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1 Introduction

The gnm package provides facilities for fittingeneralized nonlinear modelse., regression models in which the link-
transformed mean is described as a sum of predictor terms, some of which may be non-linear in the unknown parameters.
Linear and generalized linear models, as handled bytrendglm functions inR, are included in the class of generalized
nonlinear models, as the special case in which there is no nonlinear term.

This document gives an extended overview of ghen package, with some examples of applications. The primary
package documentation in the form of standard help pages, as viewedynfor example,?gnm or help(gnm), is
supplemented rather than replaced by the present document.

We begin below with a preliminary note (Sectign 2) on some ways in whiclyrihepackage extend®’s facilities
for specifying, fitting and working with generalizdéidear models. Then (Sectidrj 3 onwards) the facilities for nonlinear
terms are introduced, explained and exemplified.

The gnm package is installed in the standard way for CRAN packages, for example byirmsingll.packages.
Once installed, the package is loaded intdRasession by

> library(gnm)

2 Generalized linear models

2.1 Preamble

Central to the facilities provided by thgam package is the model-fitting functigmm, which interprets a model formula
and returns a model object. The user interfacegmf is patterned afteglm (which is included inR’s standardstats
package), and indeeghm can be viewed as a replacement §dm for specifying and fitting generalized linear models.
In general there is no reason to preéem to glm for fitting generalized linear models, except perhaps when the model
involves a large number of incidental parameters which are treatalgendy eliminatemechanism (see Sectipn }4.4).

While the main purpose of thenm package is to extend the class of models to include nonlinear terms, some of the
new functions and methods can be used also with the faniiiaand gIm model-fitting functions. These are: three new
data-manipulation functionBiag, Symm and Topo, for setting up structured interactions between factors; afaevily
function,wedderburn, for modelling a continuous response variable irlQvith the variance functioN (u) = p?(1—pu)?
as infWedderbuir (1974); and a new generic functienmPredictors which extracts the contribution of each term to
the predictor from a fitted model object. These functions are briefly introduced here, before we move on to the main
purpose of the package, nonlinear models, in Seiion 3.

2.2 Diag and Symm

When dealing witthomologoudactors, that is, categorical variables whose levels are the same, statistical models often
involve structured interaction terms which exploit the inherent symmetry. The funditazsand Symm facilitate the
specification of such structured interactions.

As a simple example of their use, consider the log-linear modejsadi-independencgquasi-symmetrgndsymmetry
for a square contingency table. Agréesti (2002), Section 10.4, gives data on migration between regions of the USA between
1980 and 1985:

> count <- c(11607, 100, 366, 124, 87, 13677, 515, 302, 172, 225,
+ 17819, 270, 63, 176, 286, 10192)
> region <- c("NE", "MW", "S", "W")



> row <- gl(4, 4, labels = region)
> col <- gl(4, 1, length = 16, labels = region)

The comparison of models reported by Agresti can be achieved as follows:

independence <- glm(count ~ row + col, family = poisson)

quasi.indep <- glm(count ~ row + col + Diag(row, col), family = poisson)
symmetry <- glm(count ~ Symm(row, col), family = poisson)

quasi.symm <- glm(count ~ row + col + Symm(row, col), family = poisson)
comparisonl <- anova(independence, quasi.indep, quasi.symm)
print(comparisonl, digits = 7)

V VVVVvyVv

Analysis of Deviance Table

Model 1: count ~ row + col

Model 2: count ~ row + col + Diag(row, col)

Model 3: count ~ row + col + Symm(row, col)
Resid. Df Resid. Dev Df Deviance

1 9 125923.29
5 69.51 4 125853.78
3 3 2.99 2 66.52

> comparison2 <- anova(symmetry, quasi.symm)
> print(comparison2)

Analysis of Deviance Table

Model 1: count ~ Symm(row, col)

Model 2: count ~ row + col + Symm(row, col)
Resid. Df Resid. Dev Df Deviance

1 6 243.550

2 3 2.986 3 240.564

The Diag and Symm functions also generalize the notions of diagonal and symmetric interaction to cover situations
involving more than two homologous factors.

2.3 Topo

More general structured interactions than those providedilayg and Symm can be specified using the functid@opo.
(The name of this function is short for ‘topological interaction’, which is the nomenclature often used in sociology for
factor interactions with structure derived from subject-matter theory.)

The Topo function operates on any numbde, 6ay) of input factors, and requires an argument nagped which
must be an array of dimensidn x ... x Ly, wherelL; is the number of levels for thigh factor. Thespec argument
specifies the interaction level corresponding to every possible combination of the input factors, and the result is a new
factor representing the specified interaction.

As an example, consider fitting the ‘log-multiplicative layéfeets’ models described in Xig (1992). The data are 7
by 7 versions of social mobility tables from Erikson et al. (11982):

data(erikson)

erikson <- as.data.frame(erikson)

1vl <- levels(erikson$origin)

levels(erikson$origin) <- levels(erikson$destination) <- c(rep(paste(lvl[1:2],
collapse = " + "), 2), 1vi[3], rep(paste(lvl[4:5], collapse = " + "),
2), 1vi[6:9])

erikson <- xtabs(Freq ~ origin + destination + country, data = erikson)

V + + Vv Vv VvV

From sociological theory — for which sge Erikson etlal. (1982) of Xie (1992) — the log-linear interaction between origin
and destination is assumed to have a particular structure:
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The models of table 3 6f Xie¢ (1992) can now be fitted as follows:

### Fit the levels models given in Table 3 of Xie (1992)

## Null association between origin and destination

nullModel <- gnm(Freq ~ country:origin + country:destination,
family = poisson, data = erikson, verbose = FALSE)

## Interaction specified by levelMatrix, common to all countries
commonTopo <- update(nullModel, ~ . +
Topo(origin, destination, spec = levelMatrix),
verbose = FALSE)

## Interaction specified by levelMatrix, different multiplier for

## each country

multTopo <- update(nullModel, ~ . +
Mult(Exp(country), Topo(origin, destination, spec = levelMatrix)),
verbose = FALSE)

## Interaction specified by levelMatrix, different effects for

## each country

separateTopo <- update(nullModel, ~ . +
country:Topo(origin, destination, spec = levelMatrix),
verbose = FALSE)

VV++VVVV++VVVYVY++VVYV + YV VYV

anova(nullModel, commonTopo, multTopo, separateTopo)

Analysis of Deviance Table

Model 1: Freq ~ country:origin + country:destination

Model 2: Freq ~ Topo(origin, destination, spec = levelMatrix) + country:origin +
country:destination

Model 3: Freq ~ Mult(country, Topo(origin, destination, spec = levelMatrix)) +
country:origin + country:destination

Model 4: Freq ~ country:origin + country:destination + country:Topo(origin,
destination, spec = levelMatrix)

Resid. Df Resid. Dev Df Deviance

1 108 4860.0

2 103 244.3 5  4615.7
3 101 216.4 2 28.0
4 93 208.5 8 7.9

Here we have useghm to fit all of these log-link models; the first, second and fourth are log-linear and could equally well
have been fitted usinglm.

2.4 Thewedderburn family

In|Wedderburh[(1974) it was suggested to represent the mean of a continuous response varighjeiginf a quasi-
likelihood model with logit link and the variance functigii(1 — x)2. This is not one of the variance functions made
available as standard R's quasi family. The wedderburn family provides it. As an example, Wedderburn’s analysis
of data on leaf blotch on barley can be reproduced as follows:

> data(barley)

> logitModel <- glm(y ~ site + variety, family = wedderburn, data = barley)
> fit <- fitted(logitModel)

> print(sum((barley$y - fit)+2/(fit * (1 - £fit))*2))



[1] 71.17401

This agrees with the chi-squared value reported on page 331 of McCullagh and Neldér (1989), tkéisislijhtly from
Wedderburn’s own reported value.

2.5 termPredictors

The generic functiortermPredictors extracts a term-by-term decomposition of the predictor function in a linear, gen-
eralized linear or generalized nonlinear model.
As an illustrative example, we can decompose the linear predictor in the above quasi-symmetry model as follows:

> print(temp <- termPredictors(quasi.symm))

(Intercept) row col Symm(row, col)
1 -0.2641848 0.0000000 0.000000 9.62354843
2 -0.2641848 0.0000000 4.918310 -0.09198126
3 -0.2641848 0.0000000 1.539852 4.63901793
4 -0.2641848 0.0000000 5.082641 0.00000000
5 -0.2641848 4.8693457 0.000000 -0.09198126
6 -0.2641848 4.8693457 4.918310 0.00000000
7 -0.2641848 4.8693457 1.539852 0.07295506
8 -0.2641848 4.8693457 5.082641 -3.94766844
9 -0.2641848 0.7465235 0.000000 4.63901793
10 -0.2641848 0.7465235 4.918310 0.07295506
11 -0.2641848 0.7465235 1.539852 7.76583039
12 -0.2641848 0.7465235 5.082641 0.00000000
13 -0.2641848 4.4109017 0.000000 0.00000000
14 -0.2641848 4.4109017 4.918310 -3.94766844
15 -0.2641848 4.4109017 1.539852 0.00000000
16 -0.2641848 4.4109017 5.082641 0.00000000

> rowSums (temp) - quasi.symm$linear.predictors

1 2 3 4 5
0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00
6 7 8 9 10
-1.776357e-15 -8.881784e-16 -8.881784e-16 0.000000e+00 0.000000e+00
11 12 13 14 15
0.000000e+00 0.000000e+00 0.000000e+00 -1.776357e-15 -8.881784e-16
16

0.000000e+00

Such a decomposition might be useful, for example, in assessing the relative contributidferentiierms or groups
of terms.

2.6 Const

In Sectior] B we shall see how nonlinear terms may be specified using functions ofaidisshat are analogous to basic
mathematical functions. In order to specify certain nonlinear terms in this way, it is necessary to be able to specify a
constant in the symbolic expression of a predictor. This is the functidemé t, such that

Const(a)
is equivalent to
offset(rep(a, nObs))

wherenObs is the number of observations.



3 Nonlinear terms

The main purpose of thgnm package is to provide a flexible framework for the specification and estimation of generalized
models with nonlinear terms. The facility provided wighm for the specification of nonlinear terms is designed to be
compatible with the symbolic language usedanmula objects. Primarily, nonlinear terms are specified in the model
formula as calls to functions of the clagenlin. There are a number ofonlin functions included in thgnm package.
Some of these specify simple mathematical functions of predickats:Mult, andInv. Others specify more specialized
nonlinear terms, in particuldful tHomog specifies homogeneous multiplicative interactions Ringlf specifies diagonal
reference terms. Users may also define their aamlin functions.

In previous versions ofnm, specialized nonlinear terms were implemented using plug-in functions and users could
define custom plug-in functions as described in Se¢tioh 3.6. Such functions still work in the current vergion biit
as plug-in functions are less user-friendly thromlin functions, support for plug-in functions is likely to be withdrawn in
future versions.

3.1 Basic mathematical functions of predictors

Most of thenonlin functions included ignm are basic mathematical functions of predictors:
Exp: the exponential of a predictor
Inv: the reciprocal of a predictor
Mult: the product of predictors

Predictors are specified by symbolic expressions that are interpreted as the right-hand &deofeobject, except that
an intercept isiot added by default.
The predictors may contain nonlinear terms, allowing more complex functions to be built up. For example, suppose
we wanted to specify a logistic predictor with the same form as that usednyis (a selfStart model for use witil s
— see sectiof]6 for more anm vs.nls):

Asym
1 + exp((xmid- x)/scal)

This expression could be simplified by re-parameterizing in terms of/scatland Ascal, however we shall continue with
this form for illustration. We could express this predictor symbolically as follows

~ -1 + Mult(1, Inv(Const(1l) + Exp(Mult(l + offset(-x), Inv(1)))))

However, this is rather convoluted and it may be preferable to define a speciatiaklfunction in such a case. Section
[3.5 explains how users can define custwonlin functions, with a function to specify logistic terms as an example.
One family of models usefully specified with the basic functions is the family of models with multiplicative interac-
tions. For example, the row-column association model
logure = ar + Be + yrdc,

also known as the Goodman RC model (Goodman, 1979), would be specified as a log-link model (for response variable
resp, say), with formula

resp ~ R + C + Mult(R, O

whereR andC are row and column factors respectively. In some contexts, it may be desirable to constrain one or more
of the constituent multiplie[fﬂ;in a multiplicative interaction to be nonnegative . This may be achieved by specifying the
multiplier as an exponential, as in the following ‘unifornffdrence’ model (Xig, 1992; Erikson and Goldthaipe, 1992)

log tiret = it + Bet + €"6rc,

which would be represented by a formula of the form

resp ~ R:T + C:T + Mult(Exp(T), R:0O)

1 A note on terminology: the rather cumbersome phrase ‘constituent multiplier’, or sometimes the abbreviation ‘multiplier’, will be used throughout
this document in preference to the more elegant and standard mathematical term ‘factor’. This will avoid possible confusion with the completely
different meaning of the word ‘factor’ — that is, a categorical variable -R.in



3.2 MultHomog

MultHomog is anonlin function to specify multiplicative interaction terms in which the constituent multipliers are the
effects of two or more factors and th&fexts of these factors are constrained to be equal when the factor levels are equal.
The arguments adiul tHomog are the factors in the interaction, which are assumed to be objects ofatams

As an example, consider the following association model with homogeneous row-cdiiaciis:e

logurc = ar + e + 6 1(r = C) + yrye.
To fit this model, with response variable nameatsp, say, the formula argument gmm would be
resp ~ R + C + Diag(R, C) + MultHomog(R, C)

If the factors passed t¥ul tHomog do not have exactly the same levels, a common set of levels is obtained by taking
the union of the levels of each factor, sorted into increasing order.

3.3 Dref

Dref is anonlin function to fit diagonal reference terms involving two or more factors with a common set of levels. A
diagonal reference term comprises an additive component for each factor. The component fdrifagieen by

Wiy

for an observation with levélof factor f, wherews is the weight for factoff andy; is the “diagonal &ect” for levell.

