
Causal Paths and Exogeneity Tests in

generalCorr Package for Air Pollution and

Monetary Policy

Hrishikesh D. Vinod ∗

September 2, 2017

Abstract

Since causal paths are important for all sciences, my package ‘gen-

eralCorr’ provides sophisticated R functions using four orders of stochas-

tic dominance and generalized partial correlation coefficients. A new

test (in Version 1.0.3) replaces Hausman-Wu medieval-style diagnosis

of endogeneity relying on showing that a dubious cure (instrumental

variables) works. An updated weighted index summarizes causal path

results from three criteria: (Cr1) lower absolute gradients, (Cr2) lower
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absolute residuals, both quantified by stochastic dominance of four or-

ders, and (Cr3) from goodness of fit. We illustrate with air-pollution

data and causal strength of six variables driving ‘excess bond pre-

mium,’ a good predictor of US recessions.

1 Introduction

Econometrics still relies on the medieval diagnosis of a disease (endogeneity)

because a remedy of instrumental variables (IV) estimator appears to“work.”

Actually, the IV remedy has been long known to be seriously flawed as shown

by Bound et al. (1995) with a provocative title “the cure can be worse than

the disease”. This paper illustrates the use of an R package “generalCorr”

to develop a new test which does not use any IV estimator. We indicate

the very few lines of code needed to assess the preponderance of evidence in

support of a causal path using macroeconomic examples which can serve as

a template in many areas of research.

Review of Hausman-Wu test

Consider a possibly non-linear nonparametric regression:

Y = f(X1, X2, . . . Xp) + ε1, (1)

where the researcher wants to make sure that E(Xiε1) 6= 0 holds. Assuming

linear regressions, Wu (1973) provided a formal test of exogeneity of Xi often

called Hausman-Wu test. It defines a vector of contrasts, d = bOLS − bIV ,

between ordinary least squares (OLS), an efficient but potentially inconsistent

(due to endogeneity) estimator and inefficient but consistent (by assumption)
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IV estimator. The covariance matrix of d can be shown to be Vd = V (bIV )−

V (bOLS), and a quadratic form, d′(Vd)
−1d, is asymptotically a χ2(p), with p

degrees of freedom. The Hausman-Wu test amounts to medieval diagnosing

of a disease (endogeneity) by showing that a cure (bIV ) works.

Koopmans (1950) test checks whether exogenous variables“approximately

cause” the endogenous variables, i.e., whether the causal path Xi → Y holds.

The underlying concept is same as in modern texts such as (Davidson and

MacKinnon, 2004, p. 89) stating that the data generating process (DGP)

generating Xi should be independent of Y manifest through the randomness

of ε1.

New Test Compares Flipped Models

Now consider a model obtained by flipping Y and Xi

Xi = f(Y,X1, X2, . . . Xi−1, Xi+1, . . . Xp) + ε2. (2)

which assumes the approximate path Y → Xi. Engle et al. (1983) assume

p = 1 and that f is a linear function to prove that both flipped models have

identical R2 = r2xy values, where rxy is the correlation coefficient. Therefore,

these authors argued that Koopmans’ approximate causality criterion is “am-

biguous” without offering a practical alternative. This paper demonstrates

that the alleged ambiguity is due to linearity and readily avoided in modern

computing environment by extending Vinod (2015b).

Urgency of Replacing the Hausman-Wu test

Many authors including Bound et al. (1993) and Kiviet and Niemczyk (2007),

have warned that in finite samples IV estimators “have systematic estima-

3



tion errors too, and may even have no finite moments.” Moreover they can

be very inefficient (even in large samples) and unnecessarily change the orig-

inal specification. This paper is motivated by the following disadvantages of

Hausman-Wu tests:

1. One must replace Xi with ad hoc, potentially weak and/or irrelevant

instrumental variable before testing for its exogeneity.

2. The test needs to be repeated for each choice of IV to replace Xi.

3. Davidson and MacKinnon (2004) show that degrees of freedom p for

the χ2(p) test can be inappropriate when all Xi are not endogenous.

4. The Chi-square sampling distribution is subject to unverified assump-

tions of linearity and normality, especially unrealistic in finite samples.

