
Qhull examples

David C. Sterratt

18th February 2019

This document presents examples of the geometry package functions which
implement functions using the Qhull library.

1 Convex hulls in 2D

1.1 Calling convhulln with one argument

With one argument, convhulln returns the indices of the points of the convex
hull.

> library(geometry)

> ps <-matrix(rnorm(30), , 2)

> ch <- convhulln(ps)

> head(ch)

[,1] [,2]

[1,] 6 2

[2,] 4 2

[3,] 14 8

[4,] 14 6

[5,] 9 8

[6,] 9 4

1.2 Calling convhulln with options

We can supply Qhull options to convhulln; in this case it returns an object
of class convhulln which is also a list. For example FA returns the generalised
area and

volume. Confusingly in 2D the generalised area is the length of the peri-
meter, and the generalised volume is the area.

> ps <-matrix(rnorm(30), , 2)

> ch <- convhulln(ps, options="FA")

> print(ch$area)

[1] 9.926696

1

http://www.qhull.org

> print(ch$vol)

[1] 5.6298

A convhulln object can also be plotted.

> plot(ch)

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

−1 0 1 2

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

x$p[, 1]

x$
p[

, 2
]

We can also find the normals to the “facets” of the convex hull:

> ch <- convhulln(ps, options="n")

> head(ch$normals)

[,1] [,2] [,3]

[1,] -0.9646147 -0.2636636 -1.3375580

[2,] -0.2056030 -0.9786355 -1.1922798

[3,] 0.1792508 0.9838034 -0.8462883

[4,] 0.5454867 0.8381195 -0.8004543

[5,] 0.6295677 -0.7769456 -1.5903763

[6,] 0.5254235 -0.8508408 -1.5465868

Here the first two columns and the x and y direction of the normal, and the
third column defines the position at which the face intersects that normal.

2

1.3 Testing if points are inside a convex hull with inhulln

The function inhulln can be used to test if points are inside a convex hull.
Here the function rbox is a handy way to create points at random locations.

> tp <- rbox(n=200, D=2, B=4)

> in_ch <- inhulln(ch, tp)

> plot(tp[!in_ch,], col="gray")

> points(tp[in_ch,], col="red")

> plot(ch, add=TRUE)

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●●

●●

●

●

● ●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

−4 −2 0 2 4

−
4

−
2

0
2

4

tp[!in_ch,][,1]

tp
[!i

n_
ch

,]
[,2

]

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

2 Delaunay triangulation in 2D

2.1 Calling delaunayn with one argument

With one argument, a set of points, delaunayn returns the indices of the points
at each vertex of each triangle in the triangulation.

> ps <- rbox(n=10, D=2)

> dt <- delaunayn(ps)

> head(dt)

[,1] [,2] [,3]

[1,] 6 8 9

3

[2,] 4 7 9

[3,] 3 6 8

[4,] 5 6 9

[5,] 5 4 9

[6,] 5 1 6

> trimesh(dt, ps)

> points(ps)

●

●

●

●

●

●

●

●

●

●

2.2 Calling delaunayn with options

We can supply Qhull options to delaunayn; in this case it returns an object
of class delaunayn which is also a list. For example Fa returns the generalised
area of each triangle. In 2D the generalised area is the actual area; in 3D it
would be the volume.

> dt2 <- delaunayn(ps, options="Fa")

> print(dt2$areas)

[1] 0.162675426 0.104496237 0.040860826 0.100195676 0.034601944 0.013507354

[7] 0.001831417 0.028891631 0.035621975 0.010260715 0.018561721 0.010097123

> dt2 <- delaunayn(ps, options="Fn")

> print(dt2$neighbours)

4

[[1]]

[1] -4 4 3

[[2]]

[1] -4 5 -15

[[3]]

[1] 1 -17 9

[[4]]

[1] 1 5 6

[[5]]

[1] 2 4 7

[[6]]

[1] 10 4 12

[[7]]

[1] -15 11 5

[[8]]

[1] -17 11 9

[[9]]

[1] 3 10 8

[[10]]

[1] 6 9 12

[[11]]

[1] 7 8 12

[[12]]

[1] 6 10 11

5

	Convex hulls in 2D
	Calling convhulln with one argument
	Calling convhulln with options
	Testing if points are inside a convex hull with inhulln

	Delaunay triangulation in 2D
	Calling delaunayn with one argument
	Calling delaunayn with options

