
ggRandomForests: Survival with Random Forests

John Ehrlinger and Eugene H. Blackstone
Cleveland Clinic

Abstract

Random Forests (Breiman 2001) (RF) are a fully non-parametric statistical method
requiring no distributional assumptions on covariate relation to the response. RF are
a robust, nonlinear technique that optimizes predictive accuracy by fitting an ensemble
of trees to stabilize model estimates. Random Forests for survival (Ishwaran and Ko-
galur 2007; Ishwaran, Kogalur, Blackstone, and Lauer 2008) (RF-S) are an extension of
Breiman’s RF techniques to survival settings, allowing efficient non-parametric analysis
of time to event data. The randomForestSRC package (Ishwaran and Kogalur 2014) is a
unified treatment of Breiman’s random forests for survival, regression and classification
problems.

Predictive accuracy make RF an attractive alternative to parametric models, though
complexity and interpretability of the forest hinder wider application of the method. We
introduce the ggRandomForests package, tools for creating and plotting data structures
to visually understand random forest models grown in R with the randomForestSRC
package. The ggRandomForests package is structured to extract intermediate data objects
from randomForestSRC objects and generate figures using the ggplot2 (Wickham 2009)
graphics package.

This document is formatted as a tutorial for using the randomForestSRC for build-
ing random forests for survival and ggRandomForests package for investigating how the
forest is constructed. This tutorial uses the Primary Biliary Cirrhosis (PBC) Data from
the Mayo Clinic (Fleming and Harrington 1991) available in the randomForestSRC pack-
age. We use Variable Importance measure (VIMP) (Breiman 2001) as well as Minimal
Depth (Ishwaran, Kogalur, Gorodeski, Minn, and Lauer 2010), a property derived from
the construction of each tree within the forest, to assess the impact of variables on for-
est prediction. We will also demonstrate the use of variable dependence plots (Friedman
2000) to aid interpretation RF results in different response settings. We also will inves-
tigate interactions between covariates to demonstrate the strength of the Random Forest
method in survival settings.

Keywords: random forest, survival, VIMP, minimal depth, R, randomForestSRC.

About this document

This document is a package vignette for the ggRandomForests (http://CRAN.R-project.
org/package=ggRandomForests) package for“Visually Exploring Random Forests”. ggRandom-
Forests will help uncover variable associations in random forest models. The package is de-
signed for use with the randomForestSRC (http://CRAN.R-project.org/package=randomForestSRC)
package (Ishwaran and Kogalur 2014) for survival, regression and classification forests and
uses the ggplot2(http://CRAN.R-project.org/package=ggplot2) package (Wickham 2009)

http://CRAN.R-project.org/package = ggRandomForests
http://CRAN.R-project.org/package = ggRandomForests
http://CRAN.R-project.org/package = randomForestSRC
http://CRAN.R-project.org/package = ggplot2

2 Random Forests for Survival

for plotting diagnostic and variable association results. ggRandomForests is structured to
extract data objects from randomForestSRC objects and provides S3 functions for printing
and plotting these objects.

The vignette is a tutorial for using the ggRandomForests package with the randomForest-
SRC package for building and post-processing a survival random forest. In this tutorial, we
explore a random forest for survival model for the primary biliary cirrhosis (PBC) of the
liver data set (Fleming and Harrington 1991), available in the randomForestSRC package.
We grow a survival random forest and demonstrate how ggRandomForests can be used when
determining variable associations, interactions and how the survival response depends on pre-
dictive variables within the model. The tutorial demonstrates the design and usage of many of
ggRandomForests functions and features how to modify and customize the resulting ggplot2
graphic objects along the way.

The latest version of this vignette is available within the ggRandomForests package on the
Compreshensive R Archive Network (CRAN) (http://cran.r-project.org). Once the
package has been installed, the vignette can be viewed directly from within R with the fol-
lowing command:

R> vignette("randomForestSRC-Survival", package = "ggRandomForests")

A development version of the ggRandomForests package is also available on Github (https:
//github.com). We invite comments, feature requests and bug reports for this package at
https://github.com/ehrlinger/ggRandomForests.

1. Introduction

Random Forests (Breiman 2001) (RF) are a fully non-parametric statistical method which
requires no distributional assumptions on covariate relation to the response. RF is a robust,
nonlinear technique that optimizes predictive accuracy by fitting an ensemble of trees to
stabilize model estimates. Random Survival Forests (RSF) (Ishwaran and Kogalur 2007;
Ishwaran et al. 2008) are an extension of Breiman’s RF techniques to survival settings, allowing
efficient non-parametric analysis of time to event data. The randomForestSRC (http://
CRAN.R-project.org/package=ggRandomForests) package (Ishwaran and Kogalur 2014) is
a unified treatment of Breiman’s random forests for survival, regression and classification
problems.

Predictive accuracy make RF an attractive alternative to parametric models, though complex-
ity and interpretability of the forest hinder wider application of the method. We introduce
the ggRandomForests (http://CRAN.R-project.org/package=ggRandomForests) package
for visually exploring random forest models. The ggRandomForests package is structured to
extract intermediate data objects from randomForestSRC objects and generate figures using
the ggplot2 (http://CRAN.R-project.org/package=ggplot2) graphics package (Wickham
2009).

Many of the figures created by the ggRandomForests package are also available directly from
within the randomForestSRC package. However ggRandomForests offers the following ad-
vantages:

• Separation of data and figures: ggRandomForests contains functions that operate on ei-
ther the randomForestSRC::rfsrc forest object directly, or on the output from random-

http://cran.r-project.org
https://github.com
https://github.com
https://github.com/ehrlinger/ggRandomForests
http://CRAN.R-project.org/package = ggRandomForests
http://CRAN.R-project.org/package = ggRandomForests
http://CRAN.R-project.org/package = ggRandomForests
http://CRAN.R-project.org/package = ggplot2

Ehrlinger et. al. 3

ForestSRC post processing functions (i.e. plot.variable, var.select, find.interaction)
to generate intermediate ggRandomForests data objects. S3 functions are provide to
further process these objects and plot results using the ggplot2 graphics package. Al-
ternatively, users can use these data objects for their own custom plotting or analysis
operations.

• Each data object/figure is a single, self contained object. This allows simple modifica-
tion and manipulation of the data or ggplot2 objects to meet users specific needs and
requirements.

• The use of ggplot2 for plotting. We chose to use the ggplot2 package for our figures
to allow users flexibility in modifying the figures to their liking. Each S3 plot function
returns either a single ggplot2 object, or a list of ggplot2 objects, allowing users to
use additional ggplot2 functions or themes to modify and customize the figures to their
liking.

This document is formatted as a tutorial for using the randomForestSRC package for building
and post-processing random survival forest models with the ggRandomForests package for
investigating how the forest is constructed. In this tutorial, we will investigate the primary
biliary cirrhosis (PBC) of the liver data set (Fleming and Harrington 1991), available in
the randomForestSRC package. We present the data in Section 2 before building a random
survival forest in Section 3.

Random forests are not parsimonious, but use all variables available in the construction of
a response predictor. We demonstrate a random forest variable selection process (Section 4)
using the Variable Importance measure (VIMP) (Breiman 2001) in Section 4.1 as well as
Minimal Depth (Ishwaran et al. 2010) in Section 4.2. Minimal depth is a property derived
from the construction of each tree within the forest, which we use to assess the impact of
variables on forest prediction.

Once we have an idea of which variables the forest is using for prediction, we will use variable
dependence plots (Friedman 2000) (Section 5) to understand how a variable is related to the
response. Marginal variable dependence (Section 5.1) plots give us an idea of the overall trend
of a variable/response relation, while partial dependence plots (Section 5.2) show us a risk ad-
justed relation. These figures often show strongly non-linear variable/response relations that
are not easily obtained through a parametric approach. We are also interested in examining
variable interactions (Section 7) within the forest model. Using a minimal depth approach,
we can quantify how closely variables are related within the forest, and generate marginal
dependence and partial dependence (risk adjusted) conditioning plots (coplots) (Chambers
1992; Cleveland 1993) to examine these interactions graphically (Section 8).

2. Data Summary: Primary Biliary Cirrhosis (PBC) Data

Data was obtained from a Mayo Clinic randomized trial in primary biliary cirrhosis (PBC)
of the liver conducted between 1974 and 1984. A total of 424 PBC patients, referred to
Mayo Clinic during that ten year interval met eligibility criteria for the randomized placebo
controlled trial of the drug D-penicillamine (DPCA). The data and partial likelihood model
is described in Fleming and Harrington (1991) in Chapter 0.2 and Chapter 4.4 and is listed

4 Random Forests for Survival

in Appendix D. The pbc data set included in the randomForestSRC package contains 418
observations, with 312 patients participating in the randomized trial.