Retaining p = 1 and relaxing linearity, consider a general nonlinear non-

parametric kernel regression Model 1:

Yt = G1(Xt) + ε1t, t = 1, . . . , T, (3)

where errors are no longer Normal and independent. Our nonparametric

estimate g1(x) of the population conditional mean function G1(x) is:

g1(x) =

∑T
t=1 YtK(Xt−x

h
)∑T

t=1K(Xt−x
h

)
, (4)

where K(.) is the well known Gaussian kernel function and h is the bandwidth

parameter often chosen by leave-one-out cross validation, Li and Racine

(2007) and (Vinod, 2008, Sec. 8.4).
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Kernel Regressions in generalCorr package

It is well known that kernel regression fits are superior to OLS. The flipped

kernel regression Model 2, obtained by interchanging X and Y in eq. (3), is:

Xt = G2(Yt) + ε2t, t = 1, . . . , T. (5)

The generalized measures of correlation defined by eq. (2) in Zheng et al.

(2012) are:

[GMC(Y |X), GMC[X|Y ] =

[
[1− E(Y − E(Y |X))2

var(Y )
], [1− E(X − E(X|Y ))2

var(X)
]

]
,

(6)

which are computed simply as the R2 values of flipped Models 1 and 2. Since

they generally do differ from each other, the ambiguity in Koopmans’ method

mentioned above is removed.

As measures of correlation the non-negative GMC’s in the range [0,1] pro-

vide no information regarding the up or down overall direction of the relation

between Y and X, revealed by the sign of rxy, the Pearson coefficient. Since

a true generalization of of rxy should not provide less information, Vinod

(2014) and Vinod (2015a) propose the following modification. A general

asymmetric correlation coefficient from the GMC(Y |X) is:

r∗y|x = sign(rxy)
√
GMC(Y |X), (7)

where −1 ≤ r∗y|x ≤ 1. A matrix of generalized correlation coefficients denoted

by R∗ is asymmetric: r∗x|y 6= r∗y|x, as desired. A function in the generalCorr

package, gmcmtx0, provides the R∗ matrix from a matrix of data.
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Our new test of exogeneity uses the“preponderance of evidence” standard

quantified by a comprehensive index, which is a weighted sum of causal di-

rection signs using three criteria Cr1 to Cr3. Our Cr3 which compares R2 of

flipped models is from Vinod (2014). Since elementary statistics teaches us

not to rely on R2 alone, an additional criterion (Cr1) considers evidence from

probability distributions of the absolute values of gradients by using stochas-

tic dominance (SD). Similarly our second criterion Cr2 compares absolute

residuals.

An outline of the remaining paper is as follows. Section 2 provides an op-

erational definition of kernel causality including our assumptions, definitions,

a description of our ‘sum’ criterion incorporating Cr1 to Cr3, and decision

rules explained with a simulation. Section 3 considers statistical inference

using the bootstrap. Section 4 considers examples with a subection 4.1 for

the famous Klein I model and 4.2 considers what macroeconomic variables

drive (cause) excess bond premium known to be a good predictor of reces-

sions. All examples include bootstrap inference for the new test. Section 5

contains a summary and final remarks.

2 Kernel Causality Explained

Assessing philosophically true causality from non-experimental data is non-

trivial, Pearl (2009). Instead, we define a modified causality, called kernel

causality which holds only under certain assumptions, and where the name

kernel causality acknowledges that all our criteria rely on nonlinear nonpara-

metric kernel regressions. We emphasize that Kernel causality has almost
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nothing to do with Granger causality typically involving linear time series

regressions.

Kernel Causality Assumptions:

Our assumptions are:

(A1) Assume that a DGP consists of (X, Y, Z), three sets of variables with

main focus on dependence (causal) links between X and Y with Z

representing additional (confounding or control) variable(s), if any.

(A2) There exists a conditional expectation function E(Y |X,Z) for Model

1 and analogous function E(X|Y, Z) for Model 2 obtained by flipping

X and Y .

(A3) Model 1 DGP is such that X is independently generated (or exoge-

nous) and the dependence of Y on X can be nonlinear and subject to

nonnormal random noise. Model 2 data generation is identical, except

for flipped X and Y .

(A4) It is possible to compare whether Model 1 or Model 2 is better sup-

ported by the data by using quantifiable empirical criteria.

Note that we are assuming away functional relations such as Boyle’s law

(pressure *volume = a constant) because it fails A1 and A3: (i) It fails A1

because one does not typically focus on knowing whether pressure causes

volume or vice versa. (ii) It fails A3 because both pressure and volume can

be independently generated in a typical laboratory.

