.amova <- genetic.distance(sonora,stratum="Pop",mode="AMOVA",loci="EN")

> summary(d.amova)

Length Class Mode

EN 1296 -none- numeric

There are several other measures of individual-to-individual distance such as relatedness and coancestry. These are not
currently implemented in R but may become available in the near future. That being said, it is probably something not
too difficult for someone to extend these functions with their own code.

4.2.4 Differences Between Distances

These three distances are correlated, and here we can look at how close they are for this three allele locus in Euphorbia
lomelii. They will be transformed from a dist matrix object into columns within a data.frame and then their relationship
can be tested using cor.test.

> df <- data.frame( jaccard = d.jaccard$EN[lower.tri(d.jaccard$EN)],bray = d.bray$EN[lower.tri(d.bray$EN)], amova = d.amova$EN[lower.tri(d.amova$EN)])

> summary(df)
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Figure 4.1: Geometry of AMOVA distances. The resulting squared distance is the square of the geometric distance.



jaccard bray amova

Min. :0.000 Min. :0.0000 Min. :0.000

1st Qu.:0.000 1st Qu.:0.0000 1st Qu.:0.000

Median :0.500 Median :0.5000 Median :1.000

Mean :0.527 Mean :0.5238 Mean :1.568

3rd Qu.:1.000 3rd Qu.:1.0000 3rd Qu.:4.000

Max. :1.000 Max. :1.0000 Max. :4.000

> cor(df)

jaccard bray amova

jaccard 1.0000000 0.9985311 0.8883334

bray 0.9985311 1.0000000 0.8919370

amova 0.8883334 0.8919370 1.0000000

> pairs(df)

> df <- data.frame( jaccard = d.jaccard$EN[lower.tri(d.jaccard$EN)],bray = d.bray$EN[lower.tri(d.bray$EN)], amova = d.amova$EN[lower.tri(d.amova$EN)])

> summary(df)

jaccard bray amova

Min. :0.000 Min. :0.0000 Min. :0.000

1st Qu.:0.000 1st Qu.:0.0000 1st Qu.:0.000

Median :0.500 Median :0.5000 Median :1.000

Mean :0.527 Mean :0.5238 Mean :1.568

3rd Qu.:1.000 3rd Qu.:1.0000 3rd Qu.:4.000

Max. :1.000 Max. :1.0000 Max. :4.000

> cor(df)

jaccard bray amova

jaccard 1.0000000 0.9985311 0.8883334

bray 0.9985311 1.0000000 0.8919370

amova 0.8883334 0.8919370 1.0000000

> pairs(df)

Figure 4.2: Relationship among three individual genetic distance metrics estimated for individual Araptus attenuatus
individuals in Sonora & Sinoloa, Mexico.



4.3 Genetic Distance Among Strata

Genetic distances can also be estimated among groups of individuals. The same data will be used here but since there are
only three populations, we’ll be able to see the whole distance matrix.

4.3.1 Euclidean Distance

Euclidean distance is the most straight-forward distance metric available as it is essentially straight-line distance based
upon the allele frequencies in each population. It is given by:

deucl =

√√√ L∑
j=1

(pij − pkj)2
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Figure 4.3: Geometry of euclidean distance based upon a two-allele locus denoted as frequencies p1 & p2.

where pij and pkj are the frequencies of the jth allele in both the ith and jth population. In this and the following distance
examples, I am going to take the resulting distance matrix among all pairs of populations and put them into a Neighbor
joining tree (via the nj function from the ape package) as it may be easier to see differences in topologies rather than
matrices.

It is perhaps easiest to think of Euclidean distance in x,y coordinate space (Figure 4.3). This distance can be estimated
by stratum.distance using the optional parameter method=’eucl’ and it will return a dist matrix.

Once the matrix has been estimated, you can visualize it in many ways. One of the most straight-forward approaches it
to visualizing the relationships among rows and columns is to put it into a bifurcating tree.

> d.eucl <- genetic.distance(sonora,stratum="Pop",loci="EN",mode="Euclidean")

> d.eucl

$EN

[,1] [,2] [,3]

[1,] 0.0000000 0.5611959 0.6908633

[2,] 0.5611959 0.0000000 0.2698923

[3,] 0.6908633 0.2698923 0.0000000

4.3.2 Cavalli-Sforza Distance

Another distance approach that is commonly used for microsatellite loci is Cavalli-Sforza distance, DC (Cavalli-Sforza and
Edwards, 1967). Here population allele frequencies are plot on the surface of a sphere (radius=1) using the square root of
the allele frequencies.

DC =
2
π

√
(2 − 2cosθ)



The genetic distance, DC is measured as the chord distance as indicated in Figure ??. The resulting Neighbor joining tree
from this distance is shown in Figure 4.4
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Figure 4.4: Geometry of Cavalli-Sforza distance. Population allele frequencies at two loci are plot at
√
p1 and

√
p2 and DC

is the chord between the populations.