R> data(pbc, package = "randomForestSRC")

We will do some modification of the data for formating our results. Since the data contains
about 12 years of follow up, we prefer using years instead of days survival. We also convert the
age variable to years, and the treatment variable to a factor containing levels of c("DPCA",
"placebo"). The variable names, type and description are outlined in Table 1.

label type

status event indicator (F = censor, T = death) logical
treatment Treament (DPCA, Placebo) factor

age age in years numeric
sex Female logical

ascites Asictes logical
hepatom Hepatomegaly logical
spiders Spiders logical
edema Edema factor

bili serum bilirubin (mg/dl) numeric
chol serum cholesterol (mg/dl) integer

albumin albumin (gm/dl) numeric
copper urine copper (ug/day) integer

alk alkaline phosphatase (U/liter) numeric
sgot SGOT (U/ml) numeric
trig triglicerides (mg/dl) integer

platelet platelets per cubic ml/1000 integer
prothrombin prothrombin time (sec) numeric

stage histologic stage factor
years survival time (years) numeric

Table 1: PBC Data field descriptions

2.1. Exploratory Data Analysis

It is good practice to view your data before beginning an analysis, what Tukey (1977) refers
to as Exploratory Data Analysis (EDA). To facilitate this, we use ggplot2 figures with the
facet_wrap command to create two sets of panel plots, one for categorical variables using
histograms (Figure 1), and another of scatter plots for continuous variables (Figure 2). Each
variable is plotted along a selected continuous variable on the X-axis, in this case the length
of follow up (survival time in years). These figures help to find outliers, missing values and
other data anomalies within each variable before getting deep into the analysis.

In categorical EDA plots (Figure 1) we are looking for patterns of missing data. We often
use surgical date for our X-axis variable to look for periods of low enrollment. The variable
was not available in this data set, so we used follow up time (years) instead. Another good
choice may have been to use the age variable.

In continuous EDA plots (Figure 2) we look for missingness and extreme values as in the trig
variable. For survival, we color and shape the points corresponds to the censoring indicator
(status variable in Figure 1), red x indicates an event, and a blue circle indicates a censored
observation.

Ehrlinger et. al. 5

status treatment sex ascites

hepatom spiders edema stage
0

20

40

60

0

20

40

60

0

20

40

60

0

20

40

60

0

20

40

60

0

20

40

60

0

20

40

60

0

20

40

60

0 5 10 15 0 5 10 15 0 5 10 15 0 5 10 15
survival time (years)

Figure 1: Categorical variable EDA plots. Bars indicate counts within 1 year of followup for
each categorical variable. Bars are colored according to the class membership within each
variable. Missing values are colored dark grey.

age bili albumin alk

sgot prothrombin chol copper

trig platelet

40

60

80

0

10

20

2

3

4

0

5000

10000

100
200
300
400

10
12
14
16
18

500

1000

1500

0

200

400

600

200

400

600

200

400

600

0 5 10 0 5 10
survival time (years)

Death

FALSE

TRUE

Figure 2: Continuous variable EDA plots. Points indicate variable value against the follow
up time in years. Points are colored according to the death event in the status variable.
Missing values are indicated by the rug marks along the X-axis

6 Random Forests for Survival

full trial

treatment 106 0
ascites 106 0

hepatom 106 0
spiders 106 0

chol 134 28
copper 108 2

alk 106 0
sgot 106 0
trig 136 30

platelet 11 4
prothrombin 2 0

stage 6 0

Table 2: PBC missing values

There does appear to be a large amount of missing data in some variables of the pbc data
set, indicated with dark grey bars in Figure 1, and rug marks in Figure 2. Table 2 details
the number of missing values in each variable of the pbc data set. Of the 19 variables in the
data, 12 have missing values. The full columns details variables with missing data in the
full pbc data set, though there are 106 patients that were not randomized into the trial. If we
restrict the data to the trial only, most of the missing values are also removed, leaving onlt 4
variables with missing values. We focus on the 312 observations from the clinical trial for the
remainder of this document. We will return to handling missing values in Section 3.3.

2.2. Fleming and Harrington (1991) Model Summary

Before turning to the random forest modeling, we conclude the data set investigation by a
summary of Fleming and Harrington (1991) results from Chapter 4.4. We start by generat-
ing Kaplan–Meier (KM) survival estimates comparing the treatment groups of DPCA and
placebo. We use the ggRandomForests gg_survival function to generate these estimates
from the data set.

R> # Include only the randomized patients.

R> pbc.trial <- pbc[-which(is.na(pbc$treatment)),]

R>

R> # Create a test set from the remaining patients

R> pbc.test <- pbc[which(is.na(pbc$treatment)),]

R>

R> # Create the gg_survival object

R> gg_dta <- gg_survival(interval = "years",

+ censor = "status",

+ by = "treatment",

+ data = pbc.trial,

+ conf.int = .95)

The code block first reduces the pbc.trial data set to only include observations from the
clinical trial. The ggRandomForests package is designed to use a two step process in figure
generation. The first step is data generation, the gg_dta object is a gg_survival data object.

Ehrlinger et. al. 7

The gg_survival function uses the data set, the follow up interval, censor indicator and an
optional grouping argument (strat). By default gg_survival also calculates 95% confidence
band, which we can control with the conf.int argument.

In the figure generation step, we use the ggRandomForests S3 plot routine plot.gg_survival
as shown in the following code block. The plot function uses the data object to plot the survival
estimate curves for each group and corresponding confidence interval ribbons. We have used
additional ggplot2 commands to modify the axis and legend labels (labs), the legend location
(theme) and control the plot range of the y-axis (coord_cartesian) for this figure. Figure 3
is analogous to Fleming and Harrington (1991) Figure 4.4.1 showing there is little difference
between the treatment and control groups.

R> plot(gg_dta) +

+ labs(y = "Survival Probability",

+ x = "Observation Time (years)",

+ color = "Treatment", fill = "Treatment")+

+ theme(legend.position = c(.2,.2))+

+ coord_cartesian(y = c(0,1.01))

0.00

0.25

0.50

0.75

1.00

0 3 6 9 12
Observation Time (years)

S
ur

vi
va

l P
ro

ba
bi

lit
y

Treatment

DPCA

placebo

Figure 3: Kaplan–Meier pbc data survival estimates comparing the treatment with placebo.
Mean survival with shaded 95% condfidence band.

R> plot(gg_dta, type="cum_haz") +

+ labs(y = "Cumulative Hazard",

+ x = "Observation Time (years)",

+ color = "Treatment", fill = "Treatment")+

+ theme(legend.position = c(.2,.8))

In Chapter 4, Fleming and Harrington (1991) use partial likelihood methods to build a linear
model with log transformations on some variables. The final, biologically reasonable model
is detailed in Table 3 for later comparison with our random forest model results.

8 Random Forests for Survival

0.0

0.3

0.6

0.9

1.2

0 3 6 9 12
Observation Time (years)

C
um

ul
at

iv
e

H
az

ar
d

Treatment

DPCA

placebo

Figure 4: Kaplan–Meier pbc data cumulative hazard estimates comparing the treatment with
placebo.

Coef. Std. Err. Z stat.

Age 0.0333 0.0087 3.8400
log(Albumin) -3.0553 0.7241 -4.2200
log(Bilirubin) 0.8792 0.0987 8.9000

Edema 0.7847 0.2991 2.6200
log(Prothrombin Time) 3.0157 1.0238 2.9500

Table 3: Regression model with log transformations of continuous variables, 312 randomized
cases with PBC.

In Figure 3, we demonstrated grouping on a categorical variable (treatment). However,
with the exception of edema, all variables in the Fleming and Harrington (1991) model are
continuous. To demonstrate plotting grouped survival on a continuous variable, we examine
KM estimates of survival by stratified bilirubin grouping from Fleming and Harrington (1991)
Figure 4.4.2.

The following code block duplicates the pbc.trial data for this exercise. We set up the bili

groups using the cut function with intervals matching the reference figure. For this example
we combine the data generation and plot steps into a single line of code. The error argument
of the plot.gg_survival is used to control display of the confidence bands. We suppress the
intervals for this figure with error = "none" and again modify the plot display with ggplot2
commands as before to generate Figure 5.

