
An Introduction to Model-Fitting with the R

package glmm

Christina Knudson

February 19, 2018

Contents

1 Introduction 2

2 Formatting the Data 2

3 Fitting the Model 4

4 Reading the Model Summary 6

5 Isolating the Parameter Estimates 8

6 Calculating Confidence Intervals 9

7 Monte Carlo Standard Error 11

8 Estimating the Variance-Covariance Matrix 12

9 Accessing Additional Output 13

10 Optional Model-Fitting Arguments 14
10.1 Setting Variance Components Equal 14
10.2 Altering the Importance Sampling Distribution 15
10.3 Adjusting Optimization Arguments 16
10.4 Starting at a Specified Parameter Value 16

1

Introduction

The R package glmm approximates the entire likelihood function for gener-
alized linear mixed models (GLMMs) with a canonical link. glmm calculates
and maximizes the Monte Carlo likelihood approximation (MCLA) to find
Monte Carlo maximum likelihood estimates (MCMLEs) for the fixed effects
and variance components. Additionally, the value, gradient vector, and Hes-
sian matrix of the MCLA are calculated at the MCMLEs. The Hessian of
the MCLA is used to calculate the standard errors for the MCMLEs.

The basis of glmm is MCLA, which was first proposed by Geyer (1990) for
approximating the likelihood of unnormalized densities. MCLA was used
by Geyer and Thompson (1992) to approximate the likelihood for normal-
ized densities for models with random effects. Gelfand and Carlin (1993)
proposed applying MCLA to unnormalized densities for models with ran-
dom effects. The theoretical foundation for MCLA was established by Geyer
(1994). Sung and Geyer (2007) prepared an R package bernor that, when
given model matrices, fits maximum likelihood estimates for the logit-normal
model. Their importance sampling distribution is chosen independently of
the data.

Formatting the Data

The following vectors can be used to fit a generalized linear mixed model
using the glmm package. These vectors can be contained in a data frame,
but they do not need to be.

1. A response vector. If your response is Poisson, then the entries in
the response vector must be natural numbers. If your response is
Bernoulli, then the entries in the response vector must be 0 and 1. If
your response is binomial, then you will have two vectors: a vector of
successes and a vector of failures. (For this version of glmm, these are
the only response types possible. If you need to fit a model with a
different response, contact me.)

2. At least one vector that will be used for defining the random effects’
design matrix. For this version of glmm, the vector(s) should be class
factor.

3. Vector(s) that will be used for defining the fixed effects’ design matrix.
The vector(s) can be of class factor or numeric.

2

The first two types of vectors described in the list are required. The last
type is optional. That is, the minimum requirement to fit a glmm model is
the response vector and one vector for defining the random effects’ design
matrix.

We use the salamander dataset as an example in this vignette. For your
convenience, it is already included in the glmm package. The data arose from
an experiment conducted at the University of Chicago in 1986 and were first
presented by McCullagh and Nelder (1989, section 14.5). Scientists paired
female and male salamanders of two types (Rough Butt and White Side)
and collected data on whether or not they mated.

The variable Mate tells us whether the pair of salamanders mated. The value
is 1 if they successfully mated and 0 if they did not. The variable Cross

describes the type of female and male salamander. For example, Cross =

W/R indicates a White Side female was crossed with a Rough Butt male. The
variable Female contains the identification number of the female salaman-
der, and the variable Male contains the identification number of the male
salamander.

The first R command shown below gives us access to the glmm package
and and all of its commands. The second line of code gives us access to
the salamander data frame. The next three commands help us begin to
understand the data. We have four variables: Mate, Cross, Female, and
Male. The summary shows us Mate is numeric, Cross is a factor with four
levels, Female is a factor, and Male is a factor.

library(glmm)

Loading required package: trust

Loading required package: mvtnorm

Loading required package: Matrix

Loading required package: digest

data(salamander)

names(salamander)

[1] "Mate" "Cross" "Female" "Male"

head(salamander)

3

Mate Cross Female Male

1 1 R/R 10 10

2 1 R/R 11 14

3 1 R/R 12 11

4 1 R/R 13 13

5 1 R/R 14 12

6 1 R/W 15 28

summary(salamander)