> d.cavalli <- genetic.distance(sonora,"Pop","EN","Cavalli")

> d.cavalli

$EN

[,1] [,2] [,3]

[1,] 0.0000000 0.4131725 0.7554523

[2,] 0.4131725 0.0000000 0.5155875

[3,] 0.7554523 0.5155875 0.0000000

4.3.3 Nei’s Genetic Distance

Nei’s genetic distance is based upon mutation drift equilibrium therefore you should be reasonably comfortable with the
notion that your populations have been separated a sufficient period of time such that drift and mutation may have played
a significant role in their structure.

The formula for Nei’s distance that is used here is:

DNei = −ln

 (2N − 1)
∑L
i=1
∑`
j=1 pij,xpij,y√∑L

i=1(2N
∑`
j=1 pij,x − 1)(2N

∑`
j=1 pij,y − 1)


where the summation L is across loci and ` is across alleles at each locus in population x and y.

> d.nei <- genetic.distance(sonora,"Pop","EN","Nei")

> d.nei

$EN

[,1] [,2] [,3]

[1,] 0.0000000 1.200027 0.5848357

[2,] 1.2000270 0.000000 2.8444285

[3,] 0.5848357 2.844428 Inf

4.3.4 Conditional Genetic Distance

Conditional genetic distance (cGD, Dyer et al. 2010) is a graph-theoretic genetic distance derived from Population Graphs
(Dyer and Nason 2004). In some cases it has been shown to be more sensitive to landscape features and heterogeneity in
dispersal than structure statistics and other distance metrics (see Dyer et al. 2010).

> d.cgd <- genetic.distance(sonora,"Pop","EN","cGD")



tranforming data... done

Rotating mv genos and partitioning... done

Estimating conditional genetic covariance... done

Making graph... done

> d.cgd

$EN

[,1] [,2] [,3]

[1,] 0.000000 4.154197 2.477791

[2,] 4.154197 0.000000 2.010668

[3,] 2.477791 2.010668 0.000000

4.4 Isolation-By-Distance

Under models with restrictions in gene flow, there is an expectation that genetic distance should increase with physical
separation. Using populations found along the Baja Peninsula, it is pretty easy to see which one of these among-strata
distance approaches provides a better fit to the data.

> baja <- araptus_attenuatus[araptus_attenuatus$Species != "CladeB", ]

> euc <- genetic.distance(baja,"Pop","EN","Euclidean")$EN

> cav <- genetic.distance(baja,"Pop","EN","Cavalli")$EN

> nei <- genetic.distance(baja,"Pop","EN","Nei")$EN

> cgd <- genetic.distance(sonora,"Pop","EN","cGD")$EN

tranforming data... done

Rotating mv genos and partitioning... done

Estimating conditional genetic covariance... done

Making graph... done

> phys <- stratum.distance(baja,"Pop",lat="Lat",lon="Long")

> df <- data.frame(Euclidean=euc[lower.tri(euc)], Cavalli=cav[lower.tri(cav)], Nei=nei[lower.tri(nei)], cGD=cgd[lower.tri(cgd)], Physical.Dist=phys[lower.tri(phys)] )

> pairs( df )

> cor(df)

Euclidean Cavalli Nei cGD Physical.Dist

Euclidean 1.00000000 0.94146219 NaN 0.09490699 0.29356944

Cavalli 0.94146219 1.00000000 NaN 0.08888958 0.27044432

Nei NaN NaN 1 NaN NaN

cGD 0.09490699 0.08888958 NaN 1.00000000 0.02110107

Physical.Dist 0.29356944 0.27044432 NaN 0.02110107 1.00000000



> baja <- araptus_attenuatus[araptus_attenuatus$Species != "CladeB", ]

> euc <- genetic.distance(baja,"Pop","EN","Euclidean")$EN

> cav <- genetic.distance(baja,"Pop","EN","Cavalli")$EN

> nei <- genetic.distance(baja,"Pop","EN","Nei")$EN

> cgd <- genetic.distance(sonora,"Pop","EN","cGD")$EN

tranforming data... done

Rotating mv genos and partitioning... done

Estimating conditional genetic covariance... done

Making graph... done

> phys <- stratum.distance(baja,"Pop",lat="Lat",lon="Long")

> df <- data.frame(Euclidean=euc[lower.tri(euc)], Cavalli=cav[lower.tri(cav)], Nei=nei[lower.tri(nei)], cGD=cgd[lower.tri(cgd)], Physical.Dist=phys[lower.tri(phys)] )

> pairs( df )

> cor(df)

Euclidean Cavalli Nei cGD Physical.Dist

Euclidean 1.00000000 0.94146219 NaN 0.09490699 0.29356944

Cavalli 0.94146219 1.00000000 NaN 0.08888958 0.27044432

Nei NaN NaN 1 NaN NaN

cGD 0.09490699 0.08888958 NaN 1.00000000 0.02110107

Physical.Dist 0.29356944 0.27044432 NaN 0.02110107 1.00000000

Figure 4.5: Relationship among strata genetic distance metrics estimated for Araptus attenuatus sites in Baja California
along with physical distance.