R> # Duplicate the trial data

R> pbc.bili <- pbc.trial

R>

R> # Group by bilirubin values

R> pbc.bili$bili_grp <- cut(pbc.trial$bili,

Ehrlinger et. al. 9

+ breaks = c(0, .8, 1.3, 3.4,

+ max(pbc.trial$bili)))

R>

R> # plot the gg_survival object directly

R> plot(gg_survival(interval = "years",censor = "status",

+ by = "bili_grp", data = pbc.bili),

+ error = "none") +

+ labs(y = "Survival Probability",

+ x = "Observation Time (years)",

+ color = "Bilirubin")

0.00

0.25

0.50

0.75

1.00

0 3 6 9 12
Observation Time (years)

S
ur

vi
va

l P
ro

ba
bi

lit
y

Bilirubin

(0,0.8]

(0.8,1.3]

(1.3,3.4]

(3.4,28]

Figure 5: Kaplan–Meier pbc data survival estimates comparing Bilirubin measures. Groups
defined in Fleming and Harrington (1991).

3. Random Survival Forest

A Random Forest (Breiman 2001) is grown by bagging (Breiman 1996a) a collection of clas-
sification and regression trees (CART) (Breiman, Friedman, Olshen, and Stone 1984). The
method uses a set of B bootstrap (Efron and Tibshirani 1994) samples, growing an indepen-
dent tree model on each sub-sample of the population. Each tree is grown by recursively
partitioning the population based on optimization of a split rule over the p-dimensional co-
variate space. At each split, a subset of m ≤ p candidate variables are tested for the split rule
optimization, dividing each node into two daughter nodes. Each daughter node is then split
again until the process reaches the stopping criteria of either node purity or node member
size, which defines the set of terminal (unsplit) nodes for the tree. In regression trees, node
impurity is measured by mean squared error, whereas in classification problems, the Gini
index is used (Friedman 2000) .

Random Forests sort each training set observation into one unique terminal node per tree.

10 Random Forests for Survival

Tree estimates for each observation are constructed at each terminal node, among the terminal
node members. The Random Forest estimate for each observation is then calculated by
aggregating, averaging (regression) or votes (classification), the terminal node results across
the collection of B trees.

Random Forests for survival (Ishwaran 2007; Ishwaran et al. 2008) (RF-S) are an extension
of Breiman (2001) Random Forests for right censored time to event data. A forest of survival
trees is grown using a log-rank splitting rule to select the optimal candidate variables. Survival
estimate for each observation are constructed with a Kaplan–Meier (KM) estimator within
each terminal node, at each event time.

Random Forests for survival adaptively discover nonlinear effects and interactions and are
fully nonparametric. Averaging over trees, with randomization while growing a tree, enables
RF-S to approximate complex survival functions, including non-proportional hazards, while
maintaining low prediction error. Ishwaran and Kogalur (2010) showed that RF-S is uniformly
consistent and that survival forests have a uniform approximating property in finite-sample
settings, a property not possessed by individual survival trees.

The randomForestSRC rfsrc function call grows the forest, determining the type of forest
by the response supplied in the formula argument. In the following code block, we grow a
random forest for survival, by passing a survival (Surv) object to the forest. The forest uses
all remaining variables in the pbc.trial data set to generate survival estimates.

R> # Grow and store the random survival forest

R> # Use random splitting (nsplit = 10) and impute

R> # missing values (na.action = "na.impute")

R> rfsrc_pbc <- rfsrc(Surv(years, status) ~ .,

+ data = pbc.trial,

+ nsplit = 10,

+ na.action = "na.impute")

R>

R> # Print the forest summary

R> rfsrc_pbc

Sample size: 312

Number of deaths: 125

Was data imputed: yes

Number of trees: 1000

Minimum terminal node size: 3

Average no. of terminal nodes: 60.071

No. of variables tried at each split: 5

Total no. of variables: 17

Analysis: RSF

Family: surv

Splitting rule: logrank *random*

Number of random split points: 10

Error rate: 15.99%

The print.rfsrc function returns information on how the random forest was grown. Here
the family = "surv" forest has ntree = 1000 trees (the default ntree argument). We used

Ehrlinger et. al. 11

nsplit = 10 random split points to select random split rule, instead of an optimization on
each variable at each split for performance reasons.

3.1. Generalization error

One advantage of Random Forests is a built in generalization error estimate. Each bootstrap
sample selects approximately 63.2% of the population on average. The remaining 36.8% of
observations, the Out-of-Bag (Breiman 1996b) (OOB) sample, can be used as a hold out test
set for each tree. An OOB prediction error estimate can be calculated for each observation
by predicting the response over the set of trees which were NOT trained with that particular
observation. Out-of-Bag prediction error estimates have been shown to be nearly identical
to n–fold cross validation estimates (Hastie, Tibshirani, and Friedman 2009). This feature of
Random Forests allows us to obtain both model fit and validation in one pass of the algorithm.

The gg_error function operates on the random forest object to extract the error estimates
from the forest is grown. The following code block first creates a gg_error object, then uses
the plot.gg_error function to create a ggplot2 object for display.

0.10

0.15

0.20

0.25

0.30

0 250 500 750 1000
Number of Trees

O
O

B
 E

rr
or

 R
at

e

Figure 6: Random forest prediction error estimates as a function of the number of trees in
the forest.

This figure demonstrates that it does not take a large number of trees to stabilize the forest
prediction error estimate. However, to ensure that each variable has enough of a chance to be
included in the forest prediction process, we do want to create a rather large random forest
of trees.

3.2. Training Set Prediction

The gg_rfsrc function extracts the OOB prediction estimates from the random forest. This
code block executes the the data extraction and plotting in one line, since we are not in-
terested in holding the prediction estimates for later reuse. Also note that we again add
in the additional ggplot2 commands to modify the display of the plot object. Each of the

12 Random Forests for Survival

‘ggRandomForests‘ S3 plot commands return ggplot2 objects, which we can also store for
modification or reuse later in the analysis.

0.00

0.25

0.50

0.75

1.00

0 3 6 9 12
time (years)

S
ur

vi
va

l P
ro

ba
bi

lit
y

Figure 7: Random forest predicted survival. Blue lines correspond to censored observations,
red lines correspond to patients who experienced the event (death).

Figure 7 shows the predicted survival from an RF-S model, where censored device prediction
is colored in blue, and devices experiencing an event are colored in red.

0.00

0.25

0.50

0.75

1.00

0 3 6 9 12
time (years)

S
ur

vi
va

l P
ro

ba
bi

lit
y

Figure 8: Mean value random forest predicted survival with shaded 95% confidence band.

3.3. Imputation

Ehrlinger et. al. 13

0.00

0.25

0.50

0.75

1.00

0 3 6 9 12
time (years)

S
ur

vi
va

l P
ro

ba
bi

lit
y

group

DPCA

placebo

Figure 9: Mean value random forest predicted survival with shaded 95% confidence band.
Treatment effects.

There are two modeling issues when dealing with missing data values: How does the algorithm
build a model when values are missing from the training data, and how does the algorithm
predict a response when values are missing from the test data. The standard procedure for
linear models is to either remove or impute the missing data values. Removing the missingness
is done by either removing the variable with missing values (column wise) or removing the
observations (row wise) impute missing values before fitting a model. Removal is a simple
solution, but may bias results when observations or variables are scarce.

The randomForestSRC package has an internal missing value imputation algorithm with in
the rfsrc function Ishwaran et al. (2008). Rather than impute all missing values before
growing the forest, the algorithm takes a “just in time” approach. At each node split, the set
of m candidate variables is checked for missing data. Missing values are imputed by randomly
drawing values from non-missing values within the node before calculating the split-statistic
on observations without missing data. The imputed values are used to sort observations into
the subsequent daughter nodes and then discarded before the next split occurs. The process
is repeated until terminal nodes are reached.

A final imputation step can be used to fill in missing values from within the terminal nodes.
This step uses a process to the previous imputation but uses the OOB non-missing terminal
node data for the random draws. These values are aggregated (averaging for continuous
variables, voting for categorical variables) over the B trees in the forest to estimate an imputed
data set. By default, the missing values are not filled into the training data, but are available
within the forest object.

At each imputaton step, the random forest assumes that similar observations are grouped
together within each node. The random draws to fill in missing data do not bias the split
rule, but only sort observations similar in non-missing data into like nodes. A feature if this
approach is the ability of predicting on test set observations without having to impute missing
values.

14 Random Forests for Survival

3.4. Test Set Predictions

R> # Predict survival for 106 patients not in randomized trial

R> rfsrc_pbc_test <- predict(rfsrc_pbc,

+ newdata = pbc.test,

+ na.action = "na.impute")

R>

R> # Print prediction summary

R> rfsrc_pbc_test

Sample size of test (predict) data: 106

Number of deaths in test data: 36

Was test data imputed: yes

Number of grow trees: 1000

Average no. of grow terminal nodes: 59.902

Total no. of grow variables: 17

Analysis: RSF

Family: surv

Test set error rate: 19.1%

0.00

0.25

0.50

0.75

1.00

0 3 6 9 12
time (years)

S
ur

vi
va

l P
ro

ba
bi

lit
y

Figure 10: Test set prediction: 106 observations.