Mate Cross Female Male

Min. :0.000 R/R:90 10 : 6 10 : 6

1st Qu.:0.000 R/W:90 11 : 6 11 : 6

Median :1.000 W/R:90 12 : 6 12 : 6

Mean :0.525 W/W:90 13 : 6 13 : 6

3rd Qu.:1.000 14 : 6 14 : 6

Max. :1.000 15 : 6 15 : 6

(Other):324 (Other):324

Fitting the Model

Following Model A from Karim and Zeger (1992), we set Mate as the re-
sponse, Cross as the fixed effect variable, and Female and Male as the ran-
dom effect variables. That is, we would like to fit a generalized linear mixed
model with a logit link (because the response is Bernoulli). We will have
four fixed effect parameters (βR/R, βR/W , βW/R, βW/W). There is likely to
be variability among the females and variability among the males. That is,
some females will be more likely to mate than other females, and we would
like the model to reflect the tendencies of the individual salamanders. We
incorporate this into the model by including a random effect for each female
salamander and a random effect for each male salamander. We believe the
female salamanders’ random effects are i.i.d. draws from N(0, νF), where
νF is an unknown parameter to be estimated. Similarly, we believe the male
salamanders’ random effects are i.i.d. draws from N(0, νM), where νM is
an unknown parameter to be estimated. Finally, we believe the female and
male random effects are independent of one another.

In the following code, we fit the model using the glmm command and save
the model under the name sal. Because Mate is our response, it is on the
left of the ∼. We want to have a fixed effect for each of the four levels of

4

Cross, so we type Mate ∼ 0 + Cross. Because Cross is a factor, typing
Mate ∼ Cross would fit an equivalent model.

Next, the random list creates the design matrices for the random effects.
Since we want two random effects for each cross (one from the female sala-
mander and one from the male salamander), we type list(∼ 0 + Female,

∼ 0 + Male). We include the 0 because we want our random effects to be
centered at 0. Almost always, you will want your random effects to have
mean 0.

Following the random list, the argument varcomps.names allows us to name
the list of variance components. In the random list, we have placed the fe-
males first. Therefore, the order of the variance components names are first
“F” and then “M.”

Next, we specify the name of our data set. This is an optional argument. If
the data set is not specified, glmm looks to the parent environment for the
variables you have referenced.

After the name of the data set, we need to specify the type of the response.
In the salamander mating example, the response is binary: the salamanders
either mated or they did not. Therefore, the family is bernoulli.glmm. If
your response is a count, then the family is poisson.glmm.

Next, we specify our Monte Carlo sample size m. The general rule is the
larger the Monte Carlo sample size, the more accurate the Monte Carlo like-
lihood approximation (MCLA) will be, and the more accurate the resulting
Monte Carlo maximum likelihood estimates (MCMLEs) will be. Ideally,
you want the largest m that time allows. For this vignette, we have chosen
a Monte Carlo sample size that allows for quick computation. If you are
interested in accuracy in the resulting estimates for the salamander model,
we suggest a larger Monte Carlo sample size.

We put this all together in the following commands. Note that we set the
seed so that we can have reproducible results. In other words, if you set your
seed to the same number and type the exact command listed below, your
results should be identical to those listed here. Additionally, the proc.time

commands have been used to give you an idea of how quickly the model can
be fit. The times shown here are from fitting a model on an ultrabook that
cost 500 USD in 2013.

5

set.seed(1234)

ptm<-proc.time()

sal <- glmm(Mate ~ 0 + Cross, random = list(~ 0 + Female,

~ 0 + Male), varcomps.names = c("F", "M"), data = salamander,

family.glmm = bernoulli.glmm, m = 10^4, debug = TRUE)

proc.time() - ptm

user system elapsed

102.032 0.120 102.153

Reading the Model Summary

The summary command displays

• the function call (to remind you of the model you fit).

• the link function.

• the fixed effect estimates, their standard errors (calculated using ob-
served Fisher information), their z value test statistics (testing whether
the coefficients are significantly different from zero), the test’s p-values,
and the R-standard significance stars (optional).