Chapter 5

Genetic Structure

5.1 Synopsis

Estimation of genetic structure is a fundamental process in population genetic analyses. Broadly defined, structure can be
defined as the non-random association of genotypes and alleles in populations due to evolutionary processes such as gene
flow, drift, selection, and inbreeding. For this, the Araptus attenuatus data set and will be used again.

> require(gstudio)

> data(araptus_attenuatus)

> baja <- araptus_attenuatus[araptus_attenuatus$Species != "CladeB",]

5.2 Genotype Frequencies

The manner by which alleles are arranged into genotypes tells us a lot about the history of a species. The structure
statistic that are presented below all rely upon estimation of genotype frequencies so a brief digression to talk about
genotype frequencies is in order.

Under a model of random mating, a locus with ` alleles whose frequencies are denoted by p1, p2, . . . , p`, homozygotes for
the ith allele are expected to occur at a frequency of p2

i and ij-heterozygotes are expected at 2pipj.

The expected frequencies are estimated from the allele frequencies assuming Hardy-Weinberg Equilibrium. If you were
only interested in the proportion of heterozygotes, you can use the ho and he functions.

> freq.ltrs <- allele.frequencies(baja, "LTRS")

> he(freq.ltrs$LTRS)*length(baja$LTRS)

he

161.7324

> ho(freq.ltrs$LTRS)*length(baja$LTRS)

ho

69

However, at times, it is of interest to look at all genotypes. If you use the as.character method for Locus objects, you
can easily tabulate the counts of each genotypic state1.

> obs <- genotype.counts( araptus_attenuatus, "LTRS")

> obs

01:01 01:02 02:02

147 86 130

1This function does take into consideration the non-sorting nature of the Locus object so that a 3:4 locus and a 4:3 locus will be counted
as the same heterozygote.
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> obs/sum(obs)

01:01 01:02 02:02

0.4049587 0.2369146 0.3581267

Below they are denoted as a matrix, the values on the diagonal of exp are the expected number of homozygotes and
off-diagonal estimates are the expected frequency of heterozygotes.

> p <- get.frequencies( freq.ltrs$LTRS )

> p

01 02

0.5519878 0.4480122

> exp.freq <- p %*% t(p)

> row.names(exp.freq) <- colnames(exp.freq)

> exp <- exp.freq * length(baja$LTRS)

> exp

01 02

01 99.63379 80.86621

02 80.86621 65.63379

As you can see there are fewer heterozygotes than expected (Nhets; exp = 162, Nhets; obs =86).

5.3 Hardy-Weinberg Equilibrium

While the gstudio package provides the basic units for population genetic analyses, there are already some very good
packages that conduct analyses like testing for Hardy-Weinberg Equilbrium2.

> require(HardyWeinberg)

> ltrs.genoytpes <- genotype.counts( araptus_attenuatus, "LTRS")

> HWChisq(ltrs.genoytpes,verbose=T)

Chi-square test with continuity correction for Hardy-Weinberg equilibrium

Chi2 = 98.52808 p-value = 0 D = -47.55096

$chisq

[1] 98.52808

$pval

[1] 0

$D

01:02

-47.55096

$p

01:01

0.523416

5.4 Structure Parameters

Population structure parameters are fundamental tools for population genetics and have been perhaps, the most poorly
understood and misused as well. At the end of this section, some examples of the differences between the parameters is
given.

2There are many other functional packages on cran.r-project.org and you should always make sure someone hasn’t already solved a problem
for you before you try to code up a solution.



These structure parameters are estimated using the function genetic.structure and requires a Population object, a
stratum, the loci you want to estimate parameters from, and a mode (the parameter you want). If you leave off the
loci parameter, all loci will be used. There is also an optional parameter, num.perm that is used to test significance.

Finally, of note here is that all these parameters use a sample-size corrected estimates of heterozygosity.

ĤS =
2µ

2µ − 1
HS

ĤT = HT +
ĤS
2kµ

Where µ is the harmonic mean strata size and k is the number of stratum. As you can see as µ gets larger ĤS → HS,
which translates to ”if you have more samples, you can get a better estimate of the average heterozygosity” and as k get
larger, ĤT → HT which says the same thing about the number of populations. The take-home here is that you need many
samples from many places.

5.4.1 The GST Parameter

The parameter GST is an estimate of the reduction in heterozygosity due to individuals being in different populations. It is
functionally equivalent to FST from Wright and as he points out, it is not a measure of differentiation in the way that we
think of differentiation. Rather it is a measure of the extent to which populations have gone to fixation. It is estimated as:

GST = 1 −
ĤS
ĤT

where HS is the average expected heterozygosity at each stratum [1 −
∑`
i=1 p

2
i ]/K and HT is the expected heterozygosity

across the entire dataset.