4. Variable Selection

Random forests are not parsimonious, but use all variables available in the construction of
a response predictor. Also, unlike parametric models, Random Forests do not require the
explicit specification of the functional form of covariates to the response. Therefore there is
no explicit p-value/significance test for variable selection with a random forest model. Instead,

Ehrlinger et. al. 15

RF ascertain which variables contribute to the prediction through the split rule optimization,
optimally choosing variables which separate observations. We use two separate approaches
to explore the RF selection process, Variable Importance (Section 4.1) and Minimal Depth
(Section 4.2).

4.1. Variable Importance

Variable importance (VIMP) was originally defined in CART using a measure involving surro-
gate variables (see Chapter 5 of Breiman et al. (1984)). The most popular VIMP method uses
a prediction error approach involving ”noising-up” each variable in turn. VIMP for a variable
xv is the difference between prediction error when xv is noised up by randomly permuting
its values, compared to prediction error under the observed values (Breiman 2001; Liaw and
Wiener 2002; Ishwaran 2007; Ishwaran et al. 2008).

Since VIMP is the difference between OOB prediction error before and after permutation, a
large VIMP value indicates that misspecification detracts from the variable predictive accu-
racy in the forest. VIMP close to zero indicates the variable contributes nothing to predictive
accuracy, and negative values indicate the predictive accuracy improves when the variable is
mispecified. In the later case, we assume noise is more informative than the true variable. As
such, we ignore variables with negative and near zero values of VIMP, relying on large positive
values to indicate that the predictive power of the forest is dependent on those variables.

The gg_vimp function extracts VIMP measures for each of the variables used to grow the
forest. The plot.gg_vimp function shows the variables, in VIMP rank order. Figure 11
details VIMP ranking for the pbc trial, from the largest (serum bilirubin) at the top, to
smallest (Treatment) at the bottom. VIMP measures are shown using bars to compare the
scale of the error increase under permutation and colored by the sign of the measure (red for
negative values).

R> plot.gg_vimp(rfsrc_pbc, lbls = st.labs) +

+ theme(legend.position = c(.8,.2))+

+ labs(fill = "VIMP > 0")+

+ scale_fill_brewer(palette = "Set1")

Note that four of the five highest ranking variables by VIMP match those selected by the Flem-
ing and Harrington (1991) model listed in Table 3, with urine copper (2) ranking higher than
age (8).

4.2. Minimal Depth

In VIMP, prognostic risk factors are determined by testing the forest prediction under al-
ternative data settings, ranking the most important variables according to their impact on
predictive ability of the forest. An alternative method uses inspection of the forest construc-
tion to rank variables. Minimal depth (Ishwaran et al. 2010; Ishwaran, Kogalur, Chen, and
Minn 2011) assumes that variables with high impact on the prediction are those that most
frequently split nodes nearest to the trunks of the trees (i.e. at the root node) where they
partition large samples of the population.

Within a tree, node levels are numbered based on their relative distance to the trunk of the
tree (with the root at 0). Minimal depth measures the important risk factors by averaging

16 Random Forests for Survival

triglicerides (mg/dl)
Treament (DPCA, Placebo)

alkaline phosphatase (U/liter)
Spiders
Female

platelets per cubic ml/1000
serum cholesterol (mg/dl)

Hepatomegaly
SGOT (U/ml)

histologic stage
age in years

prothrombin time (sec)
Asictes

albumin (gm/dl)
Edema

urine copper (ug/day)
serum bilirubin (mg/dl)

0.00 0.02 0.04 0.06
Variable Importance

VIMP > 0

FALSE

TRUE

Figure 11: Random forest variable Importance (VIMP). Blue bars indicate important vari-
ables (positive VIMP), red indicates noise variables (negative VIMP).

the depth of the first split for each variable over all trees within the forest. Lower values of
this measure indicate variables important in splitting large groups of patients.

The maximal subtree for a variable x is the largest subtree whose root node splits on x. All
parent nodes of x’s maximal subtree have nodes that split on variables other than x. The
largest maximal subtree possible is at the root node. If a variable does not split the root
node, it can have more than one maximal subtree, or a maximal subtree may also not exist if
there are no splits on the variable. The minimal depth of a variables is a surrogate measure of
predictiveness of the variable. The smaller the minimal depth, the more impact the variable
has sorting observations, and therefore on the forest prediction.

The randomForestSRC var.select function uses the minimal depth methodology for variable
selection, returning an object with both minimal depth and vimp measures. The ggRandom-
Forests gg_minimal_depth function is analogous to the gg_vimp function for minimal depth.
Variables are ranked from most important at the top (minimal depth measure), to least at
the bottom (maximal minimal depth). The vertical dashed line indicates the minimal depth
threshold where smaller minimal depth values indicate higher importance and larger indicate
lower importance.

R> varsel_pbc <- var.select(rfsrc_pbc)

R> ggMindepth <- gg_minimal_depth(varsel_pbc, lbls = st.labs)

R> print(ggMindepth)

gg_minimal_depth

model size : 12

depth threshold : 5.5905

Ehrlinger et. al. 17

PE :[1] 15.994

Top variables:

depth vimp

bili 1.69 0.068978

albumin 2.56 0.013588

copper 2.68 0.018188

prothrombin 2.99 0.011426

chol 3.27 0.004721

edema 3.37 0.017407

age 3.49 0.009321

platelet 3.68 0.001614

sgot 3.78 0.007254

alk 3.91 0.001074

trig 4.42 -0.000329

stage 4.66 0.007795

In general, the selection of variables according to VIMP is to examine the values, looking for
some point along the ranking where there is a large difference in VIMP measures. The minimal
depth threshold method has a more quantitative approach to determine a selection threshold.
Given minimal depth is a quantitative property of the forest construction, Ishwaran et al.
(2010) also derive an analytic threshold for evidence of variable impact. A simple optimistic
threshold rule uses the mean of the minimal depth distribution, classifying variables with
minimal depth lower than this threshold as important in forest prediction. The minimal
depth plot for our model indicates there are twelve variables which have a higher impact
(minimal depth below the mean value threshold) than the remaining five.

R> plot(ggMindepth, lbls = st.labs)

The minimal depth plot of Figure 12 is similar to the VIMP plot in Figure 11, ranking variables
from most important at the top (minimal depth measure), to least at the bottom (maximal
minimal depth). The vertical dashed line indicates the minimal depth threshold where smaller
minimal depth values indicate higher importance and larger indicate lower importance.

Since the VIMP and Minimal Depth measures use different criteria, we expect the variable
ranking to be somewhat different. We use gg_minimal_vimp function to compare rankings
between minimal depth and VIMP.

The points along the red dashed line indicates where the measures are in agreement. Points
above the red dashed line are ranked higher by VIMP than by minimal depth, indicating the
variables are sensitive to misspecification. Those below the line have a higher minimal depth
ranking, indicating they are better at dividing large portions of the population. The further
the points are from the line, the more the discrepancy between measures. The construction
of this figure is skewed towards a minimal depth approach, by ranking variables along the
y-axis, though points are colored by the sign of VIMP.

In our example, both minimal depth and VIMP indicate the strong relation of serum bilirubin
to the forest prediction, and agrees reasonably well with the Fleming and Harrington (1991)

18 Random Forests for Survival

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●Female
Spiders

Treament (DPCA, Placebo)
Hepatomegaly

Asictes
histologic stage

triglicerides (mg/dl)
alkaline phosphatase (U/liter)

SGOT (U/ml)
platelets per cubic ml/1000

age in years
Edema

serum cholesterol (mg/dl)
prothrombin time (sec)
urine copper (ug/day)

albumin (gm/dl)
serum bilirubin (mg/dl)

3 5 7 9
Minimal Depth of a Variable

Figure 12: Minimal Depth variable selection. Low minimal depth indicates important vari-
ables. The dashed line is the threshold of maximum value for variable selection.

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

serum bilirubin (mg/dl)
albumin (gm/dl)

urine copper (ug/day)
prothrombin time (sec)

serum cholesterol (mg/dl)
Edema

age in years
platelets per cubic ml/1000

SGOT (U/ml)
alkaline phosphatase (U/liter)

triglicerides (mg/dl)
histologic stage

Asictes
Hepatomegaly

Treament (DPCA, Placebo)
Spiders
Female

2 4 6 8 10 12 14 16
VIMP Rank

M
in

im
al

 D
ep

th
 (

R
an

k
O

rd
er

)

VIMP

●

●

+

−

Figure 13: Comparing Minimal Depth and Vimp rankings. Points on the red dashed line are
ranked equivalently, points below have higher VIMP, those above have higher minimal depth
ranking. Variables are colored by the sign of the VIMP measure.