• the variance component estimates, their standard errors (calculated
using observed Fisher information), their z value test statistics (test-
ing whether the coefficients are significantly different from zero), the
test’s p-values, and the R-standard significance stars (optional).

Note that the p-value for the fixed effects is calculated using a two-sided
alternative hypothesis (HA : β 6= 0) while the p-value for the variance com-
ponents is calculated using a one-sided alternative hypothesis (HA : ν > 0)
because variance components must be nonnegative.

To view the model summary, we use the summary command.

summary(sal)

##

Call:

glmm(fixed = Mate ~ 0 + Cross, random = list(~0 + Female, ~0 +

Male), varcomps.names = c("F", "M"), data = salamander, family.glmm = bernoulli.glmm,

m = 10^4, debug = TRUE)

6

##

##

Link is: "logit (log odds)"

##

Fixed Effects:

Estimate Std. Error z value Pr(>|z|)

CrossR/R 0.9560 0.3503 2.729 0.00634 **

CrossR/W 0.2805 0.3660 0.766 0.44347

CrossW/R -1.8968 0.4223 -4.492 7.05e-06 ***

CrossW/W 0.9723 0.3580 2.716 0.00661 **

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

##

Variance Components for Random Effects (P-values are one-tailed):

Estimate Std. Error z value Pr(>|z|)/2

F 1.2878 0.4435 2.904 0.00184 **

M 1.0840 0.4131 2.624 0.00435 **

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Looking at our output, we can see that the type of cross significantly affects
the salamanders’ odds of mating. Additionally, both the variance compo-
nents are significantly different from zero and should be retained in the
model.

The summary provides the estimates needed to write our model. First, we
establish a little notation. Let πi represent the probability of successful
mating for salamander pair i. Let I() be an indicator function, so that
I(Cross=R/R) is 1 when the variable Cross = R/R and 0 otherwise. Let
uFi represent the random effect from the female salamander in the ith pair.
Let uMi represent the random effect from the male salamander in the ith
pair. Since the response is Bernoulli, the canonical link is the log odds of
successful mating. Using this notation, we write the model as follows.

7

log

(
πi

1− πi

)
= 0.956 ∗ I(Cross=R/R) + 0.2805 ∗ I(Cross=R/W)

+−1.8968 ∗ I(Cross=W/R) + 0.9723 ∗ I(Cross=W/W)

+ uFi + uMi

uFi
i.i.d.∼ N(0, 1.288)

uMi
i.i.d.∼ N(0, 1.084)

Recall that m in the above model was chosen for convenience to save time.
The resulting parameter estimates have a little too much variability. If we
increase m, the Monte Carlo standard error decreases.

Isolating the Parameter Estimates

If we wish to extract the estimates for the fixed effect coefficients or the vari-
ance components, we use the commands coef and varcomps, respectively.
These commands isolate the estimates that are shown in the summary (as
displayed in section 4).

To extract the fixed effect coefficients, the only argument needed is the
model. The commands coef and coefficients are interchangeable. We
can type either of the following:

coef(sal)

CrossR/R CrossR/W CrossW/R CrossW/W

0.9560113 0.2804932 -1.8968316 0.9722904

coefficients(sal)

CrossR/R CrossR/W CrossW/R CrossW/W

0.9560113 0.2804932 -1.8968316 0.9722904

To extract the variance components, the only argument needed is the model.

varcomps(sal)

F M

1.287848 1.083975

8

To further isolate variance components or fixed effects, use indexing. The
following demonstrates how to extract the last two fixed effects and the first
variance component.

coef(sal)[c(3,4)]

CrossW/R CrossW/W

-1.8968316 0.9722904

varcomps(sal)[1]

F

1.287848

Calculating Confidence Intervals

We can calculate confidence intervals for parameters using the confint com-
mand. (Note that prediction is not yet possible in this version of the pack-
age). If we wish to calculate 95% confidence intervals for all of our parame-
ters, the only argument is the model name.

confint(sal)

0.025 0.975

CrossR/R 0.2695298 1.642493

CrossR/W -0.4368727 0.997859

CrossW/R -2.7244545 -1.069209

CrossW/W 0.2705576 1.674023

F 0.4186440 2.157051

M 0.2742514 1.893699

The output is a matrix. Each row represents one parameter. The first col-
umn is the lower bound of the confidence interval, and the second column
is the upper bound of the confidence interval.