7



If a majority of Cr1 to Cr3 support the causal path (X → Y ), assump-

tions A1 to A4 guarantee that X is exogenous (independently generated) and

kernel causes Y . We begin with two digressions: (i) stochastic dominance,

needed for Cr1 and Cr2, and (ii) partial correlations needed for Cr3.

Digression 1: Stochastic Dominance Notation

Let us describe stochastic dominance (SD) concepts surveyed in Levy (1992)

without attempting to summarize the vast and growing published and unpub-

lished literature motivated by financial economists’ portfolio choice problem.

We say that one density f(x) dominates another density f(y) in the first

order (SD1) if their respective empirical cumulative distribution functions

(ecdf) satisfy: F (x) ≤ F (y). It is well known that SD1 provides a compre-

hensive picture of the ranking between two probability distributions with a

focus on locally defined first moment (mean).

The underlying computation requires bringing the two densities on a com-

mon ‘support,’ requiring ecdf’s to have up to 2T possible jumps or steps.

Hence there are 2T estimates of F (x) − F (y) denoted by a 2T × 1 vec-

tor (sd1). Anderson (1996) shows how a simple pre-multiplication by a large

patterned matrix implements computation of (sd1). Let us use a simple aver-

age Av(sd1) whose sign (+1, 0,−1) helps summarize the first order stochastic

dominance into only one number.

Second order dominance (SD2) of f(x) over f(y) requires further integrals

of ecdf’s to satisfy:
∫
F (x) ≤

∫
F (y). One computes the numerical integral

by using the trapezoidal rule described in terms of a large patterned matrix

whose details are given in (Vinod, 2008, ch.4) and in Anderson (1996). The
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2T estimates of SD2 denoted by (sd2) are locally defined variances. Their

simple average is denoted as Av(sd2), whose sign (+1, 0,−1) summarizes the

information regarding second order dominance.

Similarly, SD of order 3 is estimated by a vector (sd3) of 2T locally

defined skewness values defined from
∫ ∫

F (x) ≤
∫ ∫

F (y). The sd3 is further

summarized by the sign of Av(sd3). Analogous SD of order 4 for kurtosis

requires
∫ ∫ ∫

F (x) ≤
∫ ∫ ∫

F (y) and measures investor ‘prudence’ according

to Vinod (2004). Average of pointwise kurtosis estimates of SD4 are Av(sd4),

whose sign (+1, 0,−1) summarizes the SD4 dominance information.

Remark 1: By analogy with two streams of investment returns, stochas-

tic dominance allows us to study realistic but fuzzy inequalities (may not hold

for subsets of points) of the type (xt < yt) for t = 1, . . . , T . Stochastic domi-

nance of four orders associated with the four moments yield 2T estimates of

sd1 to sd4. The signs of their averages, Av(sd1) to Av(sd4), indicate whether

the inequality holds true in an overall sense.

Digression 2: Partial Correlations

Consider a general matrix A with elements aij. The minor Aij of A is ob-

tained by deleting i-th row and j-th column. The cofactor of A is a signed

determinant, (Vinod, 2011, Sec. 6.1), defined as: (−1)(i+j)|Aij|.

Having defined cofactors, we are ready to use the matrix of general-

ized correlation coefficients R∗ to define generalized partial correlation be-

tween (X1, X2) after removing the effect of control or confounding variables
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(X3, . . . , Xp) as:

r∗12;3...p =
R∗21√
R∗11R

∗
22

, (8)

where R∗ij is the cofactor of R∗.

Since the minor obtained by deleting first row and second column is dis-

tinct from one obtained by deleting second row and first column, R∗21 6= R∗21.

Hence the numerator cofactor for R∗21 will differ from the numerator cofactor

for R∗21. Thus, r∗12;3...p 6= r∗21;3...p, our partial correlations are asymmetric.

In particular, when p = 3 we have a new formula:

r∗12;3 =
r∗12 − r∗13r∗32√

(1− r∗13r∗31)
√

(1− r∗23r∗32)
, (9)

which is similar to but not the same as the well known partial correlation

coefficient formula from textbooks.