Ehrlinger et. al. 19

model. We now turn to investigating how these, and other variables, are related to the
predicted response.

5. Variable Dependence

As random forests are not a parsimonious methodology, we use the minimal depth and VIMP
measures to reduce the number of variables we need to examine to a manageable subset. Once
we have an idea of which variables contribute most to the predictive accuracy of the forest,
we would like to know how the response depends on these variables.

Although often characterized as a black box method, it is possible to express a random forest
in functional form. In the end the forest predictor is some function, although complex, of
the predictor variables f̂rf = f(x). We use graphical methods to examine the forest predicted
response dependency on covariates. We again have two options, variable dependence (Sec-
tion 5.1) plots are quick and easy to generate, and partial dependence(Section 5.2) plots are
computationally intensive but give us a risk adjusted look at variable dependence.

5.1. Marginal Dependence

Variable dependence plots show the predicted response as a function of a covariate of interest,
where each observation is represented by a point on the plot. Each predicted point represents
an individual observation, dependent on the full combination of all other covariates, not only
on the covariate of interest. Interpretation of variable dependence plots can only be in general
terms, as point predictions are a function of all covariates in that particular observation.
However, variable dependence is straight forward to calculate, involving only the getting the
predicted response for each observation.

In survival settings, we must also account for the additional dimension of time. In this case,
we plot the response at a specific time point of interest, for example survival at 1 or 3 years,
as shown by the vertical dashed line in Figure 14. The point prediction is then the predicted
value of each curve at that intersecting time line, and plot that against the covariate value
for that observations

R> ggRFsrc +

+ geom_vline(aes(xintercept = c(1, 3)), linetype = "dashed") +

+ coord_cartesian(x = c(0, 4))

, shown in Figure 16. Again censored cases are shown in blue circles, events are indicated by
the red ”x” symbols. Each predicted point is dependent on the full combination of all other
covariates, not only on the covariate displayed in the dependence plot, so interpretation of
these variable dependence plots can only be in general terms. The smooth loess line (Cleveland
1981; Cleveland and Devlin 1988) indicates the trend of the prediction over surgical date
progression.

R> # Get the minimal depth selected variables

R> xvar <- varsel_pbc$topvars

R>

R> # Data generation

20 Random Forests for Survival

0.00

0.25

0.50

0.75

1.00

0 1 2 3 4
time (years)

S
ur

vi
va

l P
ro

ba
bi

lit
y

Figure 14: Random forest OOB predicted patient survival. Red curves correspond to patients
which have died, blue corresponds to alive (or censored) cases. Vertical dashed lines indicate
the 1 and 3 year survival estimates.

R> ggrf <- gg_variable(rfsrc_pbc, time = c(1, 3),

+ time.labels = c("1 Year", "3 Years"))

R>

R> # Plot the bilirubin variable dependence plot

R> plot(ggrf, xvar = "bili", se = .95, alpha = .3) +

+ labs(y = "Survival", x = st.labs["bili"]) +

+ theme(legend.position = "none") +

+ scale_color_manual(values = strCol, labels = event.labels) +

+ scale_shape_manual(values = event.marks, labels = event.labels)+

+ coord_cartesian(y = c(-.01,1.01))

We use the gg_variable function call to extract the training set variables and the predicted
OOB response from randomForestSRC::rfsrc and randomForestSRC::predict objects. In
the following code block, we will store the gg_variable data object for later use, as all
remaining variable dependence plots can be constructed from this (gg_v) object. We will
also use the minimal depth selected variables (minimal depth lower than the threshold value)
from the previously stored gg_minimal_depth object (gg_md$topvars) to filter the variables
of interest.

The plot.gg_variable function call operates in the gg_variable object. We pass it the
list of variables of interest (xvar) and request a single panel (panel = TRUE) to display the
figures. By default, the plot.gg_variable function returns a list of ggplot2 objects, one
figure for each variable named in xvar argument. The next three arguments are passed to
internal ggplot2 plotting routines. The se and span arguments are used to modify the internal
call to geom_smooth for fitting smooth lines to the data. The alpha argument lightens the
coloring points in the geom_point call, making it easier to see point over plotting. We also

Ehrlinger et. al. 21

1 Year

3 Years
0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0 10 20
serum bilirubin (mg/dl)

S
ur

vi
va

l

Figure 15: Bilirubin variable dependence at 1 and 3 years. Individual cases are marked with
blue circles (alive or censored) and red xs (dead). Loess smooth curve with shaded 95%
confidence band indicates the survival trend with increasing bilirubin.

22 Random Forests for Survival

demonstrate modification of the plot labels using the labs function.

R> # Pull the categorical variables

R> xvar.cat <- c("edema", "stage")

R> xvar <- xvar[-which(xvar %in% xvar.cat)]

R>

R> # plot the next 5 continuous variable dependence plots.

R> plot(ggrf, xvar = xvar[2:6], panel = TRUE,

+ se = FALSE, alpha = .3,

+ method = "glm", formula = y~poly(x,2)) +

+ labs(y = "Survival") +

+ theme(legend.position = "none") +

+ scale_color_manual(values = strCol, labels = event.labels) +

+ scale_shape_manual(values = event.marks, labels = event.labels)+

+ coord_cartesian(y = c(-.01,1.01))

albumin copper prothrombin chol age

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

1 Year
3 Years

2 3 4 0 200 400 600 10 12 14 16 500 10001500 40 60 80

S
ur

vi
va

l

Figure 16: Bilirubin variable dependence at 1 and 3 years. Individual cases are marked with
blue circles (alive or censored) and red xs (dead). Loess smooth curve with shaded 95%
confidence band indicates the survival trend with increasing bilirubin.

The panels are sorted to match the order of variables in the xvar argument and include a
smooth loess line (Cleveland 1981; Cleveland and Devlin 1988) to indicate the trend of the
prediction dependence over the covariate values.

There is not a convenient method to panel scatter plots and boxplots together, so we recom-
mend creating panel plots for each variable type separately. Variable dependence plots for
categorical variables are constructed using boxplots to show the distribution of the predictions
within each category.

Ehrlinger et. al. 23

R> plot(ggrf, xvar = xvar.cat, panel = TRUE, notch = TRUE, alpha = .3) +

+ labs(y = "Survival") +

+ theme(legend.position = "none") +

+ scale_color_manual(values = strCol, labels = event.labels) +

+ scale_shape_manual(values = event.marks, labels = event.labels)+

+ coord_cartesian(y = c(-.01,1.02))

edema stage

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

1 Year
3 Years

0 0.5 1 1 2 3 4

S
ur

vi
va

l

Figure 17: Variable dependence plots at 1 and 3 years for continuous variables age, albumin,
copper and prothrombin. Individual cases are marked with blue circles (alive or censored)
and red xs (dead). Loess smooth curve indicates the survival trend with increasing variable
value.

5.2. Partial Dependence

Partial dependence plots are a risk adjusted alternative to marginal variable dependence.
Partial plots are generated by integrating out the effects of variables beside the covariate of
interest. The figures are constructed by selecting points evenly spaced along the distribution
of the X variable. For each of these values (X = x), we calculate the average Random Forest
prediction over all other covariates in X by

f̃(x) =
1

n

n∑
i=1

f̂(x, xi,o), (1)

where f̂ is the predicted response from the random forest and xi,o is the value for all other

24 Random Forests for Survival

covariates other than X = x for the observation i (Friedman 2000). Partial dependence plots
in time to event settings are shown at specific time points, similar to variable dependence.

Partial plots are computationally intensive to create, especially when there are a large number
of observations. The default parameters for the randomForestSRC::plot.variable function
generate partial dependence estimates at npts = 25 points along the variable of interest. For
each point of interest, the plot.variable function averages n response predictions. This is
repeated for each of the variables of interest and the results are returned for later analysis.

R> # Calculate the 1, 3 and 5 year partial dependence

R> partial_pbc <- lapply(c(1,3,5), function(tm){

+ plot.variable(rfsrc_pbc, surv.type = "surv",

+ time = tm,

+ xvar.names = xvar, partial = TRUE,

+ show.plots = FALSE)

+ })

R> # Convert all partial plots to gg_partial objects

R> gg_dta <- lapply(partial_pbc, gg_partial)

R>

R> # Combine the objects to get multiple time curves

R> # along variables on a single figure.

