The function ltcchk
conducts Line x Tester analysis when the data contains crosses and checks. The experimental design may be RCBD or Alpha lattice design.
# Load the package
library(gpbStat)
#Load the dataset
data(alphaltcchk)
# View the structure of dataframe.
str(alphaltcchk)
#> Classes 'tbl_df', 'tbl' and 'data.frame': 54 obs. of 6 variables:
#> $ replication: num 1 1 1 1 1 1 1 1 1 1 ...
#> $ block : num 1 1 1 2 2 2 3 3 3 4 ...
#> $ line : num 1 1 1 3 3 3 4 4 4 2 ...
#> $ tester : num 11 12 13 11 12 13 11 12 13 11 ...
#> $ check : num NA NA NA NA NA NA NA NA NA NA ...
#> $ yield : num 41.7 66 71.6 53.8 54.9 ...
# Conduct Line x Tester analysis
result = ltcchk(alphaltcchk, replication, line, tester, check, yield, block)
#>
#> Analysis of Line x Tester: yield
# View the output
result
#> $Means
#> Testers
#> Lines 11 12 13
#> 1 39.71542 63.26313 62.81656
#> 2 57.41419 55.69333 58.82389
#> 3 58.07933 45.48036 51.48648
#> 4 54.63878 51.24719 48.85824
#> 5 40.67837 46.95009 61.85992
#>
#> $`Overall ANOVA`
#> Df Sum Sq Mean Sq F value Pr(>F)
#> Replication 2 40.56006 20.28003 0.195 0.8241
#> Blocks within Replication 10 1078.34500 107.83450 1.039 0.4425
#> Treatments 17 3998.28863 235.19345 2.265 0.0326
#> Crosses 14 2439.10541 174.22182 1.678 0.1283
#> Checks 2 1541.39151 770.69575 7.423 0.0031
#> Lines 4 336.80619 84.20155 0.383 0.8151
#> Testers 2 341.33346 170.66673 0.775 0.4924
#> Lines X Testers 8 1760.96576 220.12072 2.120 0.0740
#> Error 24 2491.83072 103.82628 NA NA
#> Total 53 467.13426 NA NA NA
#>
#> $`Coefficient of Variation`
#> [1] 19.27023
#>
#> $`Genetic Variance`
#> Genotypic Variance Phenotypic Variance Environmental Variance
#> 71.63781 175.46409 103.82628
#>
#> $`Genetic Variability `
#> Phenotypic coefficient of Variation Genotypic coefficient of Variation
#> 25.0511369 16.0067978
#> Environmental coefficient of Variation <NA>
#> 19.2702331 0.4082762
#>
#> $`Line x Tester ANOVA`
#> Df Sum Sq Mean Sq F value Pr(>F)
#> Lines 4 336.8062 84.20155 0.383 0.8151
#> Testers 2 341.3335 170.66673 0.775 0.4924
#> Lines X Testers 8 1760.9658 220.12072 2.120 0.0740
#>
#> $`GCA lines`
#> 1 2 3 4 5
#> 2.131 4.177 -1.452 -1.552 -3.304
#>
#> $`GCA testers`
#> 11 12 13
#> -3.028 -0.607 3.635
#>
#> $`SCA crosses`
#> Testers
#> Lines 11 12 13
#> 1 -12.521 8.605 3.916
#> 2 3.132 -1.010 -2.122
#> 3 9.426 -5.595 -3.831
#> 4 6.086 0.273 -6.358
#> 5 -6.123 -2.273 8.395
#>
#> $`Proportional Contribution`
#> Lines Tester Line x Tester
#> 13.80860 13.99421 72.19720
#>
#> $`GV Singh & Chaudhary`
#> Cov H.S. (line) Cov H.S. (tester)
#> -15.102130 -3.296933
#> Cov H.S. (average) Cov F.S. (average)
#> -1.622689 19.249588
#> F = 0, Adittive genetic variance F = 1, Adittive genetic variance
#> -6.490754 -3.245377
#> F = 0, Variance due to Dominance F = 1, Variance due to Dominance
#> 77.529627 38.764814
#>
#> $`GV King`
#> Cov Full Sib Cov Half Sib gca variance sca variance
#> 209.853449 -7.723882 -7.723882 225.301212
#>
#> $`Standard Errors`
#> S.E. gca for line S.E. gca for tester S.E. sca effect
#> 3.396506 2.630922 5.882921
#> S.E. (gi - gj)line S.E. (gi - gj)tester S.E. (sij - skl)tester
#> 4.803385 3.720686 8.319707
#>
#> $`Critical differance`
#> C.D. gca for line C.D. gca for tester C.D. sca effect
#> 7.010044 5.429957 12.141752
#> C.D. (gi - gj)line C.D. (gi - gj)tester C.D. (sij - skl)tester
#> 9.913699 7.679118 17.171031
# Load the package
library(gpbStat)
#Load the dataset
data("rcbdltcchk")
# View the structure of dataframe.
str(rcbdltcchk)
#> Classes 'tbl_df', 'tbl' and 'data.frame': 72 obs. of 5 variables:
#> $ replication: num 1 2 3 4 1 2 3 4 1 2 ...