If we wish to change the level of confidence from the default of 95%, we use
the argument level and specify a number between 0 and 1. For example, to
90% confidence intervals and 99% confidence intervals, we type the following:

9

confint(sal,level=.9)

0.05 0.95

CrossR/R 0.3798978 1.5321247

CrossR/W -0.3215392 0.8825255

CrossW/R -2.5913946 -1.2022685

CrossW/W 0.3833777 1.5612031

F 0.5583890 2.0173065

M 0.4044336 1.7635169

confint(sal,level=.99)

0.005 0.995

CrossR/R 0.05382166 1.8582009

CrossR/W -0.66228533 1.2232717

CrossW/R -2.98451246 -0.8091506

CrossW/W 0.05005718 1.8945236

F 0.14552044 2.4301751

M 0.01981773 2.1481327

We can calculate 90% confidence intervals for the first and third fixed effects
through indexing or by listing the names of the fixed effects:

confint(sal,level=.9,c(1,3))

0.05 0.95

CrossR/R 0.3798978 1.532125

CrossW/R -2.5913946 -1.202268

confint(sal,level=.9,c("CrossR/R","CrossW/R"))

0.05 0.95

CrossR/R 0.3798978 1.532125

CrossW/R -2.5913946 -1.202268

To calculate a 93 percent confidence interval for the variance component
for the female salamanders, we can again either use indexing or list the
name of the variable. Note that there are four fixed effects so νF is the
fifth parameter in this model. (Similarly, νM is the sixth parameter in this
model).

10

confint(sal,level=.93,c(5))

0.035 0.965

F 0.4843026 2.091393

confint(sal,level=.93,c("F"))

0.035 0.965

F 0.4843026 2.091393

Note that all confidence intervals are calculated using the observed Fisher
information from the Monte Carlo likelihood approximation.

Monte Carlo Standard Error

A common question is “How big should the Monte Carlo sample size (m)
be?” A larger m leads to higher accuracy in your likelihood-based infer-
ence, but the trade-off is a larger m takes more computing time. To assess
whether your chosen Monte Carlo sample size m is large enough, you can use
the Monte Carlo standard error.

The point estimates produced by glmm (and by Monte Carlo likelihood ap-
proximation in general) have two sources of variability. First, there is vari-
ability from sample to sample. That is, if we conducted the experiment on
another set of 120 salamanders, our point estimates would differ slightly.
We measure this sample to sample variability with standard error. Second,
there is the variability between calls of glmm because different random num-
bers are used to calculate the Monte Carlo likelihood approximation. We
measure this variability with Monte Carlo standard error.

If the Monte Carlo standard error is large (relative to the standard error),
then you should use a large Monte Carlo sample size m. How much larger
should m be? The Monte Carlo standard error decreases at a square root
rate; if you want a Monte Carlo standard error that is 10% your current
Monte Carlo standard error, then you should multiple your Monte Carlo
sample size by 100.

You can find the Monte Carlo standard errors with the mcse command.

11

mcse(sal)

CrossR/R CrossR/W CrossW/R CrossW/W F M

0.01746859 0.03224862 0.04454498 0.02411590 0.09067140 0.05540972

You can compare the Monte Carlo standard errors (shown above) to the
standard errors of the point estimates (shown below).

se(sal)

CrossR/R CrossR/W CrossW/R CrossW/W F M

0.3502521 0.3660097 0.4222644 0.3580335 0.4434794 0.4131320

Estimating the Variance-Covariance Matrix

The variance-covariance matrix for the parameter estimates can be found
using the vcov function. The only input is the model name.