For the EN locus in the Baja California dataset, GST is estimated by:

> gst.baja <- genetic.structure(baja,stratum="Pop",loci="EN",mode="Gst",num.perm=999)

> print(gst.baja)

Geneic Structure Analysis:

Estimator: Gst

Stratum: Pop

Loci: { EN }

- EN ; Gst = 0.345786963051191 ; P = 0.001

5.4.2 The G′ST Parameter

The parameter G′ST was introduced by Hedrick (20XX) in response to the observation that the parameter GST is not
insensitive to the number of alleles at a locus. Fixing this is done by standardizing the estimate of GST by the maximal is
can be given the number of alleles present, essential a restandardization to the [0,1] range. This is done by:

G′ST =
GST (k − 1 + µ)
(k − 1)(1 − ĤS)

For the same locus, we get a larger

> gst.prime.baja <- genetic.structure(baja,stratum="Pop","EN",mode="Gst.prime",num.perm=999)

> print(gst.prime.baja)



Geneic Structure Analysis:

Estimator: Gst.prime

Stratum: Pop

Loci: { EN }

- EN ; Gst.prime = 0.459618108931204 ; P = 0.001

5.4.3 The DEST Parameter

It has been pointed out that even with the corrections for large numbers of alleles, G′ST may not be acting like a statistic
of ”differentiation”in the way that we think of differentiation. For example consider the following code where I make three
populations, the first one fixed for the ”1” allele and the next fixed for the ”2” (sure this is an extreme point, but Wright
originally made it and it should be repeated).

> locus1 <- list()

> for(i in 1:50)

+ locus1[i] <- Locus( c(1,1) )

> for(i in 51:150)

+ locus1[i] <- Locus( c(2,2) )

> strata <- c(rep("Pop-A",50), rep("Pop-B",50), rep("Pop-C",50) )

> pop <- Population(strata=strata, loci=locus1)

> summary(pop)

strata loci

Length:150 1:1: 50

Class :character 2:2:100

Mode :character

When we estimate either GST or GST on these data we get:

> genetic.structure(pop,"strata","loci",mode="Gst")

Geneic Structure Analysis:

Estimator: Gst

Stratum: strata

Loci: { loci }

- loci ; Gst = 1

> genetic.structure(pop,"strata","loci",mode="Gst.prime")

Geneic Structure Analysis:

Estimator: Gst.prime

Stratum: strata

Loci: { loci }

- loci ; Gst.prime = 1

Now, intuitively, if it were just ”Pop-A”and ”Pop-B”then this would make sense but look at the differences between ”Pop-B”
and ”Pop-C”, this should be GST = G′ST = 0! In fact, if you had only one population fixed for the ”1” allele and a thousand
populations fixed for the other, these parameters would still equal unity. This is because, as Wright originally pointed out,
these population parameters are not meant to measure differentiation but fixation. The parameter Dest was introduced
by Joost (20XX) to address this issue (n.b., Gregorious proposed this back in the 80’s but was not taken serious about it
then, perhaps Joost can have better luck).

The parameter is defined as:

Dest =
k − 1
k

ĤT − ĤS
1 − ĤS

For the contrived data set, it gives:

> genetic.structure(pop,"strata","loci","Dest")



Geneic Structure Analysis:

Estimator: Dest

Stratum: strata

Loci: { loci }

- loci ; Dest = 0.296296296296296

Which is what would be expected, roughly a third, if we have two populations that are identical and one that is differentiated
from the rest. I recommend looking at the several papers that go over these issues for more clarity.

For completeness, the results of the Baja California data set, under Dest are:

> Dest.baja <- genetic.structure(baja,stratum="Pop","EN",mode="Dest",num.perm=999)

> print(Dest.baja)

Geneic Structure Analysis:

Estimator: Dest

Stratum: Pop

Loci: { EN }

- EN ; Dest = 0.164464814867075 ; P = 0.001

5.5 Pairwise Structure

The genetic.structure function can also be used to estimate pairwise estimates of each parameter using the optional
pairwise flag.

> sonora <- araptus_attenuatus[araptus_attenuatus$Species=="CladeB",]

> genetic.structure(sonora,"Pop",loci="EN",mode="Gst.prime", pairwise=TRUE)

101 32 102

101 0.0000000 0.4136727 0.3661894

32 0.4136727 0.0000000 0.1245850

102 0.3661894 0.1245850 0.0000000



Chapter 6

Parent Offspring Data

6.1 Synopsis

There are several cases where you have data that consists of both adults and offspring. With these kinds of data, there are
some interesting kinds of analyses available for examining structure and diversity. The functionality that gstudio provides
focuses on translations of offspring data into common formats that can be analyzed using regular routines.

6.2 Getting Data

The use of GoogleDocs as a repository for your data is not unique to parent-offspring data and is used here to demonstrate
how to utilize this options. There is a more detailed discussion of how to set up your GoogleSpreadsheets so that you can
access them in the DataImport vignette. In what follows, I will use the Cornus florida data. I split URL (see Data Import)
because it was so long it trailed off the page...

> require(gstudio)

> data(cornus_florida)

> cornus <- cornus_florida

The structure of adult/offspring data is just like any other kind of data and can consist of covariates such as physical
location, size, etc. along with strata and loci. The distinction is that there must be at least two strata columns:

Individual ID There should a column in the dataset that has identification number or names that are unique to adults.
Every adult must have a unique identification numver.

Offspring ID To differentiate offspring from adults, the Offspring ID column should have the maternal individual (or
paternal if you like) equal to 0. Offspring from this individual have non-zero values for the Offspring ID column.
Offspring do not need to all have unique Offspring ID designations, just unique ones within the set of offspring with
the same Individual ID.