2.1 Kernel Causality from Flipped Model Choice

We determine whether X drives Y , or vice versa by considering the evidence

from the majority of three criteria. They are:

(Cr1) The path X → Y should be more successful than Y → X in mini-

mizing absolute values of local kernel regression gradients evaluated at

Xt, Yt, respectively, for t = 1, 2, . . . , T :

|∂g1(Yt|Xt, Zt)/∂Xt|(Xt) < |∂g2(Xt|Yt, Zt)/∂Yt|(Yt). (10)

(Cr2) The path X → Y should have “smaller” absolute residuals than those

of the flipped model, that is, for t = 1, 2, . . . , T :

|Yt − g1(Xt, Zt)| = (|ε̂1t|) < |Xt − g2(Yt, Zt)| = (|ε̂2t|). (11)
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(Cr3) The fit (and forecasts) implied by the path X → Y should have a

larger R2 = GMC(Y |X,Z) than those of reversed path:

|r∗(y|x; z)| > |r∗(x|y; z)|, (12)

where generalized partial correlation coefficients defined in eq. (8) re-

move the effect of control variable(s), if any.

The inequalities of equations (10) and (11) are fuzzy, requiring stochastic

dominance tools summarized in Remark 1 above. Let us begin with some

definitions.

Definition 1: According to Legal Information Institute (2017) the pre-

ponderance of evidence means a burden to show that greater than 50% of

evidence points to something.

Definition 2: Assuming A1 to A4, we say that X is the kernel cause of

Y (causal path: X → Y ), if at least two of Cr1 to Cr3 criteria satisfying the

preponderance of evidence standard support the path.

Definition 3: Bidirectional causality (X ↔ Y ) or causality marred by

the presence of confounding variable(s) occurs if the evidence does not sup-

port either (X → Y ) or (Y → X).

Remark 2: If relations are strictly linear and/or the errors are precisely

normally distributed, flipped R2 are almost identical creating an ambiguity

of Koopmans’ criterion criticized by Engle et al. (1983). Since we are using

kernel regressions, not OLS, this problem obviously disappears, especially in

light of assumption A3 and stochastic dominance for Cr1 and Cr2 unrelated

to normality or linearity.
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2.2 Weighted sum index from Cr1, Cr2 and Cr3

Applying Remark 1 to the inequality (10) for Cr1, we compute Av(sd`) for

` = 1, . . . 4, magnitudes from absolute gradients of two flipped models. Define

a tolerance constant τ = 0.01, say. If |Av(sd`)| < τ , we say that the sign is

ambiguous, denoted as zero for the `-th SD. When |Av(sd`)| > τ , only the

signs of Av(sd`) not their magnitudes matter. These signs (sg) from the set

(+1, 0,−1), are denoted as sg1`, where the first subscript 1 refers to Cr1. In

practice, the signs sg11 to sg14 are rarely distinct.

Since it is cumbersome to track four signs, we propose a weighted sum,

using the signs, (+1, 0,−1), not magnitudes of Av(sd1) to Av(sd4). Statisti-

cal theory suggests that weights on magnitudes should be inversely propor-

tional to the increasing sampling variances of the first four central moments.

We choose the following weakly declining weights: (1.2/4, 1.1/4, 1.05/4,

1/4), with an option to change them in the R functions silentPairs and

causeSummary of the ‘generalCorr package.

Denote a summary sign index based on Cr1 as sC1. It is computed as:

sC1 = [1.2 ∗ sg11 + 1.1 ∗ sg12 + 1.05 ∗ sg13 + sg14]/4. (13)

When all four (Av(sd1) to Av(sd4)) suggest the same sign, ie, all are (±1),

the largest magnitude of our weighted index of sign by Cr1 is sC1 = ±1.0875.

Analogous signs (+1, 0,−1) of Av(sd1) to Av(sd4) representing absolute

residuals help define their weighted sum for Cr2 is

sC2 = [1.2 ∗ sg21 + 1.1 ∗ sg22 + 1.05 ∗ sg23 + sg24]/4. (14)

As before, if all four dominance measures suggest the same sign, the largest
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magnitude of sC2 is 1.0875. Hence, the sign index based on Cr2 lies in the

closed interval: sC2 ∈ [−1.0875, 1.0875].