The weights are constrained to be nonnegative and to sum to one so that a “didfgmtglsayy,, is the value of the
diagonal reference term for data points with leivaktross the factorsDref specifies the constraints on the weights by
defining them as

et

Mese

where thej; are the parameters to be estimated.
Factors defining the diagonal reference term are passed as unspecified argubenfs Eor example, the following
diagonal reference model for a contingency table classified by the row faetod the column factot,
e e
Fre=giren T oir e

would be specified by a formula of the form

resp ~ -1 + Dref(R, C)

The Dref function has one specified argumedglta, which is a formula with no left-hand side, specifying the
dependence (if any) @f on covariates. For example, the formula

resp ~ -1 + x + Dref(R, C, delta = ~ 1 + Xx)
specifies the generalized diagonal reference model

gforténnXi gfoaténaXi
Hrei = X + gfoténnX 4 ghoatéizX Yot efortéX 4 gfozt+éieX Ye-

The default value oflelta is ~1, so that constant weights are estimated. Thefaents returned bynm are those that
are directly estimated, i.e. tf#g or the¢ ¢, rather than the implied weighg; .

3.4 1instances

Multiple instances of a linear term will be aliased with each other, but this is not necessarily the case for nonlinear terms.
Indeed, there are certain types of model where adding further instances of a nonlinear term is a natural way to extend the
model. For example, Goodman’s RC model, introduced in sefction 3.1

log ure = ar + Bc + Vi,



is naturally extended to the RC(2) model, with a two-component interaction

l0Qurc = ar + Bc + Yrc + Or .

Currently all of thenonlinfunctions ingnm exceptDref have aninst argument to allow the specification of multiple
instances. So the RC(2) model could be specified as follows

resp ~R + C + Mult(R, C, inst = 1) + Mult(R, C, inst = 2)
The convenience functiofnstances allows multiple instances of a term to be specified at once
resp ~ R + C + instances(Mult(R, O, 2)

The formula is expanded bynm, so that the instances are treated as separate termsinghences function may be
used with any function with afinst argument.

3.5 Customnonlin functions
3.5.1 General description

Users may write their ownonlinfunctions to specify nonlinear terms which can not (easily) be specified usimgttia
functions in thegnm package. A function of classonlin should return a list of arguments for the internal function
nonlinTerms. The following arguments must be specified in all cases:

predictors: a list of symbolic expressions or formulae with no left hand side which represent (possibly nonlinear)
predictors that form part of the term.

term: a function that takes the argumemisedLabels andvarLabels, which are labels generated gym for the
specified predictors and variables (see below), and returns a deparsed mathematical expression of the nonlinear
term. Only functions recognised laeriv should be used in the expression, exgather thansum.

Intercepts are added by default to predictors that are specified by formulae. If predictors are named, these names are used
as a prefix for parameter labels or as the parameter label itself in the single-parameter case.
The following arguments afonlinTerms should be specified as necessary:

variables: a list of expressions representing variables in the term (variables withfiactet of 1).

common: a numeric index opredictors with duplicated indices identifying single factor predictors for which ho-
mologous &ects are to be estimated.

The arguments below are optional:
call: acallto be used as a prefix for parameter labels.

match: (if call is nondULL) a humeric index obredictors specifying which arguments afall the predictors
match to — zero indicating no match.NtLL, predictors will be matched sequentially to the argumentsadfl .

start: a function which takes a named vector of parameters corresponding to the predictors and returns a vector of
starting values for those parameters. This function is ignored if the term is nested within another nonlinear term.

Predictors which are matched to a specified argumentadfi should be given the same name as the argument.
Matched predictors are labelled using “dot-style” labelling, e.g. the label for the intercept in the first constituent multi-
plier of the termMult (A, B) would be"Mult(. + A, 1 + B).(Intercept)". Itis recommended that matches are
specified wherever possible, to ensure parameter labels are well-defined.

The arguments afonlinfunctions are as suited to the particular term, but will usually include symbolic representations
of predictors in the term arior the names of variables in the term. The function may also havasmnargument to allow
specification of multiple instances (dee|3.4).



3.5.2 Example: a logistic function
As an example, consider writingreonlin function for the logistic term discussed[in B.1:

Asym
1 + exp((xmid- x)/scal)y

We can consideAsym xmid andscal as the parameters of three separate predictors, each with a single intercept term.
Thus we specify theredictors argument tmonlinTerms as

predictors = list(Asym = 1, xmid = 1, scal = 1)

The term also depends on the variallevhich would need to be specified by the user. Suppose this is specified to
our nonlin function through an argument named Then ournonlin function would specify the followingariables
argument

variables = list(substitute(x))

We need to ussubstitute here to list the variable specified by the user rather than the variable nafiéid it exists).
Ournonlinfunction must also specify theerm argument tcmonlinTerms. This is a function that will paste together
an expression for the term, given labels for the predictors and the variables:

term = function(predLabels, varLabels) {
paste(predLabels[1], "/(1 + exp((", predLabels[2], "-",
varLabels[1], ")/", predLabels[3], "))")

}

We now have all the necessary ingredients nbalin function to specify the logistic term. Since the parameterization
does not depend on user-specified values, it does not make sense to use call-matched labelling in this case. The labels for
our parameters will be taken from the labels of paedictors argument. Since we do not anticipate fitting models with
multiple logistic terms, ounonlin function will not specify acall argument with which to prefix the parameter labels.
We do however, have some idea of useful starting values, so we will specifyt e argument as

start = function(theta){
theta[3] <- 1
theta

}

which sets the initial scale parameter to one.
Putting all these ingredients together we have

Logistic <- function(x){
list(predictors = list(Asym = 1, xmid = 1, scal = 1),
variables = list(substitute(x)),
term = function(predLabels, varLabels) {
paste(predLabels[1], "/(1 + exp((", predLabels[2], "-",
varLabels[1], ")/", predLabels[3], "))")
},
start = function(theta){
theta[3] <- 1
theta
i)
}

class(Logistic) <- "nonlin"

3.5.3 Example:MultHomog

The Mul tHomog function included in thgnm package provides a further example af@nlin function, showing how to
specify a term with quite dlierent features from the preceding example. The definition is

MultHomog <- function(..., inst = NULL){
dots <- match.call(expand.dots = FALSE)[["..."]]
list(predictors = dots,



common = rep(l, length(dots)),
term = function(predLabels, ...) {
paste("(", paste(predLabels, collapse = ")*("), ")", sep = "")},
call = as.expression(match.call()),
match = rep(0, length(dots)))
}

class(MultHomog) <- "nonlin"

Firstly, the interaction may be based on any number of factors, hence the use of the spediarument. The use of
match.call is equivalent to the use afubstitute in the Logistic function: to obtain expressions for the factors as
specified by the user.

The returnedcommon argument specifies that homogenedofiisas are to be estimated across all the specified factors.
The term only depends on these factors, buttiéwen function allows for the emptyarLabels vector that will be passed
toit, by having a“ . .” argument.

Since the user may wish to specify multiple instances,dh&l argument tononlinTerms is specified, so that
parameters in dlierent instances of the term will have unique labels (due tatise¢ argument in the call). However as
the expressions passed to.“” may only represent single factors, rather than general predictors, it is not necessary to
use call-matched labelling, so a vector of zeros is returned amttwh argument.

3.6 Using custom plug-ins to fit nonlinear terms

Prior to the introduction ofonlin functions, nonlinear terms that could not be specified and estimated using the in-built
capability of gnm had to be fitted using plug-in functions. The plug-in functions previously distributedgnithhave

now been implemented a®nlin functions, however user-specified plug-in functions may still be used with the current
version ofgnm as documented iANon1in. Nevertheless, support for plug-in functions is likely to be withdrawn in future
versions, in favour of the simpleonlin functions.

4  Controlling the fitting procedure

The gnm function has a number of arguments whidfeat the way a model will be fitted. Basic control parameters can
be set using the argumentslerance, iterStart anditerMax. Starting values for the parameter estimates can be set
by start and parameters can be constrainedadastrain andconstrainTo arguments. Parameters of a stratification
factor can be handled mordfeiently by specifying the factor in aaliminate argument. These options are described
in more detail below.

4.1 Basic control parameters

The arguments terStart anditerMax control respectively the number of starting iterations (where applicable) and the
number of main iterations used by the fitting algorithm. The progress of these iterations can be followed by setting either
verbose or trace to TRUE. If verbose is TRUE and trace is FALSE, which is the default setting, progress is indicated

by printing the character “.” at the beginning of each iteratiortdéce is TRUE, the deviance is printed at the beginning

of each iteration (over-riding the printing of “.” if necessary). Whenexarbose is TRUE, additional messages indicate

each stage of the fitting process and diagnose any errors that cause that cause the algorithm to restart.

The fitting algorithm will terminate before the number of main iterations has reathexifax if the convergence
criteria have been met, with tolerance specifiedtbyerance. Convergence is judged by comparing the squared com-
ponents of the score vector with corresponding elements of the diagonal of the Fisher information matrix. If, for all
components of the score vector, the ratio is less thderance "2, or the corresponding diagonal element of the Fisher
information matrix is less than 1e-20, the algorithm is deemed to have converged.

4.2 Usingstart

In some contexts, the default starting values may not be appropriate and the algorithm will fail to converge, or perhaps only
converge after a large number of iterations. Alternative starting values may be passegharbipspecifying astart
argument. This should be a numeric vector of length equal to the number of parameters (or possibly the non-eliminated
parameters, see Sectjon]4.4), however missing starting valaesdre allowed.
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If there is no user-specified starting value for a parameter, the default value is used. This feature is particularly useful
when adding terms to a model, since the estimates from the original model can be used as starting values, as in this
example:

modell <- gnm(mu ~ R + C + Mult(R, O))
model2 <- gnm(mu ~ R + C + instances(Mult(R, O, 2),
start = c(coef(modell), rep(NA, 10)))

The gnm call can be made witliethod = "coefNames" to identify the parameters of a model prior to estimation, to
assist with the specification of arguments suckasrt.
The starting procedure used bym is as follows

. Begin with all parameters set k.
. ReplacaVA values with any starting values set bgnlin functions or plug-in functions.

. Replace current values with any (ntia} starting values specified by tlseart argument oignm.

A W N P

. Set any values specified by thenstrain argument to the values specified by #tenstrainTo argument (see

Sectior] 4.B).

5. Categorise remainingjA parameters as linear or nonlinear, treating Nanparameters as fixed. Initialise the
nonlinear parameters by generating valdegom the Uniform{0.1, 0.1) distribution and shifting these values
away from zero as follows

B 6,-01 ifo <1
"7 16, +01 otherwise

6. Compute thegylm estimate of the linear parametergéisetting the contribution to the predictor of any terms fully
determined by steps 2[t¢ 5.

7. Run starting iterations: update nonlinear parameters one at a time, jointly re-estimating linear parameters after each
round of updates.

Note that no starting iterations (stejp 7) will be run if all parameters are linear, or if all nonlinear parameters are specified
by start, constrain or a plug-in function.

4.3 Usingconstrain

By default,gnm only imposes identifiability constraints according to the general conventions ugedodyandle linear
aliasing. Therefore models that have any nonlinear terms will be usually be over-parameterizeth avitl return a
random parameterization for unidentified ffae@ents.

To illustrate this point, consider the following applicationgefn, discussed later in Sectipn J7.1:

data(occupationalStatus)

set.seed(1)

RChomogl <- gnm(Freq ~ origin + destination + Diag(origin, destination) +
MultHomog(origin, destination), family = poisson, data = occupationalStatus,
verbose = FALSE)

+ + Vv VvV

Running the analysis again from &férent seed

> set.seed(2)
> RChomog2 <- update(RChomogl)

gives a diterent representation of the same model:

> compareCoef <- cbind(coef(RChomogl), coef(RChomog2))
> colnames (compareCoef) <- c("RChomogl", "RChomog2'")
> round(compareCoef, 4)
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RChomogl RChomog?2

(Intercept) 0.1281 -0.0753
origin2 0.5184 0.5329
origin3 1.6237 1.6777
origin4 1.9422 2.0349
origin5 0.7228 0.8167
originé 2.7843  2.9121
origin7 1.4574 1.6128
origin8 1.1954 1.3669
destination2 0.9374 0.9519
destination3 1.9681 2.0221
destination4 2.2306 2.3234
destination5 1.6222 1.7161
destination6 3.0878 3.2156
destination? 2.2090 2.3644
destination8 1.7708 1.9423
Diag(origin, destination)l 1.5267 1.5267
Diag(origin, destination)2 0.4560 0.4560
Diag(origin, destination)3 -0.0160 -0.0160
Diag(origin, destination)4 0.3892 0.3892
Diag(origin, destination)5 0.7385 0.7385
Diag(origin, destination)6 0.1347 0.1347
Diag(origin, destination)7 0.4576  0.4576
Diag(origin, destination)8 0.3885 0.3885
MultHomog(origin, destination)l 1.5024 -1.5686
MultHomog(origin, destination)?2 1.2841 -1.3504
MultHomog(origin, destination)3 0.6860 -0.7522
MultHomog(origin, destination)4 0.1021 -0.1683
MultHomog(origin, destination)5 0.0849 -0.1511
MultHomog(origin, destination)6 -0.4268 0.3606
MultHomog(origin, destination)7 -0.8430 0.7768
MultHomog(origin, destination)8 -1.0866 1.0203

Even though the linear terms are constrained, the parameter estimates for théfetdénoorigin anddestination

still change, because these terms are aliased with the higher order multiplicative interaction, which is unconstrained.
Standard errors are only meaningful for identified parameters and hence the outputafy . gnm will show clearly

which cosficients are estimable:

> summary (RChomog2)

Call:

gnm(formula = Freq ~ origin + destination + Diag(origin, destination) +
MultHomog(origin, destination), family = poisson, data = occupationalStatus,
verbose = FALSE)

Deviance Residuals:

Min 1Q Median 3Q Max
-1.659e+00 -4.297e-01 -2.107e-08 3.862e-01 1.721e+00
Coefficients:

Estimate Std. Error z value Pr(>|z]|)
(Intercept) -0.07530 NA NA NA
origin2 0.53285 NA NA NA
origin3 1.67773 NA NA NA
origin4 2.03492 NA NA NA
origin5 0.81670 NA NA NA
originé 2.91210 NA NA NA
origin7 1.61278 NA NA NA
origin8 1.36691 NA NA NA
destination2 0.95187 NA NA NA
destination3 2.02215 NA NA NA
destination4 2.32335 NA NA NA
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destination5 1.71612 NA NA NA
destination6 3.21558 NA NA NA
destination? 2.36438 NA NA NA
destination8 1.94228 NA NA NA
Diag(origin, destination)l 1.52667 0.44658 3.419 0.00063 ***
Diag(origin, destination)?2 0.45600 0.34595 1.318 0.18747
Diag(origin, destination)3 -0.01598 0.18098 -0.088 0.92965
Diag(origin, destination)4 0.38918 0.12748 3.053 0.00227 **
Diag(origin, destination)5 0.73852 0.23329 3.166 0.00155 **
Diag(origin, destination)6 0.13474 0.07934 1.698 0.08945 .
Diag(origin, destination)7 0.45764 0.15103 3.030 0.00245 **
Diag(origin, destination)8 0.38847 0.22172 1.752 0.07976 .
MultHomog(origin, destination)l -1.56865 NA NA NA
MultHomog(origin, destination)2 -1.35035 NA NA NA
MultHomog(origin, destination)3 -0.75219 NA NA NA
MultHomog(origin, destination)4 -0.16831 NA NA NA
MultHomog(origin, destination)5 -0.15114 NA NA NA
MultHomog(origin, destination)6 0.36062 NA NA NA
MultHomog(origin, destination)7 0.77676 NA NA NA
MultHomog(origin, destination)8 1.02033 NA NA NA
Signif. codes: 0 '***' §.001 '**' .01 '*' 0.605 '.' 0.1 ' ' 1

(Dispersion parameter for poisson family taken to be 1)
Std. Error is NA where coefficient has been constrained or is unidentified

Residual deviance: 32.561 on 34 degrees of freedom
AIC: 414.9

Number of iterations: 7

Additional constraints may be specified through oastrain andconstrainTo arguments ognm. These argu-
ments specify respectively parameters that are to be constrained in the fitting process and the values to which they should
be constrained. Parameters may be specified by a regular expression to match against the parameter names, a humeric
vector of indices, a character vector of names, atpiistrain = "[?]" they can be selected througfTkdialog. The
values to constrain to should be specified by a numeric vectetiri§trainTo is missing, constrained parameters will
be set to zero.