Here is an example to show the distinctions.

> family <- offspring.array(cornus,474)

> family

$mom

IndID OffID X Y G8 H18 N5 N10 O5

1 474 0 1545 2234 156:164 104:112 126:126 198:200 185:193

$offspring

IndID OffID X Y G8 H18 N5 N10 O5

1 474 1 1545 2234 164:168 104:112 126:126 198:202 185:195

2 474 2 1545 2234 156:156 102:112 126:126 198:198 179:185

3 474 3 1545 2234 162:164 112:114 124:126 192:198 185:193
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4 474 4 1545 2234 164:188 110:112 126:126 194:198 185:193

5 474 5 1545 2234 156:158 112:112 126:128 192:198 185:193

6 474 6 1545 2234 164:180 108:112 126:126 188:198 177:193

7 474 7 1545 2234 164:188 110:112 126:126 190:198 177:185

8 474 8 1545 2234 164:168 104:112 126:126 200:202 193:193

9 474 9 1545 2234 156:164 112:112 126:126 190:198 185:193

10 474 10 1545 2234 164:188 110:112 126:126 190:198 177:185

11 474 11 1545 2234 164:168 110:112 126:126 188:200 181:185

12 474 12 1545 2234 164:180 112:112 126:126 190:198 179:193

13 474 13 1545 2234 164:164 112:114 126:126 188:198 181:185

14 474 14 1545 2234 156:180 112:118 126:126 188:200 185:193

15 474 15 1545 2234 156:180 112:114 126:126 190:200 179:185

16 474 16 1545 2234 156:168 104:112 126:126 192:198 193:193

17 474 17 1545 2234 164:164 112:112 126:126 198:200 193:193

18 474 18 1545 2234 156:164 104:114 126:126 198:202 181:193

19 474 19 1545 2234 164:164 112:112 126:128 198:200 185:193

20 474 20 1545 2234 164:168 112:112 126:126 192:198 193:193

Notice that all the offspring from mom ’474’ have the same IndID and she is differentiated from the offspring by having
’OffID=0’. In fact, all the adults in the dataset can be found as:

> adults <- cornus[cornus$OffID==0,]

> adults

IndID OffID X Y G8 H18 N5 N10 O5

1 226 0 1392 3534 162:180 114:114 124:126 192:192 185:195

2 232 0 1656 3414 158:180 112:112 124:126 184:192 185:185

3 234 0 1718 3330 158:180 112:96 128:128 184:192 185:185

4 300 0 1175 3114 180:188 112:116 126:126 198:200 191:195

5 305 0 1529 3237 154:170 122:124 124:126 188:192 181:195

6 432 0 1336 2748 164:180 114:116 124:126 198:202 185:193

7 433 0 1337 2749 180:188 112:114 126:126 198:202 179:193

8 468 0 1588 2233 164:164 110:116 124:124 198:202 181:193

9 474 0 1545 2234 156:164 104:112 126:126 198:200 185:193

10 484 0 1514 2302 160:168 112:116 126:126 192:192 193:193

11 487 0 1517 2305 164:176 110:112 126:126 192:202 179:181

12 489 0 1519 2307 160:164 104:112 126:126 192:202 179:181

13 490 0 1520 2308 164:176 112:112 128:128 192:202 179:181

14 493 0 1523 2311 168:168 104:112 124:126 192:202 193:195

15 512 0 1174 2279 156:174 108:114 126:126 200:202 179:195

16 513 0 1239 2276 156:180 102:114 126:126 190:198 179:179

17 516 0 1299 2135 156:180 102:114 124:126 190:198 179:179

18 519 0 1357 2148 156:180 104:114 126:126 182:188 181:181

19 520 0 1412 2041 164:172 114:124 126:126 188:198 195:195

20 521 0 1511 1949 160:164 112:112 128:128 198:200 185:193

21 590 0 1880 1040 164:168 112:118 124:126 192:198 177:193

22 607 0 2286 2888 154:164 114:114 126:126 188:202 181:181

6.3 Pollen Pools

Since my research is primarily focused on the analysis of plant populations and mother/offspring combinations provide
information about pollen donors, naturally these kinds of analyses will be the first kind to have functionality.



6.3.1 Minus Mom

If you have the collection of offspring and a mother, you can estimate pollen pool allele frequencies as by subtracting the
maternal contribution to each genotype and then estimating the allele frequencies of the paternal components (this could
be reversed if you have father/offspring data and need to estimate maternal genotype frequencies just as easily).