The computation of a Cr3 from the inequality test of (12) states that

X → Y if the sign defined as: sg3 = (+1, 0,−1) of the absolute difference

between flipped partial correlations equals (−1). We denote the sign index

based on Cr3 as:

sC3 = sign(|r∗(x|y; z)| − |r∗(y|x; z)|) (15)

where the largest score, max(sg3)= 1. When sg3 < 0, the causal path by Cr3

is X → Y . Note that index always lies in the closed interval: sC3 ∈ [−1, 1].

So far, we have three sign indexes (sC1, sC2, sC3) for the three criteria,

summarizing the evidence supporting the causal path: X → Y . Since our

definition of kernel causality requires us to consider all three criteria, we

compute their ‘sum’ defined as:

sum = sC1 + sC2 + sC3, (16)

from the observed sample data. Let us denote the corresponding true un-

known population value with upper case letters as ‘SUM’. When (SUM < 0)

holds, the causal path is X → Y . Based on the preponderance of evidence,

the sign of sum suggests the direction of the path, while its magnitude ap-

proximates the strength of sample evidence in support of that causal path.

Combining the three largest possible scores verify that: max(sum) =

3.175, and sum ∈ [−3.175, 3.175], a closed interval. A summary index is

defined as 100(sum/3.175) in the range [–100,100]. Since the ‘sum’ and

‘summary index’ measure the extent of agreement among the three criteria,
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its magnitude is a reasonable indicator of the strength (or unanimity) of

evidence for a particular causal path.

Single number summarizing Cr1 to Cr3

The R command causeSummary(mtx,ctrl=Z, nam=colnames(mtx)) requires

a data matrix with p columns called ‘mtx’ with the first column for the depen-

dent variable and remaining column(s) for regressors. The order of columns

is very important. For example, mtx=cbind(x1,x2,x3), where the matrix

‘mtx’ has three columns, denoted as p = 3. Our flipped models fix the first

column x1 and pair it with either x2 or x3 for flipping. We do not pair x2

with x3. Thus we always have p − 1 possible flipped pairs. The code indi-

cates an error if p < 2 or if it is not a matrix. Sometimes one needs to use

as.matrix(mtx). Note that control variables are a separate argument (not

within mtx), as in: causeSummary(mtx, ctrl=0), where the default value

zero means absence of control variables.

The output of ‘causeSummary’ is self-explanatory based on ‘preponder-

ance of evidence’ from a weighted combination of Cr1 to Cr3. Since we have

exactly (p− 1) possible causal path pairs, the summary reports each printed

to the screen. For each pair it reports the name of the causal variable, then

the name of the response variable, the strength index in terms of unanimity

of the sign of the reported causal path. It also reports Pearson correlation co-

efficient and its p-value for testing the null hypothesis: ρ = 0. If the strength

is close to zero, in the range [−5, 5], one should conclude that X ↔ Y , even

though the computer output wrongly picks one of the two paths.

The code su=causeSummary(mtx);xtable(su) may be used to create a

14



Latex table of results from the output of the function. It is a matrix of (p−1)

rows and 5 columns providing summary of pair-wise causal path results.

The first column entitled ‘cause’ names the causal variable, while the second

column entitled ‘response’ names the response. The third column entitled

‘strength’ has absolute value of summary strength index, printed above but

now in the positive range [0,100], summarizing preponderance of evidence

from Cr1 to Cr3 from four orders of stochastic dominance and generalized

partial correlations. The fourth column entitled ‘corr’ has Pearson correlation

coefficient while the fifth column entitled ‘p-value’ is for testing the null of

zero Pearson correlation coefficient.

Our notion of causality is not the true philosophical causality, but an

approximation where a ‘kernel cause’ is simply the variable which is generated

independently. That is, its innovations are self-generated. The dependent

variable or the response variable responds to the innovations of the other

variable in the flipped pair. This notion of causality allows us to create the

causal and dependent variable pairs for the purpose of a simulation. After

considering such a simulation in the next subsection, we discuss bootstrap

statistical inference using the bootstrap proportion P ∗(±1) of occurrences of

positive or negative signs in Section 3, further illustrated in our examples

later.

2.3 Simulation for checking decision rules

The simulation generates the X variable independently and then define Y to

depend on X after adding a noise term, ε ∼ N(0, 1), a the standard normal

deviate. Here the causal path is known to be X → Y , by construction. Our
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sample size is n = 100 and our mtx=cbind(X,Y) enters X as the first column

implying that the correct signs are positive.