R> pbc_ggpart <- combine.gg_partial(gg_dta[[1]], gg_dta[[2]],

+ lbls = c("1 Year", "3 Years"))

R>

R>

R> plot(pbc_ggpart[["bili"]], se = FALSE) +

+ theme(legend.position = c(.2, .2)) +

+ labs(y = "Survival",

+ x = st.labs["bili"],

+ color = "Time", shape = "Time")+

+ scale_color_brewer(palette = "Set2")+

+ coord_cartesian(y = c(25,101))

Figure 18 shows the partial dependence of one (red) and three (blue) survival on bilirubin.
Non-proportional hazards are evident in Figure 18.

R> # Create a temporary holder and remove the stage and edema data

R> ggpart <- pbc_ggpart

R> ggpart$edema <- ggpart$stage <- NULL

R> ggpart$bili <- ggpart$sgot <- ggpart$chol <- NULL

R> ggpart$platelet <- ggpart$trig <- ggpart$alk <- NULL

R>

R> # Panel plot the remainder.

R> plot(ggpart, se = FALSE, panel = TRUE) +

+ labs(x = "", y = "Survival", color = "Time", shape = "Time") +

+ scale_color_brewer(palette = "Set2") +

Ehrlinger et. al. 25

●●●●●●
●●●●●●●●●●● ●●

● ●● ● ● ●

40

60

80

100

0 10 20
serum bilirubin (mg/dl)

S
ur

vi
va

l

Time

● 1 Year

3 Years

Figure 18: Partial dependence plot of (risk adjusted) predicted survival probability as a
function of serum bilirubin at 1 year (red circle) and 3 years (blue triangle). Loess smooth
curves indicates the trend.

+ theme(legend.position = c(.2, .15)) +

+ coord_cartesian(y = c(25,101))

We again order the panels by minimal depth ranking. We see again how the variables are
strongly related to survival, making the partial dependence of the remaining variables look
flat. We also see strong nonlinearity of these variables.

R> ggpart <- vector("list", length=2)

R> ggpart[[1]] <- pbc_ggpart[["edema"]]

R> ggpart[[2]] <- pbc_ggpart[["stage"]]

R> names(ggpart) <- c("edema", "stage")

R> class(ggpart) <- c("gg_partial_list", class(ggpart))

R>

R> plot.gg_partial_list(ggpart, panel=TRUE,

+ notch = TRUE, alpha = .3, outlier.shape = NA) +

+ labs(x = "", y = "Survival (%)", color="Time", shape="Time")+

+ scale_color_brewer(palette = "Set2")+

+ theme(legend.position = c(.2, .2))+

+ coord_cartesian(y = c(25,101))

We could stop here, indicating that the RF analysis has found these ten variables to be
important in predicting the median home values. That strongest associations to home values
where there is a . However, we may also be interested in investigating how variables these
work together to help random forest prediction.

26 Random Forests for Survival

●●●●●●●●●●●●●●●●●●● ●●● ● ● ●

● ●
●

● ●●●●●●●●●●●●●●●●●●●● ●

●●●●●●●●●●●●●●●●●●●●●●

● ● ●

● ●●●● ●●●●●●●●●●●●●●● ●● ● ● ●

copper albumin

prothrombin age

40

60

80

100

40

60

80

100

0 200 400 600 2 3 4

10 12 14 16 40 60 80

S
ur

vi
va

l

Time

● 1 Year

3 Years

Figure 19: Partial dependence plot of (risk adjusted) predicted survival probability as a
function continuous variables prothrombin time, albumin, age and urin copper at 1 year (red
circle) and 3 years (blue triangle).

Ehrlinger et. al. 27

edema stage

40

60

80

100

0 0.5 1 1 2 3 4

S
ur

vi
va

l (
%

)

Time

1 Year

3 Years

Figure 20: Partial dependence plot of (risk adjusted) predicted survival probability as a
function of edema (categorical variable) at 1 year (red) and 3 years (blue triangle). Points
indicate risk adjusted prediction for all patients within each edema group. Box plots indicate
distributional properties within each group.

6. Time Dimension

The cached gg_partial_coplot data object is included as a data set in the ggRandomForests
package. We load the data, attach numeric values for the copper groups, and generate the
figure.

The contours are generated over the raw gg_partial estimation points, not smooth curves as
shown in the partial plot and coplot figures. We can also generate a surface with this data using
the plot3D http://CRAN.R-project.org/package=plot3D package and the plot3D::surf3D
function. Viewed in 3D, a surface can help to better understand what the contour lines mean.

7. Variable Interactions

Using the different variable dependence measures, it is also possible to calculate measures
of pairwise interactions among variables. Recall that minimal depth measure is defined by
averaging the tree depth of variable i relative to the root node. To detect interactions, this
calculation can be modified to measure the minimal depth of a variable j with respect to the
maximal subtree for variable i (Ishwaran et al. 2010, 2011).

The randomForestSRC::find.interaction function traverses the forest, calculating all pair-
wise minimal depth interactions, and returns a p × p matrix of interaction measures. The
diagonal terms are normalized to the root node, and off diagonal terms are normalized mea-
sures of pairwise variable interaction.

R> interaction_pbc <- find.interaction(rfsrc_pbc)

R>

http://CRAN.R-project.org/package = plot3D

28 Random Forests for Survival

Time

Bilir
ub

in

S
urvival

Figure 21: Partial coplot surface.

Ehrlinger et. al. 29

R> ggint <- gg_interaction(interaction_pbc)

The gg_interaction function wraps the find.interaction matrix for use with the provided
S3 plot and print functions. The xvar argument indicates which variables we’re interested in
looking at. We again use the cache strategy, and collect the figures together using the panel

= TRUE option.

R> plot(ggint, xvar = xvar) +

+ labs(y = "Interactive Minimal Depth") +

+ theme(legend.position = "none")

●

● ● ● ●

●

●
● ● ●

●
●

●

●
●

●

●

●

●

● ● ●

●

●
● ● ●

●
●

●

● ●
●

●

● ●

●

● ●

●

● ● ● ●
●

●

●

● ●
●

●

● ● ●

●

●

●

●
● ● ●

●
●

●

●
● ●

●

● ● ● ●

●

●

● ● ● ●
●

●

●

● ●
●

●

●
● ● ● ●

●

● ● ● ● ●
●

●

● ● ●
●

● ● ● ● ●

●

●

● ● ● ●

●

●

●
●

●

●

● ● ● ● ●

●

●

●

● ● ●
●

●
●

●
●

●

● ● ● ● ●

●

●
●

●

● ●

●

●

● ●
●

●

● ● ● ● ●

●

● ● ●

●

●
●

●
● ●

●
●

● ● ● ● ●

●

● ● ● ●

●

●

●

● ●
●

●

● ● ● ● ●

●

●
● ● ● ●

●

●

● ●
●

●

bili albumin copper prothrombin

chol edema age platelet

sgot alk trig stage

0.25

0.50

0.75

1.00

0.25

0.50

0.75

1.00

0.25

0.50

0.75

1.00

bi
li

al
bu

m
in

co
pp

er
pr

ot
hr

om
bi

n
ch

ol
ed

em
a

ag
e

pl
at

el
et

sg
ot

al
k

tr
ig

st
ag

e
as

ci
te

s
he

pa
to

m
tr

ea
tm

en
t

sp
id

er
s

se
x

bi
li

al
bu

m
in

co
pp

er
pr

ot
hr

om
bi

n
ch

ol
ed

em
a

ag
e

pl
at

el
et

sg
ot

al
k

tr
ig

st
ag

e
as

ci
te

s
he

pa
to

m
tr

ea
tm

en
t

sp
id

er
s

se
x

bi
li

al
bu

m
in

co
pp

er
pr

ot
hr

om
bi

n
ch

ol
ed

em
a

ag
e

pl
at

el
et

sg
ot

al
k

tr
ig

st
ag

e
as

ci
te

s
he

pa
to

m
tr

ea
tm

en
t

sp
id

er
s

se
x

bi
li

al
bu

m
in

co
pp

er
pr

ot
hr

om
bi

n
ch

ol
ed

em
a

ag
e

pl
at

el
et

sg
ot

al
k

tr
ig

st
ag

e
as

ci
te

s
he

pa
to

m
tr

ea
tm

en
t

sp
id

er
s

se
x

In
te

ra
ct

iv
e

M
in

im
al

 D
ep

th

Figure 22: Minimal depth variable interaction panel with prothrombin time, albumin, urine
copper and edema. Higher values indicate lower interactivity with target variable.