> offs <- minus.mom( cornus )

> offs

IndID OffID X Y G8 H18 N5 N10 O5

1 468 1 1588 2233 156 112 126 200 185

2 468 2 1588 2233 180 112 126 198:202 193

3 468 3 1588 2233 188 114 126 198 179

4 468 4 1588 2233 180 112 126 192 185

5 468 5 1588 2233 154 104 126 202 195

6 468 6 1588 2233 154 104 124 188 193

7 468 7 1588 2233 162 114 124 192 185

8 468 8 1588 2233 180 114 126 192 195

9 468 9 1588 2233 180 114 126 202 193

10 468 10 1588 2233 182 114 124 184 195

11 468 11 1588 2233 158 112 128 192 185

12 468 12 1588 2233 158 112 128 192 185

13 468 13 1588 2233 164 108 126 188 191

14 468 14 1588 2233 182 108 126 198:202 181:193

15 468 15 1588 2233 180 112 126 198:202 181:193

16 468 16 1588 2233 164 102 126 198 181:193

17 468 17 1588 2233 164 104 126 188 193

18 468 18 1588 2233 182 108 126 198:202 181:193

19 468 19 1588 2233 182 104 126 202 181:193

20 468 20 1588 2233 182 110 126 198:202 179

21 474 1 1545 2234 168 104:112 126 202 195

22 474 2 1545 2234 156 102 126 198 179

23 474 3 1545 2234 162 114 124 192 185:193

24 474 4 1545 2234 188 110 126 194 185:193

25 474 5 1545 2234 158 112 128 192 185:193

26 474 6 1545 2234 180 108 126 188 177

27 474 7 1545 2234 188 110 126 190 177

28 474 8 1545 2234 168 104:112 126 202 193

29 474 9 1545 2234 156:164 112 126 190 185:193

30 474 10 1545 2234 188 110 126 190 177

31 474 11 1545 2234 168 110 126 188 181

32 474 12 1545 2234 180 112 126 190 179

33 474 13 1545 2234 164 114 126 188 181

34 474 14 1545 2234 180 118 126 188 185:193

35 474 15 1545 2234 180 114 126 190 179

36 474 16 1545 2234 168 104:112 126 192 193

37 474 17 1545 2234 164 112 126 198:200 193

38 474 18 1545 2234 156:164 114 126 202 181

39 474 19 1545 2234 164 112 128 198:200 185:193

40 474 20 1545 2234 168 112 126 192 193

> freqs.G8 <- Frequencies(offs$G8)

> freqs.G8

Allele Frequencies:

156 = 0.0952381

180 = 0.2142857

188 = 0.0952381

154 = 0.04761905



162 = 0.04761905

182 = 0.1190476

158 = 0.07142857

164 = 0.1904762

168 = 0.1190476

Now the distinction should be made that these are the pollen donor allele frequencies since the contribution of the maternal
individual has been removed from each offspring, the differences you can see as by comparing the above to:

> unreduced.offs <- cornus[cornus$OffID!=0,]

> freqs.unreduced.G8 <- Frequencies( unreduced.offs$G8 )

> freqs.unreduced.G8

Allele Frequencies:

156 = 0.1125

164 = 0.5125

180 = 0.1125

188 = 0.05

154 = 0.025

162 = 0.025

182 = 0.0625

158 = 0.0375

168 = 0.0625

where the genotype of each offspring has 50% of the mother’s genotype.

6.3.2 Genetic Distances and Structure (e.g., 2Gener)

The reduced genotypes can be used in traditional genetic analyses as any other type of genetic data. For example, the
Two-Generation Analysis of Pollen Structure (hereafter 2Gener; Smouse et al. 2001, Dyer et al. 2004) is essentially an
AMOVA analysis on pollen donor genotypes. This is a bit of a manual version of it but it can be conducted as (in the next
version I’ll add a the AMOVA/2Gener options to the genetic.structure function).

> require(pegas,quietly=TRUE,warn.conflicts=FALSE)

> D <- genetic.distance(offs,mode="AMOVA")[[1]]

> D <- as.dist(D)

> Moms <- as.factor( offs$IndID )

> amova(D ~ Moms)

Analysis of Molecular Variance

Call: amova(formula = D ~ Moms)

SSD MSD df

Moms 8.10625 8.106250 1

Error 324.48750 8.539145 38

Total 332.59375 8.528045 39

Variance components:

sigma2 P.value

Moms -0.021645 0.457

Error 8.539145

Variance coefficients:

a
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6.4 Paternity

The gstudio package has some basic functionality regarding estimating paternity (or maternity if you have those kinds
of data). Thus far, only fractional paternity is implemented and only basically.

Initially,

> pollen.freqs <- allele.frequencies( offs )

> Pexcl <- lapply( pollen.freqs, exclusion.probability)

> Pexcl

$G8

Pe

0.7225813

$H18

Pe

0.5868707

$N5

Pe

0.17702

$N10

Pe

0.6501088

$O5

Pe

0.5702125

The multilocus exclusion probability is given by:

Pexcl = 1 −
∏̀
i=1

(1 − Pexcl,i)

which in R can be found as:

> 1- prod((1-unlist(Pexcl)))

[1] 0.985816

Which means that on average, these loci are expected to be able to exclude 98.6% of potential fathers for an mother/offspring
pair.

The function paternity estimates fractional paternity for a particular mother and set of offspring. Fractional paternity
is estimated using multilocus Mendelian transition probabilities for triplet of male parent (MP), female parent (FP), and
offspring (O) standardized by the likelihood of all potential fathers.