In the case above, constraining one level of the homogeneous multiplicative factfficiestito make the parameters
of the nonlinear term identifiable, and hence all parameters in the model identifiable. For example, setting the last level of
the homogeneous multiplicative factor to zero,

> multCoef <- coef(RChomogl) [pickCoef(RChomogl,
> set.seed(1)

> RChomogConstrainedl <- update(RChomogl, constrain =
+ 23), multCoef - multCoef[8]))

> set.seed(2)

> RChomogConstrained2 <- update(RChomogConstrainedl)
> identical (coef(RChomogConstrainedl), coef(RChomogConstrained2))

[1] TRUE

"Mult")]

31, start = c(rep(NA,

gives the same results regardless of the random seed set beforehand.

It is not usually so straightforward to constrain all the parameters in a generalized nonlinear model. However use of
constrain in conjunction withconstrainTo is usually sificient to make coicients of interest identifiable . The func-
tionscheckEstimable or getContrasts, described in Sectiqr 5, may be used to check whether particular combinations
of parameters are estimable.

4.4 Usingeliminate

When a model contains the additiviert of a factor which has a large number of levels, the iterative algorithm by which
maximum likelihood estimates are computed can usually be accelerated by use bfthi@ate argument tgynm.
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The factor to beeliminate-d should be specified by an expression, which is then interpreted as the first term in the
model formula, replacing any intercept term. So, for example, in terms of the structure of the model,

gnm(mu ~ A + B + Mult(A, B), eliminate = stratal:strata2)
is equivalent to
gnm(mu ~ -1 + stratal:strata2 + A + B + Mult(A, B))

However, specifying a factor througtl iminate has two advantages over the standard specification. First, the structure of
the eliminated factor is exploited so that computational speed is improved — substantially so if the number of eliminated
parameters is large. Second, unless otherwise specified througifIheerest argument tognm, the ofInterest
component of the returned model object indexes the non-eliminated parameters. Thus eliminated parameters are excluded
from printed model summaries and default selectiogiiymethods. See Sectipn b.2 for further details on the use of the
ofInterest component.

Theeliminate feature is useful, for example, when multinomial-response models are fitted by using the well known
equivalence between multinomial and (conditional) Poisson likelihoods. In such situationfittiersistatistic involves a
potentially large number of fixed multinomial row totals, and the corresponding parameters are of no substantive interest.
For an application see Sectipn[7.6 below. Here we give an artificial illustration: 1000 randomly-generated trinomial
responses, and a single predictor variable (whé@®eton the data generation is null):

set.seed(1)

n <- 1000

X <- rep(rnorm(n), rep(3, n))

counts <- as.vector(rmultinom(n, 10, c(0.7, 0.1, 0.2)))
rowID <- gl(n, 3, 3 * n)

resp <- gl(3, 1, 3 * n)

V V.V VVyVv

The logistic model for dependence @rtan be fitted as a Poisson log-linear mEbat:ing eitheiglm or gnm:

> ## Timings on a Pentium M 1.6GHz, under Linux
> system.time(temp.glm <- glm(counts ~ rowID + resp + resp:x,
family = poisson))[1]

[1] 121.007

> system.time(temp.gnm <- gnm(counts ~ resp + resp:x, eliminate = rowlD,
family = poisson, verbose = FALSE))[1]

14

[1] 19.985
> c(deviance(temp.glm), deviance(temp.gnm))

[1] 2462.556 2462.556

Here the use oéliminate causes thgnm calculations to run more quickly thagim. The speed advantﬁ'ﬂncreases
with the number of eliminated parameters (here 1000). Since the default behaviour has not been over-ridden by an
ofInterest argument, the eliminated parameters do not appear in printed model summaries:

> summary (temp.gnm)
Call:

gnm(formula = counts ~ resp + resp:x, eliminate = rowID, family = poisson,
verbose = FALSE)

Deviance Residuals:
Min 1Q Median 3Q Max

2For this particular example, of course, it would be more economical to fit the model directlymsingnom (from the recommended package
nnet). But fitting as here via the ‘Poisson trick’ allows the model to be elaborated withigntihdramework usingfult or othernonlinterms.

3In facteliminate is, in principle, capable of much bigger time savings than this: its implementation in the current vergion isfreally just a
proof of concept, and it has not yet been optimized for speed
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-2.852038 -0.786172 -0.004534 0.645278 2.755013

Coefficients of interest:

Estimate Std. Error z value Pr(>|z]|)
resp2 -1.9614483 0.0340074 -57.68 <2e-16
resp3  -1.2558460 0.0253589 -49.52 <2e-16

respl:x 0.0001049 NA NA NA
resp2:x -0.0155083 NA NA NA
resp3:x 0.0078314 NA NA NA

(Dispersion parameter for poisson family taken to be 1)
Std. Error is NA where coefficient has been constrained or is unidentified

Residual deviance: 2462.6 on 1996 degrees of freedom
AIC: 12028

Number of iterations: 3

As usual,gnm has worked here with an over-parameterized representation of the model. The parameterization used by
glm can be seen from

> coef(temp.glm)[-(1:1000)]

resp2 resp3 respl:x resp2:x resp3:x
-1.96145 -1.25585 -0.00773 -0.02334 NA

(we will not print the full summary otemp. glm here, since it gives details of all 1005 parameters!), which easily can be
obtained, if required, by usingetContrasts:

> getContrasts(temp.gnm, ofInterest(temp.gnm)[5:3])

estimate SE quasiSE quasiVar
resp3:x 0.00000 0.00000 0.02163 0.000468
resp2:x -0.02334 0.03761 0.03077 0.000947
respl:x -0.00773 0.02452 0.01154 0.000133

Theeliminate feature as implemented gnm extends the earlier work bf Hatzinger and Francis (2004) to a broader
class of models and to over-parameterized model representations.

5 Methods and accessor functions
5.1 Methods

The gnm function returns an object of clagg "gnm", "glm", "1m"). There are several methods that have been written
for objects of clasglm or Im to facilitate inspection of fitted models. Out of the generic functions irbtise, stats and
graphics packages for which methods have been writterglar or Im objects, Figur¢]1l shows those that can be used to
analysegnmobjects, whilst Figurg]2 shows those that are not implementeghimobjects.

In addition to the accessor functions shown in Fidure 1,give package provides a new generic function called
termPredictors that has methods for objects of clagsm glm andim. This function returns the additive contribution
of each term to the predictor. See Secfior) 2.5 for an example of its use.

Most of the functions listed in Figuig 1 can be used as they would bglfioor Im objects, however care must be
taken withvcov. gnm, as the variance-covariance matrix will depend on the parameterization of the model. In particular,
standard errors calculated using the variance-covariance matrix will only be valid for parameters or contrasts that are
estimable!

Similarly, profile.gnm and confint.gnm are only applicable to estimable parameters. The deviance function of
a generalized nonlinear model can sometimes be far from quadratipradfdle. gnm attempts to detect assymetry or
asymptotic behaviour in order to return gitient profile for a given parameter. As an example, consider the following
model, described later in Sectipn]7.3:
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anova formula profile
case.names hatvalues residuals
coef labels rstandard
cooks.distance logLik summary
confint model.frame variable.names
deviance model.matrix vcov
extractAIC plot weights

family print

Figure 1: Generic functions in thmse, stats andgraphics packages that can be used to anatyseobjects.

add1l éfects
alias influence
dfbeta kappa
dfbetas predict
dropl proj
dummy.coef

Figure 2: Generic functions in these, stats andgraphics packages for which methods have been writtergforor Im
objects, but which araotimplemented fognmobjects.

data(yaish)

unidiff <- gnm(Freq ~ educ*orig + educ*dest + Mult(Exp(educ), orig:dest),
constrain = "[.]Jeducl", family = poisson, data = yaish,
subset = (dest != 7))

prof <- profile(unidiff, which = 61:65, trace = TRUE)

If the deviance is quadratic in a given parameter, the profile trace will be linear. We can plot the profile traces as
follows:

From these plots we can see that the deviance is approximately quadaticticExp (. ), orig:dest).educ2, as-
symetricinfult (Exp(.), orig:dest).educ3andMult(Exp(.), orig:dest).educ4 and asymptotic ifult (Exp(.),
orig:dest).educ5. When the deviance is approximately quadratic in a given paranpetefile.gnm uses the same
stepsize for profiling above and below the original estimate:

> diff(prof[[2]]$par.vals[, "Mult(Exp(.), orig:dest).educ2"])

[1] 0.1053072 0.1053072 0.1053072 0.1053072 0.1053072 0.1053072 0.1053072
[8] 0.1053072 0.1053072 0.1053072

When the deviance is assymmetiizofile.gnm uses diferent stepsizes to accommodate the skew:
> diff(prof[[4]]$par.vals[, "Mult(Exp(.), orig:dest).educ4"])

[1] 0.2018393 0.2018393 0.2018393 0.2018393 0.2018393 0.2018393 0.2018393
[8] 0.2018393 0.2018393 0.2243673 0.2243673 0.2243673 0.2243673 0.2243673

Finally, the presence of an asymptote is recorded in'tsymptote" attribute of the returned profile:

> attr(prof[[5]], "asymptote")

[1] TRUE FALSE

This information is used byonfint. gnm to return infinite limits for confidence intervals, as appropriate:

confint (prof)
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Profile traces for the multipliers of the orig:dest association
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Figure 3: Profile traces for the multipliers of the orig:dest association

5.2 ofInterest and pickCoef

It is quite common for a statistical model to have a large number of parameters, but for only a subset of these parameters
be of interest when it comes to interpreting the model. An example of this has been seen in[Selction 4.4, where a factor
is required in the model in order to represent a structural aspect of the data, but the estimatediéttoha&e no
substantive interpretation. Even for models in which all parameters correspond to variables of potential interest, the
substantive focus may still be on a subset of parameters.

The ofInterest argument taggnm allows the user to specify a subset of the parameters which are of interest, so that
gnmmethods will focus on these parameters. In particular, printed model summaries will only show the parameters of
interest, whilst methods for which a subset of parameters may be selected will by default select the parameters of interest,
or where this may not be appropriate, providékedialog for selection from the parameters of interest. Parameters may
be specified to thefInterest argument by a regular expression to match against parameter names, by a numeric vector
of indices, by a character vector of names, opfifnterest = "[?]" they can be selected througfkdialog.

The information regarding the parameters of interest is held imfliaterest component ofjnmobjects, which is
a named vector of numeric indices,MIfLL if all parameters are of interest. This component may be accessed or replaced
usingofInterest or ofInterest<- respectively.

ThepickCoef function provides a simple way to obtain the indices offioients from any model object. It takes the
model object as its first argument and has an optieagexp argument. If a regular expression is passetldgexp, the
codficients are selected by matching this regular expression against tficieoénames. Otherwise, déeients may be
selected via dk dialog.

So, returning to the example from the last section, if we had$ghterest to index the education multipliers as
follows

ofInterest(unidiff) <- pickCoef(unidiff, "[.]Jeduc")

then it would not have been necessary to specifwiiiech argument ofprofile as these parameters would have been
selected by default.
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5.3 checkEstimable

The checkEstimable function can be used to check the estimability of a linear combination of parameters. For non-
linear combinations the same function can be used to check estimability based on the (local) vector of partial derivatives.
The checkEstimable function provides a numerical version of the sort of algebraic test descriied in Catchpple and
Morgan (1997).