Let m denote the count for indeterminate signs when we repeat the exper-

iments N = 1000 times. Define the success probability for each experiment

as:

(succ.prob) =
(count of correct signs)

N −m
. (17)

1. Time regressor:

X = {1, 2, 3, . . . , n}

Y = 3 + 4X + ε

2. Uniform Quadratic:

X has n uniform random numbers

Y = 3 + 4X − 3X2 + ε

3. Two Uniforms:

X1, X2 each have n uniform random numbers

Y = 3 + 4X1 + 3X2 + ε

4. Three Uniforms:

X1, X2, X3 each have n uniform random numbers

Y = 3 + 4X1 + 5X2− 6X3 + ε

The large success rate reported on the last row of Table 1 for the exper-

iments shows that our decision rules using a ‘sum’ from Cr1 to Cr3 work

well. Thus, our procedure using flipped models to identify independently

generated (causal) variables is supported by the simulation.
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Table 1: Summary statistics for results of using the ‘sum’ measure for cor-

rect identification of causal path indicated by its positive sign using N=1000

repetitions, n=100 sample size.

Expm=1 Expm=2 Expm=3 Expm=4

Min. 1.000 -3.175 -3.175 -3.175

1st Qu. 1.500 1.000 1.000 1.175

Median 2.575 1.000 1.175 3.175

Mean 2.373 1.084 1.658 2.110

3rd Qu. 3.175 1.175 3.175 3.175

Max. 3.175 3.175 3.175 3.175

succ.prob 1.000 0.905 0.882 0.970

3 A Bootstrap Exogeneity Test

Statistical inference regarding causal paths and exogeneity uses the ‘sum’

statistic defined in equation (16) for estimating the parameter ‘SUM’ men-

tioned before.

What is the sampling distribution of the ‘sum’ test statistic? We use

the maximum entropy bootstrap (meboot) described in Vinod and López-

de-Lacalle (2009) because it retains the dependence structure (e.g. rankings

of countries) in the data recently supported by simulations in Yalta (2016),

Vinod (2015b) and elsewhere. Here we use meboot to compute a large number

(J = 999) of resamples of (X, Y, Z) data. These are an approximation to

what the data might look like due to random variation in the population,

or the ensemble. The observed (X, Y, Z) data represent only one realization

from the ensemble. One can, of course, use other bootstrap algorithms.
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Recall that sC1 to sC3 is a weighted sum of only three numbers (–1,

0, +1), implying an ordered categorical random variable. Since their sum

defined in equation (16) can have only a finite set of values, the sampling

distribution of the sum statistic has nonzero mass only at those set of points

in the closed interval:

sum ∈ [−3.175, 3.175]. (18)

Since computing the sum automatically cancels positive numbers with neg-

ative numbers, its magnitude measures a weighted vote count, as it were, in

favor of the most enduring (empirically supported) sign of the sum. If, for

example, sum = −3.175, reaching the lower limit of the range, Cr1 to Cr3

are unanimity supporting the causal path X → Y .

Let sumj denote the j-th bootstrap sum where j = 1, . . . J , for each

flipped pair. A direct study of the properties of the sampling distribution

looks at the summary statistics of the J replicates sumj, such as: (mean,

median, quartiles), etc. The signs of these summary statistics reveal the

most preponderant sign in the bootstrap approximation to their population,

illustrated later in Table 2 below. The sign of the mode (most frequently

observed sumj) is also of interest.

A further summary of the sampling distribution can be obtained by com-

puting bootstrap proportion of positive or negative values:

P ∗(+1) = #(sumj > 0.5)/J, and P ∗(−1) = #(sumj < −0.5)/J, (19)

where #(sumj > 0) denotes the number of occurrences of positive signs

out of J computations while ignoring the magnitudes. Thus P ∗(±1) is a
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bootstrap approximation to the probability of a positive or negative sign in

determining the causal path direction.

In the context of simultaneous equation models, consider the null hypoth-

esis that Xj of eq. (1) is exogenous. Then the path implied by eq. (1) should

have greater support than (2). We expect the preponderance of evidence

supporting a negative ‘SUM’.