The gg_interaction figure plots the interactions for the target variable (shown in the red
cross) with interaction scores for all remaining variables. We expect the covariate with lowest
minimal depth (‘bili‘) to be associated with almost all other variables, as it typically splits
close to the root node, so viewed alone it may not be as informative as looking at a collection
of interactive depth plots. Scanning across the panels, we see each successive target depth
increasing, as expected. We also see the interactive variables increasing with increasing target
depth.

30 Random Forests for Survival

8. Conditional Dependence Plots

Conditioning plots (coplots) (Chambers 1992; Cleveland 1993) are a powerful visualization
tool to efficiently study how a response depends on two or more variables (Cleveland 1993).
The method allows us to view data by grouping observations on some conditional membership.
The simplest example involves a categorical variable, where we plot our data conditional on
class membership, for instance on the Charles river logical variable. We can view a coplot
as a stratified variable dependence plot, indicating trends in the RF prediction results within
panels of group membership.

Interactions with categorical data are straight forward, and can be generated directly from
variable dependence plots. Recall the 1 year variable dependence for Billirubin, shown in
Figure 23.

R> ggvar <- gg_variable(rfsrc_pbc, time = 1)

R> ggvar$stage <- paste("stage = ", ggvar$stage, sep = "")

R>

R> var_dep <- plot(ggvar, xvar = "bili",

+ method = "glm",

+ alpha = .5, se = FALSE) +

+ labs(y = "Survival",

+ x = st.labs["bili"]) +

+ theme(legend.position = "none") +

+ scale_color_manual(values = strCol, labels = event.labels) +

+ scale_shape_manual(values = event.marks, labels = event.labels)+

+ coord_cartesian(y = c(-.01,1.01))

R>

R> show(var_dep)

We can view the conditional dependence of survival against bilirubin, versus other categorical
covariates, say edema and stage (categorical variables), by adding a facet argument.

R> var_dep +

+ facet_grid(edema~stage)

Conditional membership with a continuous variable requires stratification at some level. Often
we can make these stratification along some feature of the variable, for instance a variable
with integer values, or 5 or 10 year age group cohorts. However in the variables of interest
in our example, we have no ”logical” stratification indications. Therefore we will arbitrarily
stratify our variables into 6 groups of roughly equal population size using the quantile_cuts

function. We pass the break points located by quantile_cuts to the cut function to create
grouping intervals, which we can then add to the gg_variable object before plotting with the
plot.gg_variable function. The simple modification to convert variable dependence plots
into condition variable dependence plots is to use the ggplot2::facet_wrap command to
generate a panel for each grouping interval.

R> # Find intervals with similar number of observations.

R> copper_cts <-quantile_pts(ggvar$copper, groups = 6, intervals = TRUE)

Ehrlinger et. al. 31

0.00

0.25

0.50

0.75

1.00

0 10 20
serum bilirubin (mg/dl)

S
ur

vi
va

l

Figure 23: Variable dependence plot. Survival at 1 year against bilirubin. Individual cases are
marked with blue circles (alive or censored) and red x (dead). Loess smooth curve indicates
the trend as bilirubin increases.

stage = 1 stage = 2 stage = 3 stage = 4

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0
0.5

1

0 10 20 0 10 20 0 10 20 0 10 20
serum bilirubin (mg/dl)

S
ur

vi
va

l

Figure 24: Variable dependence coplot. Survival at 1 year against bilirubin, stratified by
treatment and histological stage.

32 Random Forests for Survival

R>

R> # Create the conditional groups and add to the gg_variable object

R> copper_grp <- cut(ggvar$copper, breaks = copper_cts)

R> ggvar$copper_grp <- copper_grp

R>

R> # Adjust naming for facets

R> levels(ggvar$copper_grp) <- paste("copper = ",levels(copper_grp), sep = "")

R>

R> # plot.gg_variable

R> plot(ggvar[-which(is.na(ggvar$copper)),], xvar = "bili",

+ method = "glm", alpha = .5, se = FALSE) +

+ labs(y = "Survival", x = st.labs["bili"]) +

+ theme(legend.position = "none") +

+ scale_color_manual(values = strCol, labels = event.labels) +

+ scale_shape_manual(values = event.marks, labels = event.labels)+

+ facet_wrap(~copper_grp)+

+ coord_cartesian(y = c(-.01,1.01))

copper = (4,35] copper = (35,64] copper = (64,96]

copper = (96,141] copper = (141,209] copper = (209,588]
0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0 10 20 0 10 20 0 10 20
serum bilirubin (mg/dl)

S
ur

vi
va

l

Figure 25: Variable dependence coplot. Survival at 1 year against bilirubin, stratified by
conditonal membership in Urine Copper measurement intervalse.

To get a better feel for how the response depends on both variables, it is instructive to look
at the complement coplot. We repeat the previous coplot process, predicted survival as a
function of the copper variable, conditional on membership within 6 groups bili intervals.

R> # Find intervals with similar number of observations.

R> bili_cts <-quantile_pts(ggvar$bili, groups = 6, intervals = TRUE)

Ehrlinger et. al. 33

R>

R> # We need to move the minimal value so we include that observation

R> bili_cts[1] <- bili_cts[1] - 1.e-7

R>

R> # Create the conditional groups and add to the gg_variable object

R> bili_grp <- cut(ggvar$bili, breaks = bili_cts)

R> ggvar$bili_grp <- bili_grp

R>

R> # Adjust naming for facets

R> levels(ggvar$bili_grp) <- paste("bilirubin = ",levels(bili_grp), sep = "")

R>

R> # plot.gg_variable

R> plot(ggvar[-which(is.na(ggvar$copper)),], xvar = "copper",

+ method = "glm", alpha = .5, se = FALSE) +

+ labs(y = "Survival", x = st.labs["copper"]) +

+ theme(legend.position = "none") +

+ scale_color_manual(values = strCol, labels = event.labels) +

+ scale_shape_manual(values = event.marks, labels = event.labels)+

+ facet_wrap(~bili_grp)+

+ coord_cartesian(y = c(-.01,1.01))

bilirubin = (0.3,1.7] bilirubin = (1.7,3.1] bilirubin = (3.1,5.1]

bilirubin = (5.1,7.1] bilirubin = (7.1,14] bilirubin = (14,28]
0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0 200 400 600 0 200 400 600 0 200 400 600
urine copper (ug/day)

S
ur

vi
va

l

Figure 26: Variable dependence coplot. Survival at 1 year against bilirubin, stratified by
conditonal membership in Urine Copper measurement intervalse.

We get similar information from this view, However viewed together we get a better sense of
how the variables work together (interact) in the median value prediction.

Note that typically Cleveland (1993) conditional plots for continuous variables included over-

34 Random Forests for Survival

lapping intervals along the grouped variable. We chose to use mutually exclusive continuous
variable intervals for multiple reasons:

• Simplicity - We can create the coplot figures directly from the gg_variable object by
adding a conditional group column directly to the object.

• Interpretability - We find it easier to interpret and compare the panels if each observation
is only in a single panel.

• Clarity - We prefer using more space for the data portion of the figures than typically
displayed in the coplot function available in base R, which require the bar plot to
present the overlapping segments.

It is still possible to augment the gg_variable to include overlapping conditional membership
with continuous variables by duplicating rows of the object, and setting the correct conditional
group membership. The plot.gg_variable function recipe above could then be used to
generate the panel plot, with panels ordered according to the factor levels of the grouping
variable. We leave this as an exercise for the reader.

9. Partial dependence coplots

By characterizing conditional plots as stratified variable dependence plots, the next logical step
would be to generate an analogous conditional partial dependence plot. The process is similar
to variable dependence coplots, first determine conditional group membership, then calculate
the partial dependence estimates on each subgroup using the randomForestSRC::plot.variable
function with a the subset argument for each grouped interval. The gg_partial_coplot

function is a wrapper for generating a conditional partial dependence data object. Given a ran-
dom forest (randomForestSRC::rfsrc object) and a groups vector for conditioning the train-
ing data set observations, gg_partial_coplot calls the randomForestSRC::plot.variable

function for a set of training set observations conditional on groups membership. The func-
tion returns a gg_partial_coplot object, a sub class of the gg_partial object, which can
be plotted with the plot.gg_partial function.

The following code block will generate the data object for creating partial dependence coplot
of the predicted median home value as a function of bili conditional on membership within
the 6 groups of copper “intervals” that we examined in the previous section.

Since the gg_partial_coplot makes a call to randomForestSRC::plot.variable for each
group (6) in the conditioning set, we again resort to the data caching strategy, and load the
stored result data from the ggRandomForests package. We modify the legend label to indicate
we’re working with groups of the , and use the palette = "Set2" Color Brewer(http://
colorbrewer2.org/) color palette to choose a nice color theme for displaying the six curves.