(myvcov <- vcov(sal))

CrossR/R CrossR/W CrossW/R CrossW/W F

CrossR/R 0.122676531 0.024012058 0.02086939 -0.010709735 -0.009392339

CrossR/W 0.024012058 0.133963096 -0.02178909 0.014823950 0.001149926

CrossW/R 0.020869390 -0.021789085 0.17830719 0.021167259 -0.027846771

CrossW/W -0.010709735 0.014823950 0.02116726 0.128187999 0.026420898

F -0.009392339 0.001149926 -0.02784677 0.026420898 0.196674003

M -0.002885214 -0.021014244 -0.01669001 -0.003236856 -0.033417152

M

CrossR/R -0.002885214

CrossR/W -0.021014244

CrossW/R -0.016690009

CrossW/W -0.003236856

F -0.033417152

M 0.170678041

The variance-covariance matrix can be useful for some hypothesis testing.
For example, suppose we want to test the hypotheses:

H0 : βRR − βWW = 0

H0 : βRR − βWW 6= 0.

12

The Wald test statistic is

β̂RR − β̂WW − 0√
Var

(
β̂RR − β̂WW

) ∼ N(0, 1).

To calculate

Var
(
β̂RR − β̂WW

)
= Var

(
β̂RR

)
+ Var

(
β̂WW

)
− 2 Cov

(
β̂RR, β̂WW

)
we use the variances and covariances from the variance-covariance matrix:

myvar <- myvcov[1,1] + myvcov[4,4] - 2* myvcov[1,4]

SE <- sqrt(myvar)

Then the test statistic and its associated p-value can be calculated:

test.stat <- (coef(sal)[1] - coef(sal)[4]) / SE

as.numeric(2 * pnorm(test.stat))

[1] 0.975112

Therefore, we do not have evidence to reject H0 : βRR = βWW . The prob-
ability of two White Side salamanders mating is not significantly different
from the probability of two Rough Butt salamanders mating. This makes
sense, considering how close βRR and βWW are.

Similarly, we could do a Wald-style hypothesis test to find the two variance
components νF and νM are not significantly different.

Accessing Additional Output

The model produced by glmm has information that is not displayed by the
summary command. The names command helps us see what we can access.

names(sal)

[1] "beta" "nu" "likelihood.value"

[4] "likelihood.gradient" "likelihood.hessian" "trust.converged"

[7] "mod.mcml" "fixedcall" "randcall"

13

[10] "x" "y" "z"

[13] "family.glmm" "call" "varcomps.names"

[16] "varcomps.equal" "umat" "pvec"

[19] "beta.pql" "nu.pql" "u.pql"

[22] "zeta" "debug"

The first two items are beta and nu. These are the MCMLEs for the fixed
effects and variance components.

The third item is likelihood.value, the value of the MCLA evaluated
at the MCMLEs. The fourth item is likelihood.gradient, the gradi-
ent vector of the MCLA evaluated at the MCMLEs. The fifth item is
likelihood.hessian, the Hessian matrix of the MCLA evaluated at the
MCMLEs.

Next is trust.converged, which tell us whether the trust function in the
trust package was able to converge to the optimizer of the MCLA.

Items 7 through 16 relate to the original function call. mod.mcml contains
the model matrix for the fixed effects, a list of model matrices for the ran-
dom effects, and the response vector. These are also displayed in x, z, and
y, respectively. Then, the call (the original formula representations of the
fixed and random effects) are contained in fixedcall, randcall, and call.

The last argument is debug. If the model was fit with the default debug =

FALSE, then this argument is just FALSE. If the model was fit with debug =

TRUE, then debug contains a list of output for advanced users and program-
mers.

Optional Model-Fitting Arguments

Additional arguments may be added for more control over the model fit. If
you’re an introductory user, go ahead and ignore this section.

Setting Variance Components Equal

By default, glmm assumes each variance component should be distinct. Sup-
pose we want to set νF = νM . Then we would add the argument varcomps.equal
to indicate the equality. Since the list of random effects has two entries
and we want those entries to share a variance component, we would set
varcomps.equal = c(1,1). In this scenario, we would only have one vari-

14

ance component, so we only need one entry in varcomps.names. Thus, the
new command to fit this updated model with one variance component could
be the following:

sal <- glmm(Mate ~ 0 + Cross, random = list(~ 0 + Female,

~ 0 + Male), varcomps.equal = c(1, 1), varcomps.names =

c("Only Varcomp"), data = salamander, family.glmm =

bernoulli.glmm, m = 10^4, debug = TRUE)

As another example, suppose the list random has three entries, indicating
three variance components ν1, ν2, ν3. To set ν1 = ν3, we write varcomps.equal
= c(1,2,1). Thus, the shared variance component would be listed first in
any output, and ν2 would be listed second. Note that the entries in the
varcomps.equal vector must start at 1, then continue through the integers.
The order of the names of the variance components listed in varcomps.names

must correspond to the integers in varcomps.equal. In this problem, the
names could be varcomps.names = c("shared", "two").