Define the null and alternative hypotheses for exogeneity as:

H0 : SUM ≤ 0, against H1 : SUM > 0, (20)

Negative values of SUM are desirable, if we want to assure ourselves that

the regressor is exogenous. A simple rule for statistical inference is to re-

ject the hypothesized exogeneity whenever the bootstrap proportion P ∗(+1)

sufficiently exceeds P ∗(−1) for the problem at hand. The Definition 1 sug-

gests preponderance of evidence or > 50% standard. In our experience and

illustrations below a much larger percentage is often attainable.

4 Application Examples

Let us begin with an example where the cause is known to illustrate our

statistical inference using the sum statistic. Vinod (2015a) describes a cross

section data example where Y denotes the number of police officers per 1000

population, and X denotes the number of crimes per 1000 population in

T =29 European countries in 2008.

require(generalCorr);require(Hmisc)

attach(EuroCrime)#bring package data into memory
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causeSummary(cbind(crim,off))

pcause(crim,off,n999=29)

The output of above code below shows that crime causes officer deploy-

ment with strength 100, while bootstrap resampling success proportion is

about 0.59.

causeSummary(cbind(crim,off))

[1] crim causes off strength= 100

[1] corr= 0.99 p-val= 0

cause response strength corr. p-value

[1,] "crim" "off" "100" "0.99" "0"

pcause(crim,off,n999=29) #illustrative bootstrap

[1] 0.5862069

A single bootstrap computation for these data when J = 999 on a home

PC requires about 20 minutes of CPU time. An approximate sampling distri-

bution of ‘sum’ statistic for these data is depicted in Figure 1. We are using

a histogram because the sampling distribution is categorical with nonzero

frequency counts only at a finite set of points. The mode is clearly seen at

–3.175 in the histogram. suggesting that the path (crime→officer deploy-

ment) is not due to random noise, but likely to be present in the popula-

tion. The descriptive statistics for the set of J values of (sumj) are: (first

quartile=–3.175, median =–1.175, third quartile=1), and proportion of neg-

atives, P ∗(−1) = 0.641.
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Histogram of ‘sum' for Crime Data
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Figure 1: European Crime Data Approximate Sampling Distribution of the

sum statistic
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4.1 Klein I simultaneous equations model

This section reports the results for our three criteria regarding exogeneity of

each of the regressors of the three equations of the famous Klein I model. Let

us use the following four-character abbreviations using the upper case trail-

ing L for lagged version of a variable: cons=consumption, coPr=corporate

profits, coPL= corporate profits with a lag, wage=wages, inve=investment,

capL=capital with a lag, prWg=private sector wages, gnpL=GNP with a

lag, and finally, tren=time trend.

Klein’s specification of the expected consumption equation (stated in

terms of fitted coefficients) is:

E(cons) = a10 + a11 coPr + a12 coPL + a13 wage. (21)

The second (investment) equation of the Klein I model is given by:

E(inve) = a20 + a21 coPr + a22 coPL + a23 capL. (22)

The third (wage) equation of the Klein I model is given by:

E(prWg) = a30 + a31 gnp + a32 gnpL + a33 tren. (23)

We report summary statistics for all three criteria combined into the

sumj, j = 1, . . . J defined in eq. (16) leading to a J = 999 × 1 vector of

summary signs, for brevity.

Three columns of Table 2 are for the three equations of the Klein I model.

The rows report descriptive statistics: the minimum, maximum, quartiles

Q1 and Q3, mean and median based on J = 999 bootstrap realizations.

The bottom row of the Table reports the bootstrap probability of a positive
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Table 2: Klein I model: Bootstrap summary statistics for ‘sum’ of eq. (16)

using 999 resamples to represent the population. A positive mean and median

with a large P ∗(+1) imply the relevant regressor might not be exogenous.

cons inve prWg

Minimum -3.1750 -3.1750 -3.1750

1st Quartile, Q1 -1.1750 -1.1750 -1.1750

Median 1.0000 -0.9250 0.0875

Mean 0.4443 -0.1892 0.1874

3rd Quartile, Q3 1.1750 1.1750 1.1750

Maximum 3.1750 3.1750 3.1750

P ∗(+1) 0.597 0.481 0.504

result, P ∗(+1) defined in eq. (19), which are all close to 0.5. The fact

that all equations have the same minimum, maximum, Q1 and Q3 show

that the bootstrap variability is considerable in both tails making the causal

path subject to sampling variability, implying considerable uncertainty in the

estimated ‘sum.’