Consider the following model, that is described later in Se¢tioh 7.3:

> data(cautres)
> doubleUnidiff <- gnm(Freq ~ election:vote + election:class:religion +

+ Mult(Exp(election), religion:vote) + Mult(Exp(election),
+ class:vote), family = poisson, data = cautres)
Initialising

Running start-up iterations..
Running main iterations...........
Done

The dfects of the first constituent multiplier in the first multiplicative interaction are identified when the estimate of one
of these €fects is constrained to zero, say for tHeeet of the first level. The parameters to be estimated are then the
differences between eacfiext and the #ect of the first level. These filerences can be represented by a contrast matrix
as follows:

coefs <- names(coef(doubleUnidiff))

contrCoefs <- coefs[grep(", religion:vote", coefs)]

nContr <- length(contrCoefs)

contrMatrix <- matrix(0®, length(coefs), nContr, dimnames = list(coefs,
contrCoefs))

contr <- contr.sum(contrCoefs)

contr <- rbind(contr[nContr, ], contr[-nContr, ])

contrMatrix[contrCoefs, 2:nContr] <- contr

contrMatrix[contrCoefs, 2:nContr]

VVVV+VVVy

Mult(Exp(.), religion:vote).election2

Mult(Exp(.), religion:vote).electionl -1
Mult(Exp(.), religion:vote).election2 1
Mult(Exp(.), religion:vote).election3 0
Mult(Exp(.), religion:vote).election4 0

Mult(Exp(.), religion:vote).election3
Mult(Exp(.), religion:vote).electionl -1
Mult(Exp(.), religion:vote).election2 0
Mult(Exp(.), religion:vote).election3 1
Mult(Exp(.), religion:vote).election4 0

Mult(Exp(.), religion:vote).election4
Mult(Exp(.), religion:vote).electionl -1
Mult(Exp(.), religion:vote).election2 0
Mult(Exp(.), religion:vote).election3 0
Mult(Exp(.), religion:vote).election4 1

Then their estimability can be checked usitigeckEstimable

> checkEstimable(doubleUnidiff, contrMatrix)

Mult(Exp(.), religion:vote).electionl Mult(Exp(.), religion:vote).election2

NA TRUE
Mult(Exp(.), religion:vote).election3 Mult(Exp(.), religion:vote).election4
TRUE TRUE

which confirms that thefects for the other three levels are estimable when the parameter for the first level is set to zero.
However, applying the equivalent constraint to the second constituent multiplier in the interaction iffin@rguo
make the parameters in that multiplier estimable:
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> coefs <- names(coef(doubleUnidiff))

> contrCoefs <- coefs[grep("[.]religion", coefs)]

> nContr <- length(contrCoefs)

> contrMatrix <- matrix(®, length(coefs), length(contrCoefs), dimnames = list(coefs,
+ contrCoefs))

> contr <- contr.sum(contrCoefs)

> contrMatrix[contrCoefs, 2:nContr] <- rbind(contr[nContr, ], contr[-nContr,

+ D

> checkEstimable(doubleUnidiff, contrMatrix)

Mult(Exp(election), .).religionl:votel Mult(Exp(election), .).religion2:votel

NA FALSE

Mult(Exp(election), .).religion3:votel Mult(Exp(election), .).religion4:votel
FALSE FALSE

Mult(Exp(election), .).religionl:vote2 Mult(Exp(election), .).religion2:vote2
FALSE FALSE

Mult(Exp(election), .).religion3:vote2 Mult(Exp(election), .).religion4:vote2
FALSE FALSE

5.4 getContrasts, se

To investigate simple “sum to zero” contrasts such as those above, it is easiest to gisseCthet rasts function, which

checks the estimability of the contrasts and returns the parameter estimates with their standard errors. Returning to the
example of the first constituent multiplier in the first multiplicative interaction term, tfierdnces between each election

and the first can be obtained as follows:

> myContrasts <- getContrasts(doubleUnidiff, pickCoef(doubleUnidiff,

+ , religion:vote"))
> myContrasts

estimate SE quasiSE
Mult(Exp(.), religion:vote).electionl 0.0000000 0.0000000 0.09803075
Mult(Exp(.), religion:vote).election2 -0.0878181 0.1136832 0.05702819
Mult(Exp(.), religion:vote).election3 -0.2615200 0.1184134 0.06812239
Mult(Exp(.), religion:vote).electiond -0.3283459 0.1221302 0.07168290
quasiVar
Mult(Exp(.), religion:vote).electionl 0.009610029
Mult(Exp(.), religion:vote).election2 0.003252214
Mult(Exp(.), religion:vote).election3 0.004640660
Mult(Exp(.), religion:vote).electiond4 0.005138439

Visualization of estimated contrasts using ‘quasi standard eriors’|(Firth] 2003; Firth and de Menezes, 2004) is achieved
by plotting the resulting object:

> plot(myContrasts, main = "Relative strength of religion-vote association, log scale",
+ xlab = "Election", levelNames = 1:4)

For more general linear combinations of parameters than contrasts, the lowesdémacttion (which is called inter-
nally by getContrasts and by thesummary method) can be used directly. Saelp (se) for details.

5.5 residSvD

Sometimes it is useful to operate on the residuals of a model in order to create informative summaries of residual variation,
or to obtain good starting values for additional parameters in a more elaborate model. The relevant arithmetical operations
are weighted means of the so-calledrking residuals

TheresidSVD function facilitates one particular residual analysis that is often useful when considering multiplicative
interaction between factors as a model elaborationffiece residSVD provides a direct estimate of the parameters of
such an interaction, by performing an appropriately weighted singular value decomposition on the working residuals.

As an illustration, consider the biplot model described in Sedtioh 7.5 below. We can proceed by fitting a smaller
model, then useesidSVD to obtain starting values for the parameters in the bilinear term;
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Relative strength of religion-vote association, log scale
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Figure 4: Relative strength of religion-vote association, log scale

emptyModel <- gnm(y ~ -1, family = wedderburn, data = barley)
biplotStart <- residSVD(emptyModel, barley$site, barley$variety,
=2)
biplotModel <- gnm(y ~ -1 + instances(Mult(site, variety), 2),
family = wedderburn, data = barley, start = biplotStart)

+ VvV + VvV

In this instance, the use of purposive (as opposed to the default, random) starting values haitittléhe fairly large
number of iterations needed in this example is caused by a rather flat (quasi-)likelihood surface near the maximum, not by
poor starting values. In other situations, the usee{idSVD may speed the calculations dramatically (see for example
Sectior] 7.14), or it may be crucial to success in locating the MLE (for exampleedgg’House2001), where the number
of multiplicative parameters is in the hundreds).

The residSVD result in this instance provides a crude approximation to the MLE of the enlarged model, as can be

seen inb:

6 gnmor (g)nls?

The nls function in thestats package may be used to fit a nonlinear model via least-squares estimation. Statistically
speakinggnm is tonls asglm is to 1m, in that a nonlinear least-squares model is equivalent to a generalized nonlinear
model withfamily = gaussian. A nls model assumes that the responses are distributed either with constant variance
or with fixed relative variances (specified via theights argument). Thgnls function in thenlme package extends

nls to allow correlated responses. On the other hah allows for responses distributed with variances that are a
specified (via thefami 1y argument) function of the mean; as witlhs, no correlation is allowed.
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Comparison of residSVD and MLE for a 2-dimensional

biplot model
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Figure 5: Comparison of residSVD and the MLE for a 2-dimensional biplot model

The gnm function also dffers fromnls/gnls in terms of the interface. Models are specifiethic andgnls in terms
of a mathematical formula or selfStartfunction based on such a formula, which is convenient for models that have a
small number of parameters. For models that have a large number of parameters, or can not easily be represented by a
mathematical formula, the symbolic model specification useghiaymay be more convenient. This would usually be the
case for models involving factors, which would need to be represented by dummy variableksifoamula.

When working with artificial datagnm has the minor advantage that it does not fail when a model is an exact fit to
the data (se@elp(nls)). Therefore it is not necessary wiglhm to add noise to artificial data, which can be useful when
testing methods.

7 Examples

This section provides some examples of the wide range of models that may be fitted usinghthackage. Sections
[7.1[7.2 anfl 713 consider various models for contingency tables; Sgcfjon 7.4 considers AMMI and GAMMI models which
are typically used in agricultural applications, and Sedfioh 7.6 considers the stereotype model, which is used to model an
ordinal response.

7.1 Row-column association models

There are several models that have been proposed for modelling the relationship between the cell means of a contingency
table and the cross-classifying factors. The following examples consider the row-column association models proposed by
Goodman|(1979). The examples shown use data from two-way contingency tables,dou theckage can also be used

to fit the equivalent models for higher order tables.
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7.1.1 RC(1) model

The RC(1) model is a row and column association model with the interaction between row and column factors represented
by one component of the multiplicative interaction. If the rows are indexed dayd the columns by, then the log-
multiplicative form of the RC(1) model for the cell megms is given by

logurc = ar + Bc + yrdc.

We shall fit this model to theentalHealth data set taken from Agresti (2002) page 381, which is a two-way con-
tingency table classified by the child’s mental impairment (MHS) and the parents’ socioeconomic status (SES). Although
both of these factors are ordered, we do not wish to use polynomial contrasts in the model, so we begin by setting the
contrasts attribute of these factorsttoeatment:

> set.seed(1)

> data(mentalHealth)

> mentalHealth$MHS <- C(mentalHealth$MHS, treatment)
> mentalHealth$SES <- C(mentalHealth$SES, treatment)

Thegnmmodel is then specified as follows, using the poisson family with a log link function:

> RClmodel <- gnm(count ~ SES + MHS + Mult(SES, MHS), family = poisson,
+ data = mentalHealth)

Initialising

Running start-up iterations..
Running main iterations........
Done

> RClImodel

Call:
gnm(formula = count ~ SES + MHS + Mult(SES, MHS), family = poisson,
data = mentalHealth)

Coefficients:
(Intercept) SESB SESC
3.84143 -0.06741 0.10999
SESD SESE SESF
0.40502 0.02535 -0.20055
MHSmild MHSmoderate MHSimpaired
0.70380 0.19416 0.23331
Mult(., MHS).SESA Mult(., MHS).SESB Mult(., MHS).SESC
-0.41864 -0.42216 -0.13207
Mult(., MHS).SESD Mult(., MHS).SESE Mult(., MHS).SESF
0.02183 0.40198 0.71429
Mult(SES, .).MHSwell Mult(SES, .).MHSmild Mult(SES, .).MHSmoderate
-0.73671 -0.07475 0.04471
Mult(SES, .).MHSimpaired
0.59453
Deviance: 3.570562
Pearson chi-squared: 3.568088
Residual df: 8

The row scores (parameters 10 to 15) and the column scores (parameters 16 to 19) of the multiplicative interaction can be
normalized as in Agresti’s eqn (9.15):

rowProbs <- with(mentalHealth, tapply(count, SES, sum)/sum(count))
colProbs <- with(mentalHealth, tapply(count, MHS, sum)/sum(count))
rowScores <- coef(RClmodel)[10:15]

colScores <- coef(RClmodel)[16:19]

rowScores <- rowScores - sum(rowScores * rowProbs)

colScores <- colScores - sum(colScores * colProbs)

V V.V VVyVv
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> betal <- sqrt(sum(rowScoresA2 * rowProbs))

> beta2 <- sqrt(sum(colScores*2 * colProbs))

> assoc <- list(beta = betal * beta2, mu = rowScores/betal, nu = colScores/beta2)
> assoc

$beta
[1] 0.1664874

$mu
Mult(., MHS).SESA Mult(., MHS).SESB Mult(., MHS).SESC Mult(., MHS).SESD
-1.11233093 -1.12143720 -0.37107614 0.02702955
Mult(., MHS).SESE Mult(., MHS).SESF
1.01036159 1.81823273
$nu
Mult(SES, .).MHSwell Mult(SES, .).MHSmild Mult(SES, .).MHSmoderate
-1.6775143 -0.1403989 0.1369924
Mult(SES, .).MHSimpaired
1.4136910

7.1.2 RC(2) model

The RC(1) model can be extended to an Rfofodel withm components of the multiplicative interaction. For example,
the RC(2) model is given by
logure = ar + fBc + yrdc + Or .

Extra instances of the multiplicative interaction can be specified byutieiplicity argument ofMult, so the RC(2)
model can be fitted to theentalHealth data as follows

> RC2model <- gnm(count ~ SES + MHS + instances(Mult(SES, MHS),
+ 2), family = poisson, data = mentalHealth)

Initialising

Running start-up iterations..

Running main iterations..............
Done

> RC2model

Call:
gnm(formula = count ~ SES + MHS + instances(Mult(SES, MHS), 2),
family = poisson, data = mentalHealth)

Coefficients:
(Intercept) SESB
3.81539 -0.06452
SESC SESD
0.11327 0.38762
SESE SESF
0.01619 -0.17718
MHSmild MHSmoderate
0.72796 0.22209
MHSimpaired Mult(., MHS, inst = 1).SESA
0.27738 -0.19609
Mult(., MHS, inst = 1).SESB Mult(., MHS, inst = 1).SESC
-0.23247 -0.10207
Mult(., MHS, inst = 1).SESD Mult(., MHS, inst = 1).SESE
0.15618 0.23954
Mult(., MHS, inst = 1).SESF Mult(SES, ., inst = 1).MHSwell
0.03515 -1.00815
Mult(SES, ., inst = 1).MHSmild Mult(SES, ., inst = 1).MHSmoderate
-0.04298 -0.21716
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Mult(SES, ., inst = 1).MHSimpaired Mult(., MHS, inst = 2).SESA

1.11729 0.39218
Mult(., MHS, inst = 2).SESB Mult(., MHS, inst = 2).SESC
0.25985 0.01665
Mult(., MHS, inst = 2).SESD Mult(., MHS, inst = 2).SESE
0.68097 0.05502
Mult(., MHS, inst = 2).SESF Mult(SES, ., inst = 2).MHSwell
-1.75425 0.32550
Mult(SES, ., inst = 2).MHSmild Mult(SES, ., inst = 2).MHSmoderate
0.05297 -0.07626
Mult(SES, ., inst = 2).MHSimpaired
-0.17352
Deviance: 0.5225353
Pearson chi-squared: 0.523331

Residual df: 3

7.1.3 Homogeneousfkects

If the row and column factors have the same levels, or perhaps some levels in common, then the row-column interaction
could be modelled by a multiplicative interaction with homogenediets, that is

logure = ar + Bc + vrye.

For example, theccupationalStatus data set from Goodman (1979) is a contingency table classified by the occupa-
tional status of fathers (origin) and their sons (destination). Goodman|(1979) fits a row-column association model with
homogeneousfiects to these data after deleting the cells on the main diagonal. Equivalently we can account for the
diagonal &ects by a separafeiag term:

> data(occupationalStatus)
> RChomog <- gnm(Freq ~ origin + destination + Diag(origin, destination) +
+ MultHomog(origin, destination), family = poisson, data = occupationalStatus)

Initialising

Running start-up iterations..
Running main iterations.........
Done

> RChomog

Call:
gnm(formula = Freq ~ origin + destination + Diag(origin, destination) +
MultHomog(origin, destination), family = poisson, data = occupationalStatus)

Coefficients:
(Intercept) origin2
-1.55466 0.62373
origin3 origin4
2.01762 2.61788
origin5 originé6
1.40681 3.71525
origin7 origin8
2.58917 2.44470
destination2 destination3
1.04274 2.36204
destination4 destination5
2.90631 2.30623
destination6 destination?
4.01873 3.34077
destination8 Diag(origin, destination)l
3.02008 1.52667
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Diag(origin, destination)2 Diag(origin, destination)3
0.45600 -0.01598
Diag(origin, destination)4 Diag(origin, destination)5
0.38918 0.73852
Diag(origin, destination)6 Diag(origin, destination)7
0.13474 0.45764
Diag(origin, destination)8 MultHomog(origin, destination)l
0.38847 -1.98495
MultHomog(origin, destination)2 MultHomog(origin, destination)3
-1.76665 -1.16849
MultHomog(origin, destination)4 MultHomog(origin, destination)5
-0.58461 -0.56744
MultHomog(origin, destination)6 MultHomog(origin, destination)7
-0.05568 0.36046
MultHomog(origin, destination)8
0.60403
Deviance: 32.56098
Pearson chi-squared: 31.20716
Residual df: 34

To determine whether it would be better to allow for heterogenefiasts on the association of the fathers’ occupa-
tional status and the sons’ occupational status, we can compare this model to the RC(1) model for these data:

> data(occupationalStatus)

> RCheterog <- gnm(Freq ~ origin + destination + Diag(origin, destination) +
+ Mult(origin, destination), family = poisson, data = occupationalStatus)
Initialising

Running start-up iterations..

