Parallel Computing in the R package glmm

Sydney Benson

December 11, 2018

Contents

(1__Introduction|

[2 Additional Model-Fitting Arguments|

1 Introduction

The R package glmm approximates the likelihood function for generalized
linear mixed models (GLMMs) with a canonical link. glmm calculates and
maximizes the Monte Carlo likelihood approximation (MCLA) to find Monte
Carlo maximum likelihood estimates (MCMLESs) for the fixed effects and
variance components. The value, gradient vector, and Hessian matrix of the
MCLA are calculated to maximize the likelihood and the MCMLEs. The
Hessian of the MCLA is used to calculate the standard errors for the MCM-
LEs.

In version 1.2.4, the R package glmm has been revised to calculate the value,
gradient vector and Hessian matrix in parallel. This addition has incor-
porated an optional argument to the glmm command, an increased number
of outputs, and has decreased the time it takes to fit the model in most cases.

2 Additional Model-Fitting Arguments

In the following code, we fit the model using the glmm command and save
the model under the name sal. The final argument for the glmm command
is cluster. The cluster argument is optional and, by default, R will cre-
ate a cluster that uses only a single core. This will force the calculations
for the value, gradient vector and Hessian matrix to be done sequentially
instead of simultaneously. However, if you choose to specify a cluster using
a different number of cores, you may do that using the cluster argument.
In this example, we will use a cluster with two cores.

Using a cluster with multiple cores is useful for reducing the time the glmm
command takes to run, thus allowing for an increased m without additional
computational expense. An increased m allows the model to provide more
accurate estimates, but can also increase the model-fitting time exponen-
tially. Using multiple cores can help mitigate this problem. We can see
the time reduction made by running the calculations in parallel using the
proc.time command. First, the model-fitting time for the command using
one core and m = 10% is given.

library(glmm)
data(salamander)

clust <- makeCluster(1)

set.seed(1234)

start <- proc.time()

sal <- glmm(Mate ~ O + Cross, random = list(~ O + Female,

~ 0 + Male), varcomps.names = c("F", "M"), data = salamander,
family.glmm = bernoulli.glmm, m = 1074, debug = TRUE, cluster = clust)
proc.time() - start

#Hit user system elapsed
43.379 0.288 144.095

stopCluster(clust)

Next, the model-fitting time for the command using two cores with the same
Monte Carlo sample size is found.

clust <- makeCluster(2)

set.seed(1234)

start <- proc.time()

sal <- glmm(Mate ~ O + Cross, random = list(~ O + Female,

~ 0 + Male), varcomps.names = c("F", "M"), data = salamander,
family.glmm = bernoulli.glmm, m = 1074, debug = TRUE, cluster = clust)
proc.time() - start

user system elapsed
43.048 0.160 76.887

stopCluster(clust)

To read about the other arguments in the glmm command, please read |“An
Introduction to Model-Fitting with the R package glmm”.

https://cran.r-project.org/web/packages/glmm/vignettes/intro.pdf
https://cran.r-project.org/web/packages/glmm/vignettes/intro.pdf

	Introduction
	Additional Model-Fitting Arguments