Altering the Importance Sampling Distribution

The following default arguments can be adapted to alter the importance
sampling distribution: doPQL, p1, p2, p3, and zeta.

By default, penalized quasi-likelihood estimates are used to form the impor-
tance sampling distribution for the generated random effects. To skip PQL,
add the argument doPQL=FALSE. If PQL is skipped, then the importance
sampling distribution uses arbitrary estimates of 0 for the random effects,
0 for the fixed effects, and 1 for the variance components. Sometimes the
examples in the glmm documentation skip the PQL step so that the package
can load more quickly. Most of the time, the model will fit more accurately
and efficiently if PQL estimates are used in the importance sampling distri-
bution.

The importance sampling distribution is a mixture of three distributions. By
default, the mixture is evenly weighted, with each component’s contribution
set at 1/3. If you wish to change the mixture, you can alter p1, p2, and p3

from the default of p1 = 1/3, p2 = 1/3, and p3 = 1/3. The only restric-
tions are that the three probabilities must sum to 1 and p1 must be positive.

The first component of the importance sampling distribution is a scaled mul-
tivariate t-distribution with zeta degrees of freedom. Therefore, another

15

way to alter the importance sampling distribution is by changing zeta from
its default of 5.

Adjusting Optimization Arguments

It may be useful to adjust the trust arguments rmax and iterlim. The ar-
gument rmax is the maximum allowed trust region radius. By glmm default,
this is set to the arbitrary, somewhat large number of 1000. If this is set to
a small number, then the optimization will move more slowly.

The argument iterlim must be a positive integer that limits the length of
the optimization. If iterlim is too small, then the trust optimization will
end before the MCMLA has been maximized.

If iterlim is reached, then trust has not converged to the MCMLE. When
the summary command is called, a warning will be printed telling the user
that the parameter values are not MCMLEs, but glmm can be rerun starting
at these outputted parameter values. To do this, use the par.init argu-
ment in section 10.4.

Starting at a Specified Parameter Value

Rather than using the PQL estimates, you can provide parameter values
to glmm using the argument par.init. The glmm argument par.init is a
vector that specifies the user-supplied values of the fixed effects and variance
components. The parameters must be inputted in the order that summary

outputs them, with fixed effects followed by variance components.

If par.init is provided, then PQL estimates will not be computed. The
par.init estimates will be used instead to form the importance sampling
distribution. Then, trust will use par.init as the starting point for the
optimization. This argument may be useful for very hard problems that
require iteration.

References

Gelfand, A. and Carlin, B. (1993). Maximum-likelihood estimation for
constrained- or missing-data models. Canadian Journal of Statistics,
21:303–311.

16

Geyer, C. (1990). Likelihood and Exponential Families. PhD thesis, Univer-
sity of Washington.

Geyer, C. J. (1994). On the convergence of Monte Carlo maximum likelihood
calculations. Journal of the Royal Statistical Society, Series B, 61:261–
274.

Geyer, C. J. and Thompson, E. (1992). Constrained Monte Carlo maximum
likelihood for dependent data. Journal of the Royal Statistical Society,
Series B, 54:657–699.

Karim, M. and Zeger, S. (1992). generalized linear models with random
effects; salamander mating revisited. Biometrics, 48:631–644.

McCullagh, P. and Nelder, J. (1989). Generalized Linear Models. Chapman
and Hall/CRC.

Sung, Y. J. and Geyer, C. J. (2007). Monte Carlo likelihood inference for
missing data models. Annals of Statistics, 35:990–1011.

17