λi =
T (O|FP,MPi)∑
∀k T (O|FP,MP)k

This ensures that
∑
λ = 1. The function paternity estimates this for all the offspring within a single family providing the

subset of offspring that have potential fathers in the population, the identity of each father, and the fractional likelihood
of each father.

> pat <- paternity(cornus,474)

> print(pat)



Paternity Analysis:

Family ID: 474

Number of Offspring: 20

Offspring Assigned Paternity: 12

Fractional Paternity (off: dad(prob) ):

1:493(1)

13:607(1)

15:513(0.666666666666667) 516(0.333333333333333)

16:484(0.615384615384615) 493(0.307692307692308) 590(0.0769230769230769)

17:474(0.8) 590(0.2)

18:607(1)

19:521(1)

2:513(0.666666666666667) 516(0.333333333333333)

20:484(0.727272727272727) 493(0.181818181818182) 590(0.0909090909090909)

3:226(1)

5:234(1)

8:493(1)

You can visualize the results using the paternity.spiderplot function that plots the location of all the individuals and
indicates putative paternity by connecting mothers and indicated fathers.

> paternity.spiderplot(cornus,pat,X="X",Y="Y", bty="n", xlab="X", ylab="Y")



> paternity.spiderplot(cornus,pat,X="X",Y="Y", bty="n", xlab="X", ylab="Y")
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Figure 6.1: Spatial pattern of parentage for family 474 in the Cornus florida dataset. Darkness of the lines indicated
fractional paternity (light=less, darker=greater).



Chapter 7

Population Graphs

7.1 Synopsis

A population graph is a topological representation of within and among population genetic variance first introduced by
Dyer & Nason (2004). It is particularly well suited to characterizing how spatial genetic variation is distributed among
sites.

> require(gstudio)

> data(araptus_attenuatus)

> baja <- araptus_attenuatus[araptus_attenuatus$Species != "CladeB",]

7.2 Simple Population Graphs

> graph <- population.graph(baja,"Pop")

tranforming data... done

Rotating mv genos and partitioning... done

Estimating conditional genetic covariance... done

Making graph... done

> summary(graph)

Vertices: 36

Edges: 59

Directed: FALSE

No graph attributes.

Vertex attributes: name, size, color.

Edge attributes: weight.

> l <- layout.fruchterman.reingold(graph)

> plot(graph,layout=l,vertex.label=V(graph)$name)
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We know that these data are a mixture of two putative species denoted as CladeA and CladeC.

> table(baja$Species)

CladeA CladeC

75 252

We can color the nodes depending upon the identity of clade representation at the node-level. If there is a mixture of
species, you would expect to find that the mixed populations would be topologically intermediate between populations
made up of pure samples.

> getCladeColor <- function(pop,data) {

+ inds <- data$Species[data$Pop==pop]

+ levels.inds <- levels(as.factor(as.character(inds)))

+ if(length(levels.inds)==2) return("red")

+ else if( levels.inds=="CladeA" ) return("blue")

+ else return("green")

+ }

> colors <- unlist(lapply(V(graph)$name, function(x) getCladeColor(x,baja)))

> plot(graph,layout=l,vertex.label=V(graph)$name,vertex.color=colors)
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So if we only use the samples from CladeC we may be actually analyzing the data in a way that makes sense. Do this by:

1. Use only the CladeC individuals

2. Get rid of the populations with say N < 5 individuals

3. Make graph and examine the topology

> baja.cladeC <- baja[baja$Species=="CladeC",]

> inds.per.pop <- lapply( partition(baja.cladeC,"Pop"), function(x) dim(x)[1] )

> ## Examine inds per pop to figure out which have <5 individuals save in smPops

> smPops <- c("Const","ESan","157","73","Aqu","Mat","98","75")

> baja.cladeC <- baja.cladeC[ !(baja.cladeC$Pop %in% smPops) , ]

> graph.cladeC <- population.graph(baja.cladeC,"Pop")

tranforming data... done

Rotating mv genos and partitioning... done

Estimating conditional genetic covariance... done

Making graph... done

> summary(graph.cladeC)

Vertices: 26

Edges: 33

Directed: FALSE

No graph attributes.



Vertex attributes: name, size, color.

Edge attributes: weight.

> l <- layout.fruchterman.reingold(graph.cladeC)

> plot(graph.cladeC,layout=l,vertex.label=V(graph.cladeC)$name)
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From this plot, you can see even when we only focus on the true CladeC individuals, there is still partitioning of genetic
covariance!

7.3 Node Position

Both node and edge position in the topology can easily be determined using common network analysis tools. The igraph

package has some as does the most excellent sna package. Here is a quick example where the size of the node is depicting
the node’s betweeness (e.g., the number of shortest paths that go through that node).

> pop.betweenness <- betweenness(graph.cladeC,directed=F)

> plot(graph.cladeC,layout=l,vertex.label=V(graph.cladeC)$name,vertex.size=pop.betweenness)
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Which is rather interesting since betweenness can be used to classify relative population importance. Presently, it is
common to use genetic diversity as a surrogate to identify populations of high conservation importance, but betweenness
relates to the connectivity of the gene flow topology on the landscape and is not necessarily correlated with genetic diversity.