#> $ line : num 1 1 1 1 1 1 1 1 1 1 ...
#> $ tester : num 6 6 6 6 7 7 7 7 8 8 ...
#> $ check : num NA NA NA NA NA NA NA NA NA NA ...
#> $ yield : num 74.4 70.9 60.9 68 91.8 ...
# Conduct Line x Tester analysis
result1 = ltcchk(rcbdltcchk, replication, line, tester, check, yield)
#>
#> Analysis of Line x Tester with crosses and checks: yield
# View the output
result1
#> $Means
#> Testers
#> Lines 6 7 8
#> 1 68.550 107.640 52.640
#> 2 73.265 97.640 85.650
#> 3 100.885 111.540 117.735
#> 4 105.795 64.450 46.855
#> 5 84.150 81.935 94.820
#>
#> $`Overall ANOVA`
#> Df Sum Sq Mean Sq F value Pr(>F)
#> Replication 3 181.4450 60.48168 0.750 0.5274
#> Treatments 17 26842.2856 1578.95798 19.583 0.0000
#> Crosses 14 26199.6543 1871.40388 23.211 0.0000
#> Checks 2 551.0746 275.53731 3.417 0.0405
#> Lines 4 10318.3614 2579.59035 1.457 0.3009
#> Testers 2 1718.9258 859.46289 0.485 0.6327
#> Lines X Testers 8 14162.3672 1770.29589 21.956 0.0000
#> Error 51 4111.9998 80.62745 NA NA
#> Total 71 31135.7305 NA NA NA
#>
#> $`Coefficient of Variation`
#> [1] 10.47362
#>
#> $`Genetic Variance`
#> Genotypic Variance Phenotypic Variance Environmental Variance
#> 379.61908 460.24652 80.62745
#>
#> $`Genetic Variability `
#> Phenotypic coefficient of Variation Genotypic coefficient of Variation
#> 25.0236394 22.7263258
#> Environmental coefficient of Variation <NA>
#> 10.4736166 0.8248168
#>
#> $`Line x Tester ANOVA`
#> Df Sum Sq Mean Sq F value Pr(>F)
#> Lines 4 10318.361 2579.5904 1.457 0.3009
#> Testers 2 1718.926 859.4629 0.485 0.6327
#> Lines X Testers 8 14162.367 1770.2959 21.956 0.0000
#>
#> $`GCA lines`
#> 1 2 3 4 5
#> -9.960 -0.718 23.817 -13.870 0.732
#>
#> $`GCA testers`
#> 6 7 8
#> 0.292 6.404 -6.697
#>
#> $`SCA crosses`
#> Testers
#> Lines 6 7 8
#> 1 -8.019 24.959 -16.940
#> 2 -12.546 5.717 6.828
#> 3 -9.461 -4.918 14.378
#> 4 33.136 -14.321 -18.815
#> 5 -3.111 -11.438 14.548
#>
#> $`Proportional Contribution`
#> Lines Tester Line x Tester
#> 39.383578 6.560872 54.055550
#>
#> $`GV Singh & Chaudhary`
#> Cov H.S. (line) Cov H.S. (tester)
#> 67.441205 -45.541650
#> Cov H.S. (average) Cov F.S. (average)
#> 2.680894 412.168303
#> F = 0, Adittive genetic variance F = 1, Adittive genetic variance
#> 10.723574 5.361787
#> F = 0, Variance due to Dominance F = 1, Variance due to Dominance
#> 844.834223 422.417112
#>
#> $`GV King`
#> Cov Full Sib Cov Half Sib gca variance sca variance
#> NA 77.14075 77.14075 NA
#>
#> $`Standard Errors`
#> S.E. gca for line S.E. gca for tester S.E. sca effect
#> 2.592095 2.007828 4.489639
#> S.E. (gi - gj)line S.E. (gi - gj)tester S.E. (sij - skl)tester
#> 3.665775 2.839497 6.349309
#>
#> $`Critical differance`
#> C.D. gca for line C.D. gca for tester C.D. sca effect
#> 5.203847 4.030882 9.013327
#> C.D. (gi - gj)line C.D. (gi - gj)tester C.D. (sij - skl)tester
#> 7.359351 5.700529 12.746770