Running main iterations.........
Done

> anova(RChomog, RCheterog)
Analysis of Deviance Table

Model 1: Freq ~ origin + destination + Diag(origin, destination) + MultHomog(origin,

destination)
Model 2: Freq ~ origin + destination + Diag(origin, destination) + Mult(origin,
destination)
Resid. Df Resid. Dev Df Deviance
1 34 32.561
2 28 29.149 6 3.412

In this case there is little gain in allowing heterogenedtisots.

7.2 Diagonal reference models

Diagonal reference models, proposed by Sabel (11981,/1985), are designed for contingency tables classified by factors
with the same levels. The cell means are modelled as a function of the diagiatds.e.e., the mean responses of the
‘diagonal’ cells in which the levels of the row and column factors are the same.

Dref example 1: Political consequences of social mobility

To illustrate the use of diagonal reference models we shall useothimg data froni Clitord and Heath (1993). The data

come from the 1987 British general election and are the percentage voting Labour in groups cross-classified by the class
of the head of householdi¢éstination) and the class of their fathevf£igin). In order to weight these percentages by

the group size, we first back-transform them to the counts of those voting Labour and those not voting Labour:
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> set.seed(1)

> data(voting)

> count <- with(voting, percentage/100 * total)
> yvar <- cbind(count, voting$total - count)

The grouped percentages may be modelled by a basic diagonal reference model, that is, a weighted sum of the diagonal
effects for the corresponding origin and destination classes. This model may be expressed as
e e
luod - e51 +e§270 + esl + e)‘zyd'

See Sectiop 3|3 for more detail on the parameterization.
The basic diagonal reference model may be fitted ugimgas follows

> classMobility <- gnm(yvar ~ Dref(origin, destination), family = binomial,
+ data = voting)

Initialising

Running main iterations........

Done

> classMobility

Call:
gnm(formula = yvar ~ Dref(origin, destination), family = binomial,
data = voting)

Coefficients:
(Intercept) Dref(origin, destination)deltal
-1.34325 -0.30736
Dref(origin, destination)delta2 Dref(., .).origin|destinationl
-0.05501 -0.83454
Dref(., .).origin|destination2 Dref(., .).origin|destination3
0.21066 -0.61159
Dref(., .).origin|destination4 Dref(., .).origin|destination5
0.76500 1.38370
Deviance: 21.22093
Pearson chi-squared: 18.95311
Residual df: 19

and the origin and destination weights can be evaluated as below
> prop.table(exp(coef(classMobility)[2:3]))

Dref(origin, destination)deltal Dref(origin, destination)delta2

0.4372469

0.5627531

These results are slightlyféierent from those reported by @brd and Heath (1993). The reason for this is unclear: we
are confident that the above results are correct for the data as giverfordCind Heath (1993), but have not been able
to confirm that the data as printed in the journal were exactly as usedffor@land Heath'’s analysis.

Clifford and Heath| (1993) suggest that movements in and out of the salariat (class 1) should be tfeated\di
from movements between the lower classes (classes 2 - 5), since the former has affieeater social status. Thus they

propose the following model

Mod =

e51 2 oo 1
giren T grend "0

& & .
Gre TGy Md=1

&s g .
e R L ifo#landd #1

To fit this model we define factors indicating movement in (upward) and out (downward) of the salariat

26



> upward <- with(voting, origin != 1 & destination == 1)
> downward <- with(voting, origin == 1 & destination != 1)

Then the diagonal reference model with separate weights for socially mobile groups can be estimated as follows

> socialMobility <- gnm(yvar ~ Dref(origin, destination, delta = ~1 +
+ downward + upward), family = binomial, data = voting)

Initialising
Running main iterations...........
Done

> socialMobility

Call:
gnm(formula = yvar ~ Dref(origin, destination, delta = ~1 + downward +
upward), family = binomial, data = voting)

Coefficients:
(Intercept)
-1.311351
Dref(origin, destination, delta = ~ . + downward + upward).deltal(Intercept)
-0.057766
Dref(origin, destination, delta = ~ 1 + . + upward).deltaldownwardTRUE
0.364682
Dref(origin, destination, delta = ~ 1 + downward + .).deltalupwardTRUE
-0.064687
Dref(origin, destination, delta = ~ . + downward + upward).delta2(Intercept)
0.329001
Dref(origin, destination, delta = ~ 1 + . + upward).delta2downwardTRUE
-0.446082
Dref(origin, destination, delta = ~ 1 + downward + .).delta2upwardTRUE
-0.004474
Dref(., ., delta = ~ 1 + downward + upward).origin|destinationl
-0.746244
Dref(., ., delta = ~ 1 + downward + upward).origin|destination2
0.198649
Dref(., ., delta = ~ 1 + downward + upward).origin|destination3
-0.683435
Dref(., ., delta = ~ 1 + downward + upward).origin|destination4
0.742201
Dref(., ., delta = ~ 1 + downward + upward).origin|destination5
1.368934
Deviance: 18.97407
Pearson chi-squared: 17.07493
Residual df: 17

The weights for those moving into the salariat, those moving out of the salariat and those in any other group, can be
evaluated as below

> prop.table(exp(coef(socialMobility)[c(4, 7)] + coef(socialMobility)[c(2,

+ 5)1))

Dref(origin, destination, delta = ~ 1 + downward + .).deltalupwardTRUE
0.3900791

Dref(origin, destination, delta = ~ 1 + downward + .).delta2upwardTRUE
0.6099209

> prop.table(exp(coef(socialMobility)[c(3, 6)] + coef(socialMobility)[c(2,
+ 5)1))
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Dref(origin, destination, delta = ~ 1 + . + upward).deltaldownwardTRUE
0.6044395
Dref(origin, destination, delta = ~ 1 + . + upward).delta2downwardTRUE
0.3955605

> prop.table(exp(coef(socialMobility)[c(2, 5)]1))

Dref(origin, destination, delta = ~ . + downward + upward).deltal(Intercept)
0.404496
~ . + downward + upward).delta2(Intercept)
0.595504

Dref(origin, destination, delta

Again, the results dier slightly from those reported by @ord and Heath (1993), but the essence of the results is the
same: the origin weight is much larger for the downwardly mobile groups than for the other groups. The weights for the
upwardly mobile groups are very similar to the base level weights, so the model may be simplified by only fitting separate
weights for the downwardly mobile groups:

> downwardMobility <- gnm(yvar ~ Dref(origin, destination, delta = ~1 +

+ downward), family = binomial, data = voting)
Initialising

Running main iterations........

Done

> downwardMobility

Call:
gnm(formula = yvar ~ Dref(origin, destination, delta = ~1 + downward),
family = binomial, data = voting)

Coefficients:
(Intercept)
-1.31834
Dref(origin, destination, delta = ~ . + downward).deltal(Intercept)
0.03311
Dref(origin, destination, delta = ~ 1 + .).deltaldownwardTRUE
0.65329
Dref(origin, destination, delta = ~ . + downward).delta2(Intercept)
0.44190
Dref(origin, destination, delta = ~ 1 + .).delta2downwardTRUE
-0.15745
Dref(., ., delta = ~ 1 + downward).origin|destinationl
-0.75152
Dref(., ., delta = ~ 1 + downward) .origin|destination2
0.21182
Dref(., ., delta = ~ 1 + downward).origin|destination3
-0.67331
Dref(., ., delta = ~ 1 + downward).origin|destination4
0.74527
Dref(., ., delta = ~ 1 + downward) .origin|destination5
1.37464
Deviance: 18.99389
Pearson chi-squared: 17.09981
Residual df: 18

> prop. table(exp(coef(downwardMobility)[c(3, 5)] + coef(downwardMobility)[c(2,

+ 1))

Dref(origin, destination, delta = ~ 1 + .).deltaldownwardTRUE
0.5991571

Dref(origin, destination, delta = ~ 1 + .).delta2downwardTRUE
0.4008429
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> prop. table(exp(coef(downwardMobility)[c(2, 4)]))

Dref(origin, destination, delta = ~ . + downward).deltal(Intercept)
0.3992031
Dref(origin, destination, delta = ~ . + downward).delta2(Intercept)
0.6007969

Dref example 2: conformity to parental rules

Another application of diagonal reference models is given by van der SliK et al.|(2002). The data from this paper are not
publicly availabIE], but we shall show how the models presented in the paper may be estimategnising

The data relate to the value parents place on their children conforming to their rules. There are two response variables:
the mother’s conformity score (MCFM) and the father's conformity score (FCFF). The data are cross-classified by two
factors describing the education level of the mother (MOPLM) and the father (FOPLF), and there are six further covariates
(AGEM, MRMM, FRMF, MWORK, MFCM and FFCF).

In their baseline model for the mother’s conformity score, van der Slik|et al. (2002) include five of the six covariates
(leaving out the father’s family conflict score, FCFF) and a diagonal reference term with constant weights based on the
two education factors. This model may be expressed as

1 e

Hrei = BaXai + BaXoi + BaXai + BaXai + BsXsi + e o

The baseline model can be fitted as follows:

> set.seed(1)

> A <- gnm(MCFM ~ -1 + AGEM + MRMM + FRMF + MWORK + MFCM +

+ Dref(MOPLM, FOPLF), family = gaussian, data = conformity,
+ verbose = FALSE)

>

Call:

gnm(formula = MCFM ~ -1 + AGEM + MRMM + FRMF + MWORK + MFCM +
Dref(MOPLM, FOPLF), family = gaussian, data = conformity,
verbose = FALSE)

Coefficients:
AGEM MRMM FRMF
0.06363 -0.32425 -0.25324
MWORK MFCM Dref(MOPLM, FOPLF)deltal
-0.06430 -0.06043 -0.33731
Dref(MOPLM, FOPLF)delta2 Dref(., .).MOPLM|FOPLF1 Dref(., .).MOPLM|FOPLF2
-0.02505 4.95121 4.86329
Dref(., .).MOPLM|FOPLF3 Dref(., .).MOPLM|FOPLF4 Dref(., .).MOPLM|FOPLF5
4.86458 4.72343 4.43516
Dref(., .).MOPLM|FOPLF6 Dref(., .).MOPLM|FOPLF7
4.18873 4.43378
Deviance: 425.3389
Pearson chi-squared: 425.3389
Residual df: 576

The codficients of the covariates are not aliased with the parameters of the diagonal reference term and thus the basic
identifiability constraints that have been imposed af&a@ant for these parameters to be identified. The diagafietis

do not need to be constrained as they represent contrasts witlifttiagonal cells. Therefore the only unidentified
parameters in this model are the weight parameters. This is confirmed in the summary of the model:

> summary (A)

4 We thank Frans van der Slik for his kindness in sending us the data.
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Call:

gnm(formula = MCFM ~ -1 + AGEM + MRMM + FRMF + MWORK + MFCM +
Dref(MOPLM, FOPLF), family = gaussian, data = conformity,
verbose = FALSE)

Deviance Residuals:
Min 1Q Median 3Q Max
-3.63688 -0.50383 0.01714 0.56753 2.25139

Coefficients:

Estimate Std. Error t value Pr(>|t])
AGEM 0.06363 0.07375 0.863 0.38859
MRMM -0.32425 0.07766 -4.175 3.44e-05 ***
FRMF -0.25324 0.07681 -3.297 0.00104 **
MWORK -0.06430 0.07431 -0.865 0.38727
MFCM -0.06043 0.07123 -0.848 0.39663
Dref(MOPLM, FOPLF)deltal -0.33731 NA NA NA
Dref(MOPLM, FOPLF)delta2 -0.02505 NA NA NA
Dref(., .).MOPLM|FOPLF1 4.95121 0.16639 29.757 < 2e-16 *
Dref(., .).MOPLM|FOPLF2 4.86329 0.10436 46.602 < 2e-16 °
Dref(., .).MOPLM|FOPLF3 4.86458 0.12855 37.842 < 2e-16"°
Dref(., .).MOPLM|FOPLF4 4.72343 0.13523 34.929 < 2e-16"°
Dref(., .).MOPLM|FOPLF5 4.43516 0.19314 22.963 < 2e-16 ***
Dref(., .).MOPLM|FOPLF6 4.18873 0.17142 24.435 < 2e-16 *%*
Dref(., .).MOPLM|FOPLF7 4.43378 0.16903 26.231 < 2e-16 ***
Signif. codes: 0 '***' §.001 '**' .01 '*' 0.605 '.' 0.1 ' ' 1

(Dispersion parameter for gaussian family taken to be 0.7384355)
Std. Error is NA where coefficient has been constrained or is unidentified

Residual deviance: 425.34 on 576 degrees of freedom
AIC: 1507.8

Number of iterations: 15

The over-parameterization of the weights is immaterial, since the weights have been constrained to sum to one as described
earlier, so the weights themselves are estimable. The weights may be evaluated as follows:

> prop.table(exp(coef(A)[6:7]))

Dref(MOPLM, FOPLF)deltal Dref(MOPLM, FOPLF)delta2
0.4225638 0.5774362

giving the values reported by van der Slik el al. (2002). All the otheffmients of model A are the same as those
reported by van der Slik et al. (2002) except thefiorents of the mother’s gender role (MRMM) and the father’s gender
role (FRMF)./van der Slik et all (2002) reversed the signs of thdfictants of these factors since they were coded in
the direction of liberal values, unlike the other covariates. However, simply reversing the signs of thsentsedoes
not give the same model, since the estimates of the diagdieat® depend on the estimates of thesedfments. For
consistent interpretation of the covariate fméents, it is better to recode the gender role factors as follows:

> MRMM2 <- as.numeric(!conformity$MRMM)

> FRMF2 <- as.numeric(!conformity$FRMF)

> A <- gnm(MCFM ~ -1 + AGEM + MRMM2 + FRMF2 + MWORK + MFCM +

+ Dref(MOPLM, FOPLF), family = gaussian, data = conformity,
+ verbose = FALSE)

> A

Call:

gnm(formula = MCFM ~ -1 + AGEM + MRMM2 + FRMF2 + MWORK + MFCM +
Dref(MOPLM, FOPLF), family = gaussian, data = conformity,
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verbose = FALSE)

Coefficients:
AGEM MRMM2 FRMF2
0.06363 0.32425 0.25324
MWORK MFCM Dref(MOPLM, FOPLF)deltal
-0.06430 -0.06043 0.08440
Dref(MOPLM, FOPLF)delta2 Dref(., .).MOPLM|FOPLF1 Dref(., .).MOPLM|FOPLF2
0.39666 4.37371 4.28579
Dref(., .).MOPLM|FOPLF3 Dref(., .).MOPLM|FOPLF4 Dref(., .).MOPLM|FOPLF5
4.28708 4.14593 3.85767
Dref(., .).MOPLM|FOPLF6 Dref(., .).MOPLM|FOPLF7
3.61123 3.85629
Deviance: 425.3389
Pearson chi-squared: 425.3389

Residual df: 576

The codficients of the covariates are now as reported by van der Slik|et al.|(2002), but the diagjectsl leave been
adjusted appropriately.

van der Slik et al.[(2002) compare the baseline model for the mother’s conformity score to several other models in
which the weights in the diagonal reference term are dependent on one of the covariates. One particular model they
consider incorporates an interaction of the weights with the mother’s conflict score as follows:

(= JERESERC gbozt12Xsi
Hrci = B1Xai + B2Xai + BaXa + BaXai + BsXsi + gforténXsi 4 @fo2t+éieXsi et eortéuXsi 4 @loz+éieXsi Ye-

This model can be fitted as below, using the original coding for the gender role factors for ease of comparison to the
results reported by van der Slik et al. (2002),

> F <- gnm(MCFM ~ -1 + AGEM + MRMM + FRMF + MWORK + MFCM +

+ Dref(MOPLM, FOPLF, delta = ~ 1 + MFCM), family = gaussian,
+ data = conformity, verbose FALSE)

> F

Call:

gnm(formula = MCFM ~ -1 + AGEM + MRMM + FRMF + MWORK + MFCM +
Dref(MOPLM, FOPLF, delta ~1 + MFCM), family = gaussian,
data = conformity, verbose FALSE)

Coefficients:
AGEM
.05818
MRMM
.32701
FRMF
.25772
MWORK
.07847
MFCM
.01694
. + MFCM) .deltal(Intercept)
1.83515
~ 1+ .).deltalMFCM
-1.77756
. + MFCM) .delta2(Intercept)
-0.03515
~ 1+ .).delta2MFCM
2.77756
~ 1 + MFCM) .MOPLM|FOPLF1
4.82476
~ 1 + MFCM) .MOPLM|FOPLF2

Dref(MOPLM, FOPLF, delta

Dref(MOPLM, FOPLF, delta

Dref(MOPLM, FOPLF, delta

Dref(MOPLM, FOPLF, delta
Dref(., ., delta

Dref(., ., delta
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4.88066

Dref(., ., delta = ~ 1 + MFCM).MOPLM|FOPLF3
4.83969
Dref(., ., delta = ~ 1 + MFCM).MOPLM|FOPLF4
4.74850
Dref(., ., delta = ~ 1 + MFCM).MOPLM|FOPLF5
4.42020
Dref(., ., delta = ~ 1 + MFCM).MOPLM|FOPLF6
4.17957
Dref(., ., delta = ~ 1 + MFCM) .MOPLM|FOPLF7
4.40819
Deviance: 420.9022
Pearson chi-squared: 420.9022
Residual df: 575

In this case there are two sets of weights, one for when the mother’s conflict score is less than average (coded as zero) and
one for when the score is greater than average (coded as one). These can be evaluated as follows:

> prop.table(exp(coef(F))[c(6,8)])

Dref(MOPLM, FOPLF, delta = ~ . + MFCM).deltal(Intercept)
0.7446523
Dref(MOPLM, FOPLF, delta = ~ . + MFCM).delta2(Intercept)
0.2553477

> prop.table(exp(coef(F)[c(7,9)] + coef(F)[c(6,8)]))

Dref(MOPLM, FOPLF, delta = ~ 1 + .).deltalMFCM
0.02974698
Dref(MOPLM, FOPLF, delta = ~ 1 + .).delta2MFCM

0.97025302

giving the same weights as in Table 4 of van der Slik éf al. (2002).

7.3 Uniform difference (UNIDIFF) models

Uniform difference models (Xié, 1992; Erikson and Goldthorpe, 1992) use a simplified three-way interaction to provide
an interpretable model of contingency tables classified by three or more variables. For example, the ufidoencdi
model for a three-way contingency table, also known as the UNIDIFF model, is given by

Hijk = ik + Bk + eXpok)vij-

Thev;; represent a pattern of association that varies in strength over the dimension inddxeohtyexpdi) represents
the relative strength of that association at lekel

This model can be applied to tlyaish data set (Yaish, 1998, 2004), which is a contingency table cross-classified by
father’s social classofrig), son’s social classdest) and son’s education levedquc). In this case, we can consider the
importance of the association between the social class of father and son across the education levels. We omit the sub-table
which corresponds to level 7 dist, because its information content is negligible:

> set.seed(1)

> data(yaish)

> unidiff <- gnm(Freq ~ educ * orig + educ * dest + Mult(Exp(educ),

+ orig:dest), ofInterest = "[.]Jeduc", family = poisson, data = yaish,
+ subset = (dest != 7))

Initialising

Running start-up iterations..
Running main 1terationS. .. ...t it ne e et ennenaane s anennneaness
Done

> coef(unidiff)
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Coefficients of interest:
Mult(Exp(.), orig:dest).educl Mult(Exp(.), orig:dest).educ2

-0.2364828 -0.4618546
Mult(Exp(.), orig:dest).educ3 Mult(Exp(.), orig:dest).educ4

-0.9799063 -1.2754212
Mult(Exp(.), orig:dest).educ5

-2.4859851

The ofInterest component has been set to index the multipliers of the association between the social class of father
and son. We can contrast each multiplier to that of the lowest education level and obtain the standard errors for these
parameters as follows:

> getContrasts(unidiff, ofInterest(unidiff))

estimate SE quasiSE  quasiVar
Mult(Exp(.), orig:dest).educl 0.0000000 0.0000000 0.09757438 0.00952076
Mult(Exp(.), orig:dest).educ2 -0.2253718 0.1611874 0.12885847 0.01660450
Mult(Exp(.), orig:dest).educ3 -0.7434235 0.2335083 0.21182122 0.04486823
Mult(Exp(.), orig:dest).educ4 -1.0389385 0.3434256 0.32609377 0.10633714
Mult(Exp(.), orig:dest).educ5 -2.2495024 0.9453762 0.93560622 0.87535900

Four-way contingency tables may sometimes be described by a “double UNIDIFF” model

Hiji = ail + Bjid + expe1)yij + exp@)bi,

where the strengths of two, two-way associations with a common variable are estimated across the levels of the fourth
variable. Thecautres data set, from Cautres et|al. (1998), can be used to illustrate the application of the double UNIDIFF
model. This data set is classified by the variables vote, class, religion and election. Using a double UNIDIFF model, we
can see how the association between class and vote, and the association between religion arfitvoetwedien the

most recent election and the other elections:

> set.seed(1)

> data(cautres)

> doubleUnidiff <- gnm(Freq ~ election * vote + election * class *

+ religion + Mult(Exp(election), religion:vote) + Mult(Exp(election),
+ class:vote), family = poisson, data = cautres)

Initialising

Running start-up iterations..
Running main iterations...........
Done

> getContrasts(doubleUnidiff, rev(pickCoef(doubleUnidiff, ", religion:vote")))

estimate SE quasiSE
Mult(Exp(.), religion:vote).electiond 0.00000000 0.00000000 0.07168290
Mult(Exp(.), religion:vote).election3 0.06682585 0.09906916 0.06812239
Mult(Exp(.), religion:vote).election2 0.24052778 0.09116479 0.05702819
Mult(Exp(.), religion:vote).electionl 0.32834589 0.12213023 0.09803075

quasiVar
Mult(Exp(.), religion:vote).electiond4 0.005138439
Mult(Exp(.), religion:vote).election3 0.004640660
Mult(Exp(.), religion:vote).election2 0.003252214
Mult(Exp(.), religion:vote).electionl 0.009610029

> getContrasts(doubleUnidiff, rev(pickCoef(doubleUnidiff, "[.]religion")))

Mult(Exp(election), .).religion4:vote2 Mult(Exp(election), .).religion3:vote2

NA FALSE
Mult(Exp(election), .).religion2:vote2 Mult(Exp(election), .).religionl:vote2
FALSE FALSE

Mult(Exp(election), .).religion4:votel Mult(Exp(election), .).religion3:votel
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FALSE FALSE
Mult(Exp(election), .).religion2:votel Mult(Exp(election), .).religionl:votel
FALSE FALSE
Note: not all of the specified contrasts in this set are estimable
Estimate Std. Error
Mult(Exp(election), .).religion4:vote2 0 0

7.4 Generalized additive main €fects and multiplicative interaction (GAMMI) models

Generalized additive mairffects and multiplicative interaction models, or GAMMI models, were motivated by two-way
contingency tables and comprise the row and column mgétts plus one or more components of the multiplicative
interaction. The singular value corresponding to each multiplicative component is often factored out, as a measure of the
strength of association between the row and column scores, indicating the importance of the component, or axis.

For cell meang,. a GAMMI-K model has the form

K
Olure) = ar + Bc + Z OKYkrOke
k=1

in which g is a link function,e, andg; are the row and column mairffects,yyx, andéy. are the row and column scores
for multiplicative componenk andor is the singular value for componekt The number of multiplicative components,
K, is less than or equal to the rank of the matrix of residuals from the nfizots.

The row-column association models discussed in Sefiign 7.1 are examples of GAMMI models, with a log link and
poisson variance. Here we illustrate the use of an AMMI model, which is a GAMMI model with an identity link and a
constant variance.

We shall use th&heat data set taken froin Vargas et al. (2001), which gives wheat yields measured over ten years.
First we scale these yields and create a new treatment factor, so that we can reproduce the gnalysis of \jdrgas|et al. (2001):

set.seed(1)

data(wheat)

yield.scaled <- wheat$yield * sqrt(3/1000)

treatment <- interaction(wheat$tillage, wheat$summerCrop, wheat$manure,
wheat$N, sep = "")

+ V Vv Vv Vv

Now we can fit the AMMI-1 model, to the scaled yields using the combined treatment factor and the year factor from
thewheat dataset. We will proceed by first fitting the maifieets model, then usingesidSVD (see Sectioh 5]5) for the
parameters of the multiplicative term:

> mainEffects <- gnm(yield.scaled ~ year + treatment, family = gaussian,
+ data = wheat)

Linear predictor - using glm.fit

> svdStart <- residSVD(mainEffects, year, treatment, 3)
> bilinearl <- update(mainEffects, . ~ . + Mult(year, treatment),
+ start = c(coef(mainEffects), svdStart[, 1]))

Running main iterations
Done

We can compare the AMMI-1 model to the maiffiexts model,
> anova(mainEffects, bilinearl)

Analysis of Deviance Table

Model 1: yield.scaled ~ year + treatment

Model 2: yield.scaled ~ year + treatment + Mult(year, treatment)
Resid. Df Resid. Dev Df Deviance

1 207 279515

2 176 128383 31 151133

giving the same results as in Table 1 of Vargas éf al. (2001) (up to error caused by rounding).
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7.5 Biplot models

Biplots are used to display two-dimensional data transformed into a space spanned by linearly independent vectors, such
as the principal components or singular vectors. The plot represents the levels of the two classifying factors by their scores
on the two axes which show the most information about the data, for example the first two principal components.

A rank-n model is a model based on the filstomponents of the decomposition. In the case of a singular value
decomposition, this is equivalent to a model witbomponents of the multiplicative interaction.

To illustrate the use of biplot models, we shall use bheley data set which describes the incidence of leaf blotch
over ten varieties of barley grown at nine sites (Weddethurn,|1974; Cabriel, 1998). The biplot model is fitted as follows:

> data(barley)

> set.seed(1)

> biplotModel <- gnm(y ~ -1 + instances(Mult(site, variety), 2),
+ family = wedderburn, data = barley)

Initialising

Running start-up iterations..
RUNNing main 1terations. ... ..ce ittt ittt i et it eaa it e aan e

using thewedderburn family function introduced in Sectidr] 2. Matrices of the row and column scores for the first two
singular vectors can then be obtained by:

> barleySVD <- svd(matrix(biplotModelS$predictors, 10, 9))
> A <- sweep(barleySVD$v, 2, sqrt(barleySvD$d), "*")[, 1:2]
> B <- sweep(barleySVD$u, 2, sqrt(barleySvD$d), "*")[, 1:2]

> A
[,1] [,2]
[1,] 4.1948224 -0.39186730
[2,] 2.7642412 -0.33951379
[3,] 1.4250454 -0.04654265
[4,] 1.8463067 0.33365988
[5,] 1.2704088 0.15776724
[6,] 1.1562913 0.40048201
[7,] 1.0172048 0.72727987
[8,] ©.6451366 1.46162701
[9,] -0.1470898 2.13234201

> B
[,11] [,2]

[1,] -2.0673648 -0.97420446
[2,] -3.0599796 -0.50683007
[3,] -2.9598030 -0.33190625
[4,] -1.8086247 -0.49758478
[5,1 -1.5579477 -0.08444511
[6,] -1.8939995 1.08460552

[7,]1 -1.1790432 0.40687014
[8,] -0.8490092 1.14671349
[9,] -0.9704664 1.26558201
[10,] -0.6036789 1.39655882

These matrices are essentially the same as in Gabriel|(1998). From these the biplot can be produced forlsited
varieties 1..9, X:

> plot(rbind(A, B), pch = c(levels(barley$site), levels(barley$variety)),
+ xlim = c(-4, 4), ylim = c(-4, 4), main = "Biplot for barley data'")

The product of the matrices andB is undtected by rotation or reciprocal scaling along either axis, so we can rotate the
data so that the points for the sites are roughly parallel to the horizontal axis and the points for the varieties are roughly
parallel to the vertical axis. In addition, we can scale the data so that points for the sites are about the line one unit about
the horizontal axis, roughly
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Biplot for barley data
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Figure 6: Biplot for barley data

a <- pi/5
rotation <- matrix(c(cos(a), sin(a), -sin(a), cos(a)), 2, 2,
byrow = TRUE)
rA <- (2 * A/3) %*% rotation
rB <- (3 * B/2) %*% rotation
plot(rbind(rA, rB), pch = c(levels(barley$site), levels(barley$variety)),
xlim = c(-4, 4), ylim = c(-4, 4), main = "Biplot (rotated) for barley data")

+ VvV VYV + VYV

In the original biplot, the co-ordinates for the sites and varieties were given by the rows of A and B respectively, i.e

of = V(d)(ui, Uz)
B = Vd) (), V)

The rotated and scaled biplot suggests the simpler model
o =(1)
Bl =019
which implies the following model for the logits of the leaf blotch incidence:
@ Bj = %6} + Tj.
Gabrie] (1998) describes this as a double additive model, which we can fit as follows:

> variety.binary <- factor(match(barley$variety, c(2, 3, 6), nomatch = 0) >

+ 0, labels = c('"rest”, "2,3,6"))
> doubleAdditive <- gnm(y ~ variety + Mult(site, variety.binary),
+ family = wedderburn, data = barley)
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Biplot (rotated) for barley data
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Figure 7: Rotated biplot for barley data

Initialising

Running start-up iterations..