> cor.test(V(graph.cladeC)$size,pop.betweenness,method="spearman")

Spearman's rank correlation rho

data: V(graph.cladeC)$size and pop.betweenness

S = 3259.634, p-value = 0.5779

alternative hypothesis: true rho is not equal to 0

sample estimates:

rho

-0.1144049

7.4 Conditional Genetic Distance

In Dyer et al. (2010) we showed that graph distance (e.g., the shortest path connecting points in the topology) was
more powerful than pair-wise structure and distance approaches. We denoted the among population distance as cGD for
conditional graph distance.

Since this topology is disconnected, we’ll just focus on the medium sized component, the one with 84 in it.



> connected.to.84 <- subcomponent(graph.cladeC,v="84")

> med.graph <- subgraph(graph.cladeC,v=connected.to.84)

> med.layout <- layout.fruchterman.reingold(med.graph)

> plot(med.graph,layout=med.layout,vertex.label=V(med.graph)$name)

> D <- shortest.paths(med.graph)
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As discussed previously, we can also get the pair-wise physical distance and then examine ”Isolation by Graph Distance”
(IBGD), which has some nice properties that make it perhaps more precise than IBD based upon pair-wise structure
estimates.

> pops <- V(med.graph)$name

> P <- stratum.distance(baja.cladeC,"Pop",lat="Lat",lon="Long",subset=pops)

> plot(D[lower.tri(D)] ~ P[lower.tri(P)], bty="n",xlab="Physical Distance",ylab="Graph Distance")
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We can use a Mantel test to see if there is a correlation between graph and physical distance for this subcomponent.

> require(ecodist,quietly=T)

> mantel(as.dist(D)~as.dist(P)) ##pval3 is Ho: Mantel-R=0

mantelr pval1 pval2 pval3 llim.2.5% ulim.97.5%

0.5687480 0.0090000 0.9920000 0.0090000 0.4824620 0.7026195

The pval3 is the probability of HO : Mantelρ = 0.

7.5 Graph Partitions

A very important point needs to be made here regarding subgraphs and partitions of the whole data set. The disconnected
subgraph in the previous section is not necessarily the same graph you would get if you partitioned the genotypes into only
those populations and then make the graph. Compare the previous network topology to this one.

> tmp.pop <- baja[baja$Pop %in% c("9","84","88","89","159","171","173","175","177")]

> tmp.graph <- population.graph(tmp.pop,"Pop")

tranforming data... done

Rotating mv genos and partitioning... done

Estimating conditional genetic covariance... done

Making graph... done



> plot(tmp.graph,layout=med.layout,vertex.label=V(tmp.graph)$name)
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This is because Population Graphs are constructed using Conditional Genetic Covariance. The genetic covariance between
populations 173 & 171 is conditional on the their covariance with all the other data in the data set. In the first graph this
includes the populations in this subgraph as well as the populations outside the subgraph.



Chapter 8

Mapping Population Genetic Data

8.1 Synopsis

This vignette goes over some of the methodologies available for creating google KML files to display aspects of genetic
data in either Google Earth, Google Maps, or even as an import into Arc. These functions are part of an extension package
gstudio-sp that extends the gstudio package by adding spatial components. They are kept separate from the rest of
the gstudio package because one may not need to use the spatial components every time.

Here the Araptus attenuatus data set will be used and in particular the subset of populations that formed the disconnected
subgraph in the Population Graphs vignette from the gstudio package.

> require(gstudio)

> data(araptus_attenuatus)

> popsToKeep <- c("88","9","84","177","175","173","171","89","159")

> baja <- araptus_attenuatus[araptus_attenuatus$Pop %in% popsToKeep]

8.2 Pies On Maps

Often it is of interest to look at global changes in allele frequencies. While it is true that the frequency of an allele or
set of alleles can be plot as a function of latitude or longitude, there is also value in putting it on a map. The function
pies.on.map takes a Population file, a stratum, a list of loci, and some coordinate names in the population. In most
of the functions in spgen if you have your latitude and longitude variables labeled ”Latitude” and ”Longitude”, you do not
need to specify them in the function call.

> pies.on.map(filename="~/Desktop/Baja.pies.kml",pop=baja,stratum="Pop",loci=c("EN","LTRS"),lat="Lat",lon="Long")

This creates a KML file that you can open in Google Earth and looks something like Figure 6.1
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Figure 8.1: Allele frequencies for locus ’EN’ in Araptus attenuatus.



8.3 Population Graphs On Maps

It is also helpful to put graph topologies on a map. Here a population graph is created using the wrapper function
spatial.population.graph. This function adds latitude, longitude, and colors as properties to a normal population
graph and is required for spatial plotting. You can add these properties yourself if you like (use the list.vertex.properties
function to see what is different) to a normal graph or you can just make the graph using this function.

> graph <- spatial.population.graph(pop="baja",stratum="Pop",lat="Lat",lon="Long")

> popgraph.on.map(graph,filename="~/Desktop/popgraph.on.map.kml")

Figure 8.2: Population graph for the northern group of Araptus attenuatus populations.
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