R> # Load cached partial plot data

R> data(partial_coplot_pbc, package = "ggRandomForests")

R>

R> # Partial coplot

R> plot(partial_coplot_pbc, se = FALSE)+

+ labs(x = st.labs["bili"], y = "Survival at 1 year (%)",

http://colorbrewer2.org/
http://colorbrewer2.org/

Ehrlinger et. al. 35

+ color = "Urine Copper", shape = "Urine Copper")+

+ scale_color_brewer(palette = "Set2")+

+ coord_cartesian(y = c(49,101))

●●●●●●
●●●●● ● ● ● ●

● ● ●
●

● ● ● ● ● ●

50

60

70

80

90

100

0 10 20
serum bilirubin (mg/dl)

S
ur

vi
va

l a
t 1

 y
ea

r
(%

) Urine Copper

● (4,35]

(35,64]

(64,96]

(96,141]

(141,209]

(209,588]

Figure 27: Partial (risk adjusted) variable dependence coplot. Survival at 1 year against
bilirubin, stratified by copper groups. Points mark risk adjusted estimates, loess smooth
indicates predicted trend within each age group as a function of bilirubin.

Unlike variable dependence coplots, we do not need to use a panel format for partial depen-
dence coplots because we are looking risk adjusted estimates (points) instead of population
estimates.

We can view the partial coplot curves as slices along a surface viewed into the page, either
along increasing or decreasing values. This is made more difficult by our choice to select
groups of similar population size, as the curves are not evenly spaced along the ‘rm‘ variable.
We return to this problem in the next section.

We also construct the complement view, for partial dependence coplot of the ”intervals”, and
cache the following gg_partial_coplot data call.

R> # Load cached partial plot data

R> data(partial_coplot_pbc2, package = "ggRandomForests")

R>

R> # Partial coplot

R> plot(partial_coplot_pbc2, se = FALSE)+

+ labs(x = st.labs["copper"], y = "Survival at 1 year (%)",

+ color = "Bilirubin", shape = "Bilirubin")+

+ scale_color_brewer(palette = "Set2")+

+ coord_cartesian(y = c(49,101))

36 Random Forests for Survival

● ●●●●●●● ●●●● ● ●● ● ● ● ● ● ● ● ● ● ●

50

60

70

80

90

100

0 200 400 600
urine copper (ug/day)

S
ur

vi
va

l a
t 1

 y
ea

r
(%

) Bilirubin

● (0.3,1.7]

(1.7,3.1]

(3.1,5.1]

(5.1,7.1]

(7.1,14]

(14,28]

Figure 28: Partial (risk adjusted) variable dependence coplot. Survival at 1 year against
bilirubin, stratified by copper groups. Points mark risk adjusted estimates, loess smooth
indicates predicted trend within each age group as a function of bilirubin.

10. Partial Plot Surfaces

Visualizing two dimensional projections of three dimensional data is difficult, though there
are tools available to make the data more understandable. To make the interplay of lower
status and average room size a bit more understandable, we will generate a contour plot of
the median home values. We could generate this figure with the data we already have, but
the resolution would be a bit strange. To generate the plot of bili conditional on copper

groupings, we would end up with contours over a grid of bili = 25× copper = 6, for the
alternative copper conditional on bili groups, we’d have the transpose grid of bili = 6×
copper = 25.

Since we are already using the data caching strategy, we will generate another gg_partial_coplot
data set with increased resolution in both the bili and copper dimensions. For this exercise,
we will create 50 copper groups and generate the partial plot data at npts = 50 points along
the bili dimension for each group within the plot.variable call. This code block generates
the 50 copper groups, each containing about 9 observations.

We use the following data call to generate the gg_partial_coplot data object. This took
about 15 minutes to run on a quad core Mac Air.

The cached gg_partial_coplot data object is included as a data set in the ggRandomForests
package. We load the data, attach numeric values for the copper groups, and generate the
figure.

The contours are generated over the raw gg_partial estimation points, not smooth curves as

Ehrlinger et. al. 37

Bilirubin Urin
e

Cop
pe

r

S
urvival at 1 Year

Figure 29: Partial coplot surface.

38 Random Forests for Survival

shown in the partial plot and coplot figures. We can also generate a surface with this data using
the plot3D http://CRAN.R-project.org/package=plot3D package and the plot3D::surf3D
function. Viewed in 3D, a surface can help to better understand what the contour lines mean.

11. Conclusion

References

Breiman L (1996a). “Bagging predictors.” Machine Learning, 26, 123–140.

Breiman L (1996b). “Out–Of–Bag Estimation.” Technical report, Statistics Department,
University of California,Berkeley, CA. 94708. URL ftp://ftp.stat.berkeley.edu/pub/

users/breiman/OOBestimation.ps.Z.

Breiman L (2001). “Random Forests.” Machine Learning, 45(1), 5–32.

Breiman L, Friedman JH, Olshen R, Stone C (1984). Classification and Regression Trees.
Wadsworth and Brooks, Monterey, CA.

Chambers JM (1992). Statistical Models in S. Wadsworth & Brooks/Cole.

Cleveland WS (1981). “LOWESS: A program for smoothing scatterplots by robust locally
weighted regression.” The American Statistician, 35(1), 54.

Cleveland WS (1993). Visualizing Data. Summit Press.

Cleveland WS, Devlin SJ (1988). “Locally-Weighted Regression: An Approach to Regression
Analysis by Local Fitting.” Journal of the American Statistical Association, 83(403), 596–
610.

Efron B, Tibshirani R (1994). An Introduction to the Bootstrap. Chapman & Hall/CRC.
ISBN 0412042312.

Fleming TR, Harrington DP (1991). Counting processes and survival analysis. Wiley, New
York.

Friedman JH (2000). “Greedy Function Approximation: A Gradient Boosting Machine.”
Annals of Statistics, 29, 1189–1232.

Hastie T, Tibshirani R, Friedman JH (2009). The Elements of Statistical Learning: Data
Mining, Inference, and Prediction. 2 edition. Springer. ISBN 978-0-387-84857-0.

Ishwaran H (2007). “Variable importance in binary regression trees and forests.” Electronic
Journal of Statistics, 1, 519–537.

Ishwaran H, Kogalur UB (2007). “Random survival forests for R.” R News, 7, 25–31.

Ishwaran H, Kogalur UB (2010). “Consistency of random survival forests.” Statistics and
Probability Letters, 80, 1056–1064.

http://CRAN.R-project.org/package = plot3D
ftp://ftp.stat.berkeley.edu/pub/users/breiman/OOBestimation.ps.Z
ftp://ftp.stat.berkeley.edu/pub/users/breiman/OOBestimation.ps.Z

Ehrlinger et. al. 39

Ishwaran H, Kogalur UB (2014). “Random Forests for Survival, Regression and Classification
(RF-SRC), R package version 1.5.5.”

Ishwaran H, Kogalur UB, Blackstone EH, Lauer MS (2008). “Random survival forests.” The
Annals of Applied Statistics, 2(3), 841–860.

Ishwaran H, Kogalur UB, Chen X, Minn AJ (2011). “Random survival forests for high-
dimensional data.” Statist. Anal. Data Mining, 4, 115–132.

Ishwaran H, Kogalur UB, Gorodeski EZ, Minn AJ, Lauer MS (2010). “High-dimensional
variable selection for survival data.” J. Amer. Statist. Assoc., 105, 205–217.

Liaw A, Wiener M (2002). “Classification and Regression by randomForest.” R News, 2(3),
18–22.

Tukey JW (1977). Exploratory Data Analysis. Pearson.

Wickham H (2009). ggplot2: elegant graphics for data analysis. Springer New York. ISBN
978-0-387-98140-6.

Affiliation:

John Ehrlinger
Quantitative Health Sciences
Lerner Research Institute
Cleveland Clinic
9500 Euclid Ave
Cleveland, Ohio 44195
E-mail: john.ehrlinger@gmail.com
URL: http://www.lerner.ccf.org/qhs/people/ehrlinj/

mailto:john.ehrlinger@gmail.com
http://www.lerner.ccf.org/qhs/people/ehrlinj/

	About this document
	Introduction
	Data Summary: Primary Biliary Cirrhosis (PBC) Data
	Exploratory Data Analysis
	PBC Model Summary

	Random Survival Forest
	Generalization error
	Training Set Prediction
	Imputation
	Test Set Predictions

	Variable Selection
	Variable Importance
	Minimal Depth

	Variable Dependence
	Marginal Dependence
	Partial Dependence

	Time Dimension
	Variable Interactions
	Conditional Dependence Plots
	Partial dependence coplots
	Partial Plot Surfaces
	Conclusion