Running main iterations............oevvuevnnnn
Done

Comparing the chi-squared statistics, we see that the double additive model is an adequate model for the leaf blotch
incidence:

biplotModChiSq <- sum(residuals(biplotModel, type = "pearson')A2)

doubleAddChiSq <- sum(residuals(doubleAdditive, type = "pearson")+2)

c(doubleAddChiSq - biplotModChiSq, doubleAdditive$df.residual -
biplotModel$df.residual)

+ VvV Vv Vv

[1] 9.513774 15.000000

7.6 Stereotype model for multinomial response

The stereotype model was proposed by Anderson (1984) for ordered categorical data. It is a linear logistic model, in
which there is assumed to be a common relationship between the response and the covariates in the model, but the scale
of this association varies between categories and there is an additional categorffetaioreategory-specific intercept:

log ic = Boc + ve Zﬁr Xir -
r

This model can be estimated by re-expressing the categorical data as counts andgasimgadel with a log link and
poisson variance function. Thym package includes the utility functio/kpandCategorical to facilitate the required
data processing.

For example, théackPain data set from Anderson (1984) describes the progress of patients with back pain. The
data set consists of an ordered factor quantifying the progress of each patient, and three prognostic variables. These data
can be re-expressed as follows:
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> set.seed(1)
> data(backPain)
> backPain[1:2, ]

x1 x2 x3 pain
11 1 1 same
1 1 1 marked.improvement

> backPainlong <- expandCategorical (backPain,
> backPainlong[1:12, ]

x1 x2 x3 pain count id
1 1 1 1 worse 0 1
1.1 1 1 1 same 1 1
1.2 1 1 1 slight.improvement 0 1
1.3 1 1 1 moderate.improvement 0 1
1.4 1 1 1 marked.improvement 0 1
1.5 1 1 1 complete.relief 0 1
2 1 1 1 worse 0 2
2.1 1 1 1 same 0 2
2.2 1 1 1 slight.improvement 0 2
2.3 1 1 1 moderate.improvement 0 2
2.4 1 1 1 marked.improvement 1 2
2.5 1 1 1 complete.relief 0 2

We can now fit the stereotype model to these data:

> oneDimensional <- gnm(count ~ pain + Mult(pain, x1 + x2 + x3),
backPainLong)

+ eliminate = id, family = "poisson'", data
Initialising
Running start-up iterations..

Running main iterations..............
Done

> oneDimensional

Call:

gnm(formula = count ~ pain + Mult(pain, x1 + x2 + x3), eliminate

family = "poisson", data = backPainLong)

Coefficients of interest:

painsame

16.1578

painslight.improvement

15.6848

painmoderate.improvement

12.4556

painmarked.improvement

19.9140

paincomplete.relief

21.6653

Mult(., x1 + x2 + x3).painworse

0.3950

Mult(., x1 + x2 + x3).painsame

-3.0297

Mult(., x1 + x2 + x3).painslight.improvement
-2.8450

Mult(., x1 + x2 + x3).painmoderate.improvement
-2.0356

Mult(., x1 + x2 + x3).painmarked.improvement
-3.8622

Mult(., x1 + x2 + x3).paincomplete.relief

"pain")
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-4.5641
Mult(pain, . + x2 + x3).x1

1.0832
Mult(pain, x1 + . + x3).x2
0.6213
Mult(pain, x1 + x2 + .).x3
0.5470
Deviance: 303.1003
Pearson chi-squared: 433.3727
Residual df: 493

specifying theid factor througheliminate so that the 10%d effects are estimated moréieiently and are excluded
from printed model summaries by default. This model is one dimensional since it involves only one functioa of
(X1, X2, x3). We can compare this model to one with category-specififficeats of thex variables, as may be used for a
gualitative categorical response:

> threeDimensional <- gnm(count ~ pain + pain:(x1 + x2 + x3), eliminate = 1id,

+ family = "poisson", data = backPainLong)
Initialising

Running main iterations...........

Done

> threeDimensional

Call:
gnm(formula = count ~ pain + pain:(xl + x2 + x3), eliminate = id,
family = "poisson", data = backPainLong)

Coefficients of interest:

painsame painslight.improvement
36.3326 35.9518
painmoderate.improvement painmarked.improvement
32.8344 40.0350
paincomplete.relief painworse:x1
42.4830 10.2481
painsame:x1 painslight.improvement:x1
-3.4248 -3.0952
painmoderate.improvement:x1 painmarked.improvement:x1
-2.8318 -4.6550
paincomplete.relief:x1 painworse:x2
-5.1669 0.3331
painsame:x2 painslight.improvement:x2
-2.3409 -2.2183
painmoderate.improvement:x2 painmarked.improvement : x2
-1.3389 -2.5107
paincomplete.relief:x2 painworse:x3
-2.9419 -2.9783
painsame:x3 painslight.improvement:x3
-4.1338 -4.2704
painmoderate.improvement:x3 painmarked.improvement:x3
-3.7246 -4.6699
paincomplete.relief:x3
-5.9190
Deviance: 299.0152
Pearson chi-squared: 443.0043
Residual df: 485

This model has the maximum dimensionality of three (as determined by the number of covariates). To obtain the log-
likelihoods as reported in Andersan (1984) we need to adjust for the extra parameters introduced to formulate the models
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as Poisson models. We write a simple function to do this and compare the log-likelihoods of the one dimensional model
and the three dimensional model:

> logLikMultinom <- function(model) {

+ object <- get(model)

+ if (inherits(object, "gnm")) {

+ 1 <- logLik(object) + object$eliminate

+ c(nParameters = attr(l, "df") - object$eliminate, logLikelihood = 1)

+ }

+ else c(nParameters = object$edf, logLikelihood = -deviance(object)/2)

+}

> t(sapply(c("oneDimensional", "threeDimensional"), logLikMultinom))
nParameters logLikelihood

oneDimensional 12 -151.5501

threeDimensional 20 -149.5076

which show that theneDimensional model is adequate.

To obtain estimates of the category-specific multipliers in the stereotype model, we need to constrain both the location
and the scale of these parameters. The latter constraint can be imposed by fixing the slope of one of the covariates in the
second multiplier tal, which may be achieved by specifying the covariate asftseb

> summary (oneDimensional)

Call:
gnm(formula = count ~ pain + Mult(pain, x1 + x2 + x3), eliminate = id,
family = "poisson", data = backPainLong)

Deviance Residuals:
Min 1Q Median 3Q Max
-0.9708 -0.6506 -0.4438 -0.1448 2.1385

Coefficients of interest:
Estimate Std. Error z value

painsame 16.1578 NA NA

painslight.improvement 15.6848 6.5274  2.403

painmoderate.improvement 12.4556 NA NA

painmarked.improvement 19.9140 6.4976  3.065

paincomplete.relief 21.6653 NA NA

Mult(., x1 + x2 + x3).painworse 0.3950 NA NA

Mult(., x1 + x2 + x3).painsame -3.0297 NA NA

Mult(., x1 + x2 + x3).painslight.improvement -2.8450 NA NA

Mult(., x1 + x2 + x3).painmoderate.improvement -2.0356 NA NA

Mult(., x1 + x2 + x3).painmarked.improvement -3.8622 NA NA

Mult(., x1 + x2 + x3).paincomplete.relief -4.5641 NA NA

Mult(pain, . + x2 + x3).x1 1.0832 NA NA

Mult(pain, x1 + . + x3).x2 0.6213 NA NA

Mult(pain, x1 + x2 + .).x3 0.5470 NA NA
Pr(>lz|)

painsame NA

painslight.improvement 0.01626 *

painmoderate.improvement NA

painmarked.improvement 0.00218 **

paincomplete.relief NA

Mult(., x1 + x2 + x3).painworse NA

Mult(., x1 + x2 + x3).painsame NA

Mult(., x1 + x2 + x3).painslight.improvement NA

Mult(., x1 + x2 + x3).painmoderate.improvement NA

Mult(., x1 + x2 + x3).painmarked.improvement NA

Mult(., x1 + x2 + x3).paincomplete.relief NA

Mult(pain, . + x2 + x3).x1 NA

Mult(pain, x1 + . + x3).x2 NA
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Mult(pain, x1 + x2 + .).x3 NA

Signif. codes: 0 '***' §.001 '**' .01 '*' 0.605 '.' 0.1 ' ' 1

(Dispersion parameter for poisson family taken to be 1)

Std. Error is NA where coefficient has been constrained or is unidentified

Residual deviance: 303.1 on 493 degrees of freedom
AIC: 731.1

Number of iterations: 14

> oneDimensional <- gnm(count ~ pain + Mult(pain, offset(x1l) +

+ x2 + x3), eliminate = id, family = "poisson", data = backPainLong)

Initialising

Running start-up iterations..
Running main iterations.............
Done

> summary (oneDimensional)

Call:
gnm(formula = count ~ pain + Mult(pain, offset(xl) + x2 + x3),
eliminate = id, family = "poisson", data = backPainLong)

Deviance Residuals:
Min 1Q  Median 3Q Max
-0.9708 -0.6506 -0.4438 -0.1448 2.1385

Coefficients of interest:

Estimate Std. Error
painsame 16.1578 6.5741
painslight.improvement 15.6848 6.5274
painmoderate.improvement 12.4556 6.4312
painmarked.improvement 19.9140 6.4975
paincomplete.relief 21.6653 6.5571
Mult(., x2 + x3 + offset(xl)).painworse 1.3471 NA
Mult(., x2 + x3 + offset(xl)).painsame -2.3626 NA
Mult(., x2 + x3 + offset(x1l)).painslight.improvement -2.1626 NA
Mult(., x2 + x3 + offset(xl)).painmoderate.improvement -1.2858 NA
Mult(., x2 + x3 + offset(x1l)).painmarked.improvement -3.2645 NA
Mult(., x2 + x3 + offset(xl)).paincomplete.relief -4.0247 NA
Mult(pain, . + x3 + offset(x1)).x2 0.5736 0.2178
Mult(pain, x2 + . + offset(x1)).x3 0.5050 0.2431

z value Pr(>|z|)
painsame 2.458 0.013980 *
painslight.improvement 2.403 0.016265 *
painmoderate.improvement 1.937 0.052777 .
painmarked.improvement 3.065 0.002178 **
paincomplete.relief 3.304 0.000953 ***
Mult(., x2 + x3 + offset(x1l)).painworse NA NA
Mult(., x2 + x3 + offset(xl)).painsame NA NA
Mult(., x2 + x3 + offset(x1l)).painslight.improvement NA NA
Mult(., x2 + x3 + offset(xl)).painmoderate.improvement NA NA
Mult(., x2 + x3 + offset(x1l)).painmarked.improvement NA NA
Mult(., x2 + x3 + offset(xl)).paincomplete.relief NA NA
Mult(pain, . + x3 + offset(x1)).x2 2.633 0.008451 **
Mult(pain, x2 + . + offset(x1)).x3 2.077 0.037807 *
Signif. codes: 0 '***' §.001 '**' .01 '*' 0.605 '.' 0.1 ' ' 1
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(Dispersion parameter for poisson family taken to be 1)
Std. Error is NA where coefficient has been constrained or is unidentified

Residual deviance: 303.1 on 493 degrees of freedom
AIC: 731.1

Number of iterations: 13

The location of the category-specific multipliers can constrained by setting one of the parameters to zero, either through
the constrain argument ofgynm or with getContrasts:

> getContrasts(oneDimensional, pickCoef(oneDimensional, "Mult.*pain'"))

Mult(., x2 + x3 + offset(xl)).painworse

NA
Mult(., x2 + x3 + offset(xl)).painsame
TRUE
Mult(., x2 + x3 + offset(xl)).painslight.improvement
TRUE
Mult(., x2 + x3 + offset(xl)).painmoderate.improvement
TRUE
Mult(., x2 + x3 + offset(x1l)).painmarked.improvement
TRUE
Mult(., x2 + x3 + offset(xl)).paincomplete.relief
TRUE
Mult(pain, . + x3 + offset(x1)).x2
FALSE
Mult(pain, x2 + . + offset(x1)).x3
FALSE
Note: not all of the specified contrasts in this set are estimable
estimate SE
Mult(., x2 + x3 + offset(xl)).painworse 0.000000 0.000000
Mult(., x2 + x3 + offset(xl)).painsame -3.709726 1.825562
Mult(., x2 + x3 + offset(x1)).painslight.improvement -3.509687 1.791726
Mult(., x2 + x3 + offset(xl)).painmoderate.improvement -2.632933 1.669251
Mult(., x2 + x3 + offset(x1l)).painmarked.improvement -4.611586 1.895234
Mult(., x2 + x3 + offset(xl)).paincomplete.relief -5.371844 1.999652
quasiSE quasiVar
Mult(., x2 + x3 + offset(xl)).painworse 1.7797297 3.16743768
Mult(., x2 + x3 + offset(x1l)).painsame 0.4281332 0.18329802
Mult(., x2 + x3 + offset(x1l)).painslight.improvement 0.4024681 0.16198057
Mult(., x2 + x3 + offset(xl)).painmoderate.improvement 0.5518545 0.30454334
Mult(., x2 + x3 + offset(xl)).painmarked.improvement 0.3133219 0.09817061
Mult(., x2 + x3 + offset(xl)).paincomplete.relief 0.4919551 0.24201985

giving the required estimates.

7.7 Lee-Carter model for trends in age-specific mortality

In the study and projection of population mortality rates, the model proposed by Lee and [Carter (1992) forms the basis of
many if not most current analyses. Here we consider the quasi-Poisson version of the model (Wilmoth, 1993; Alho, 2000;
Brouhns et al/, 2002; Renshaw and Haberfan, 2003), in which the deathgdat individuals of agea in yeary has

meanu,y and varianceuay (Whereg is 1 for Poisson-distributed counts, and is respectively greater than or less than 1 in
cases of over-dispersion or under-dispersion). In the Lee-Carter model, the expected counts follow the log-bilinear form

|Og(llay/edy) = aa + Bayy,

wheree,y is the ‘exposure’ (number of lives at risk). This is a generalized nonlinear model with a single multiplicative
term.
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The use ofgnm to fit this model is straightforward. We will illustrate by using data from the Human Mortality
Databas@(HMD, athttp://www.mortality.org) on male deaths in Canada between 1921 and 2003. The data are
not made available as part ghm because of license restrictions; but they are readily available via the web simply by
registering with the HMD. We assume that the data for Canadian males (both deaths and exposure-to-risk) have been
downloaded from the HMD and organised into a data frame nafaealda in R, with columnsYear (a factor, with levels
192110 2003), Age (a factor, with level20 to 99), mDeaths andmExposure (both quantitative). The Lee-Carter model
may then be specified as

LCmodel.male <- gnm(mDeaths ~ Age + Mult(Exp(Age), Year),
offset = log(mExposure), family = "quasipoisson",
data = Canada)

Here we have acknowledged the fact that the model only really makes sense if algafthemeters, which represent

the ‘sensitivity’ of age groufa to a change in the level of general mortality (e.g., Brouhns gt al.,|2002), have the same
sign. Without loss of generality we assue> 0 for all a, and we impose this constraint by usifigp (Age) instead

of just Age in the multiplicative term. Convergence is to a fitted model with residual deviance 32422.68 on 6400 degrees
of freedom — representing clear evidence of substantial overdispersion relative to the Poisson distribution. In order to
explore the lack of fit a little further, we plot the distribution of Pearson residuals in Higure 8:

par(mfrow = c(2,2))
age <- as.numeric(as.character(Canada$Age))
with(Canada, {
res <- residuals(LCmodel.male, type = "pearson")
plot(Age, res, xlab="Age", ylab="Pearson residual",
main = "(a) Residuals by age')
plot(Year, res, xlab="Year", ylab="Pearson residual",
main = "(b) Residuals by year'")
plot(Year[(age>24) & (age<36)], res[(age>24) & (age<36)],
xlab = "Year", ylab = "Pearson residual",
main = "(c) Age group 25-35")
plot(Year[(age>49) & (age<66)], res[(age>49) & (age<66)],
xlab = "Year", ylab = "Pearson residual",
main = "(d) Age group 50-65")
P

Panel (a) of Figurg]8 indicates that the overdispersion is not evenly spread through the data, but is largely concentrated in
two age groups, roughly ages 25-35 and 50—-65. Panels (c) and (d) focus on the residuals in each of these two age groups:
there is a clear (and roughly cancelling) dependenc&ear, indicating that the assumed bilinear interaction between
Age andYear does not hold for the full range of ages and years considered here.

A somewhat more satisfactory Lee-Carter model fit is obtained if only a subset of the data is used, namely only those
males aged 45 or over:

LCmodel.maleOver45 <- gnm(mDeaths ~ Age + Mult(Exp(Age), Year),
offset = log(mExposure), family = "quasipoisson",
data = Canada[age>44,])

The residual deviance now is 12595.44 on 4375 degrees of freedom: still substantially overdispersed, but less severely

so than before. Again we plot the distributions of Pearson residuals (Fipure 9). Still clear departures from the assumed

bilinear structure are evident, especially for age group 81-89; but they are less pronounced than in the previous model fit.
The main purpose here is only to illustrate how straightforward it is to work with the Lee-Carter modelgusing

but we will take this example a little further by examining the estimgteparameters from the last fitted model. We can

usegetContrasts to compute quasi standard errors for the logarithm@,ef- the logarithms being the result of having

usedExp (Age) in the model specification — and use these in a plot of théicoents:

AgeContrasts <- getContrasts(LCmodel.maleOver45, 56:100) ## ages 45 to 89 only

The plot shows that sensitivity to the general level of mortality is highest at younger ages, as expeateexpected
feature is the clear outlying positions occupied by the estimates for ages 51, 61, 71 and 81: for each of those ages,
the estimate@, codficient is substantially less than it is for the neighbouring age groups (and the error bars indicate

5Thanks to lain Currie for helpful advice relating to this section
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Figure 8: Canada, males: plots of residuals from the Lee-Carter model of mortality
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Canada, males over 45, Lee—Carter model: relative sensitivity
of different ages to change in total mortality
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Figure 10: Canada, males over 45, Lee-Carter model: relative sensitivitfferfedit ages to change in total mortality.

clearly that the deviations are larger than could plausibly be due to chance variation). This is a curious finding. A partial
explanation comes from a look back at the raw death-count data. In the years between 1921 and 1940, the death counts
for ages 31, 41, 51, 61, 71 and 81 all stand out as being very substantially lower than those of neighbouring ages (Figure
[17: the ages concerned are highlighted in solid red). The samendblesld for later years: after about 1940, the ‘1’ ages

fall in with the general pattern. We do not know the reason for this, but it does explain our finding above regar@ing the
codficients: whilst all age groups have benefited from the general trend of reduced mortality, the ‘1’ age groups appear
to have benefited least because their starting point (in the 1920s and 1930s) was lower than would have been indicated by
the general pattern — henggis smaller for agea = 31,a=41,...,a = 81.

7.8 Exponential and sum-of-exponentials models for decay curves

A class of nonlinear functions which arise in various application contexts — a notable one being pharmacokinetic studies
— involves one or morexponential decaterms. For example, a simple decay model with additive error is

y=a+expB+yx)+e (2)
(with v < 0), while a more complex (‘sum of exponentials’) model might involve two decay terms:
y =+ expPBi + y1X) + expfBz + y2X) + e. 2

Estimation and inference with such models are typically not straightforward, partly on account of multiple local maxima
in the likelihood (e.g!, Seber and Wii(d, 1989, Ch.3). We illustrate th&dities here, with a couple of artificial examples.
These examples will make clear the value of making repeated cajtsitan order to use dierent, randomly-generated
parameterizations and starting values and thus improve the chances of locating both the global maximum and all local
maxima of the likelihood.
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Canada, males: Total deaths 1921-1940 by age
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Figure 11: Canada, males: Deaths 1921 to 1940 by age

7.8.1 Example: single exponential decay term

Let us first construct some data from modél (1). For our illustrative purposes here, we withigsefreedata, i.e., we fix
the variance o€ to be zero; for the other parameters we will use 0,8 =0,y = -0.1.

X <- 1:100

y <- exp(-x/10)

set.seed(1)

saved. fits <- list()

for (i in 1:100) saved.fits[[i]] <- gnm(y ~ Exp(l + x), verbose = FALSE)
table(zapsmall (sapply(saved. fits, deviance)))

V VVVyVvVyV

0 3.612654
45 55

The saved. fits object thus contains the results of 100 callgim, each using a dlierent, randomly-generated starting
value for the vector of parameters,3,y). Out of 100 fits, 52 reproduce the data exactly, to machine accuracy. The
remaining 48 fits are all identical to one another, but they are far from globally optimal, with residual sum of squares
3.61: they result from divergence ft6 +oo, and correspondingly ¢ to —co, such that the fitted ‘curve’ is in fact just a
constant, with level equal tp= 0.09508. For example, the second of the 100 fits is of this kind:

> saved. fits[[2]]

Call:
gnm(formula = y ~ Exp(1l + x), verbose = FALSE)

Coefficients:

(Intercept) Exp(. + x).(Intercept) Exp(l + .).x
9.508e-02 -1.424e+03 1.377e+01
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Deviance: 3.612654
Pearson chi-squared: 3.612654
Residual df: 99

The use of repeated calls ¢@m, as here, allows the local and global maxima to be easily distinguished.

7.8.2 Example: sum of two exponentials
We can conduct a similar exercise based on the more complex odel (2):

x <- 1:100

y <- exp(-x/10) + 2 * exp(-x/50)

set.seed(1)

saved. fits <- list()

for (i in 1:100) saved.fits[[i]] <- suppressWarnings(gnm(y ~
Exp(1 + x, inst = 1) + Exp(l + x, inst = 2), verbose = FALSE))

round(unlist(sapply(saved.fits, deviance)), 4)

V + VvV VV\VvyVy

[1] 0.1589 0.1589 0.0000 0.0000 0.1589 41.6439 0.1589 0.0000 41.6439
[10] ©0.0000 0.1589 0.1589 0.0000 41.6439 0.1589 0.1589 41.6439 0.1589
[19] ©0.1589 0.1589 0.1589 0.0000 0.1589 0.1589 0.1589 0.1589 0.1589
[28] ©0.0000 0.0000 0.0000 0.1589 41.6439 0.1589 0.0000 0.1589 0.1589
[37] 0.1589 0.1589 0.1589 41.6439 0.0000

In this instance, only 37 of the 100 calls gmm have successfully located a local maximum of the likelihood: in the
remaining 63 cases the starting values generated were such that numerical problems resulted, and the fitting algorithm
was abandoned (giving RULL result). Among the 37 ‘successful’ fits, it is evident that there are three distinct solutions
(with respective residual sums of squares equal to 0.1589, 41.64, and essentially zero — the last of these, the exact fit to
the data, having been found 12 times out of the above 37). The two non-optimal local maxima here correspond to the
best fit with a single exponential (which has residual sum of squares 0.1589) and to the fit with no dependenceat all on
(residual sum of squares 41.64), as we can see by comparing with:

> singleExp <- gnm(y ~ Exp(l + x), start = c(NA, NA, -0.1), verbose = FALSE)
> singleExp

Call:
gnm(formula = y ~ Exp(l + x), start = c(NA, NA, -0.1), verbose = FALSE)

Coefficients:
(Intercept) Exp(. + x).(Intercept) Exp(1 + .).x
0.25007 0.93664 -0.03465
Deviance: 0.1589496
Pearson chi-squared: 0.1589496
Residual df: 97

> meanOnly <- gnm(y ~ 1, verbose = FALSE)
> meanOnly

Call:
gnm(formula = y ~ 1, verbose = FALSE)

Coefficients:
(Intercept)
0.9511
Deviance: 41.6439
Pearson chi-squared: 41.6439
Residual df: 99
> plot(x, y, main = "Two sub-optimal fits to a sum-of-exponentials curve")

> lines(x, fitted(singleExp))
> lines(x, fitted(meanOnly), 1ty = "dashed")
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Two sub-optimal fits to a sum—-of-exponentials curve
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Figure 12: Two sub-optimal fits to a sum-of-exponentials curve

In this example, it is clear that even a small amount of noise in the data would make it practically impossible to
distinguish between competing models containing one and two exponential-decay terms.

In summary: the defauinm setting of randomly-chosen starting values is useful for identifying multiple local maxima
in the likelihood; and reasonably good starting values are needed if the global maximum is to be found. In the present
example, knowing that; andy, should both be small and negative, we might perhaps have tried

> gnm(y ~ instances(Exp(l + x), 2), start = c(NA, NA, -0.1, NA,
+ -0.1), verbose = FALSE)

Call:
gnm(formula = y ~ instances(Exp(l + x), 2), start
-0.1, NA, -0.1), verbose = FALSE)

c(NA, NA,

Coefficients:
(Intercept) Exp(. + x, inst = 1).(Intercept)
1.844e-12 -3.639%e-12
Exp(1l + ., inst = 1).x Exp(. + X, inst = 2).(Intercept)
-1.000e-01 6.931e-01
Exp(l + ., inst = 2).x
-2.000e-02
Deviance: 1.520732e-24
Pearson chi-squared: 1.520732e-24
Residual df: 95

which reliably yields the (globally optimal) perfect fit to the data.
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A User-level functions

We list here, for easy reference, all of the user-level functions igthepackage. For full documentation see the package
help pages.

Model Fitting

gnm

fit generalized nonlinear models

Model Specification

Diag create factor dferentiating diagonal elements

Symm create symmetric interaction of factors

Topo create ‘topological’ interaction factors

Const specify a constant in gnm model formula

Dref specify a diagonal reference term igam model formula

Mult specify a product of predictors ingnm formula

Mul tHomog specify a multiplicative interaction with homogeneotieets in agnm formula
Exp specify the exponential of a predictor irgam formula

Inv specify the reciprocal of a predictor ingam formula

Nonlin specify a special nonlinear term iryam formula (using external plug-in function)
wedderburn specify the Wedderburn quasi-likelihood family

Methods and Accessor Functions

confint.gnm

confint.profile.gnm

profile.gnm

plot.profile.gnm

summary . gnm

compute confidence intervals giimparameters based on the profiled deviance
compute confidence intervals of parameters fropnadile.gnmobject

profile deviance for parameters igammodel

plot profile traces from arofile.gnmobject

summarizeggnmfits

residSvD multiplicative approximation of model residuals

exitInfo print numerical details of last iteration whenm has not converged

ofInterest extract theofInterest component of gnmobject

ofInterest<- replace theofInterest component of gnmobject

parameters get model parameters fromgnm object, including parameters that were con-
strained

pickCoef get indices of model parameters

getContrasts estimate contrasts and their standard errors for parametegnimanodel

checkEstimable check whether one or more parameter combinationsggimmamodel is identified

se get standard errors of linear parameter combinatiogmimmodels

termPredictors (generig extract term contributions to predictor

Auxiliary Functions

asGnm coerce an object of clag® or gimto classgnm

expandCategorical  expand a data frame by re-expressing categorical data as counts
getModelFrame get the model frame in use kgynm

MPinv Moore-Penrose pseudoinverse of a real-valued matrix

grSolve Minimum-length solution of a linear system
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