The signs of means and medians are both positive in columns 1 and 3 for

consumption and private wage equations, implying that wage appears to be

endogenous in the consumption equation (21), while gnp may be endogenous

in the private wage equation (23). The P ∗(+1) = 0.481 < 0.5, along with

the negative sign of the mean and the median in the second column entitled

‘inve’ suggests that coPr appears to be exogenous in the investment equation

(22).
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4.2 Macro Risk Factors for Excess Bond Premium

US Macroeconomists and Federal Reserve researchers have developed new

awareness of their failure to forecast the great recession of 2007-2008. Some

have developed new data series. For example, Gilchrist and Zakraj?ek (2012)

have developed excess bond premium (EBP) and shown that it predicts risk

of a recession. It is interesting to find what causes the EBP itself, possibly

allowing us to understand why EBP predicts recession risk.

Potential causes are: unemployment rate (UnemR), credit creation (Cr-

Crea, not seasonally adjusted), credit destruction (CrDstr, not seasonally

adjusted), yield on 10-year treasury bonds (Yld10, not seasonally adjusted),

effective federal funds rate (EffFFR), and money stock (M2, seasonally ad-

justed billions of dollars). Arguments for using separate variables for CrCrea

and CrDstr are found in Contessi and l. Francis (2013) with additional ref-

erences. We use Federal Reserve’s quarterly data from 1973Q1 to 2012Q4,

with some data missing. Our software tools can efficiently handle missing

data.

We study endogeneity of variables in the following regression model:

EBP = f(UnemR,CrCrea,CrDstr,Yld10,EffFFR,M2) (24)

After getting the data and relevant packages into R memory, we can use

the following commands:

mtx=cbind(EBP,UnemR,CrCrea, CrDstr,Yld10,EffFFR,M2)

p=NCOL(ntx);print(colnames(mtx)[2:p])

silentPairs(mtx)
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The output of this shows that only CrCrea, CrDstr and M2 are negative

implying that they are exogenous.

[1] "UnemR" "CrCrea" "CrDstr" "Yld10" "EffFFR" "M2"

[1] 1.000 -1.000 -1.000 3.175 1.000 -1.000

The above output of ‘sum’ index is in the range: [−3.175, 3.175]. The re-

sults in more intuitive translated range: [−100, 100] plus Pearson correlation

and its p-values require simple code:

su=causeSummary(mtx);require(xtable)

xtable(su)

The Latex Table is printed in the following Table 3. Note that only CrCrea,

CrDstr and M2 are likely to be independently generated (exogenous) causing

the excess bond premium, while the other variables seem to be caused by EBP

(endogenous). None of the magnitudes in the column entitled ‘strength’ is

less than 5, implying that we do not have bidirectional paths.

Table 3: Excess Bond Premium and possible causes

cause response strength corr. p-value

1 EBP UnemR 31.496 0.1443 0.0688

2 CrCrea EBP 31.496 -0.087 0.2739

3 CrDstr EBP 31.496 0.1998 0.0113

4 EBP Yld10 100 0.064 0.4216

5 EBP EffFFR 31.496 0.0657 0.4091

6 M2 EBP 31.496 -0.0103 0.8976
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What about sampling variability of strength index? The bootstrap infer-

ence is computer time intensive. It requires the function pcause as illustrated

in the following code.

p=NCOL(mtx)

ou2=matrix(NA,nrow=p-1,ncol=2)

for (i in 2:p){

pp=pcause(mtx[,1],mtx[,i],n999=999)

ou2[i-1,1]=colnames(mtx)[i]

ou2[i-1,2]=round(pp,6) }

print(ou2)

colnames(ou2)=c("variable", "P(-1,0,1)")

xtable(ou2)

The printed output of the above code is suppressed for brevity. Instead,

our Table 4 shows that sampling distribution results provide a distinct piece

of information not covered by the results about the strength or p-value in

Table 3.

Graphics on Pair-wise Relations

Pretty scatterplots with locally best fitting lines for each pair of data have

now become possible with a nice R package called ‘PerformanceAnalytics’

by Carl and Peterson (2010) with the function chart.Correlation modified

for our purposes in the following code.

require(PerformanceAnalytics)

chartCorr2=function(mtx,temp="temp",nam=colnames(mtx)){
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Table 4: Bootstrap success rates for causal direction using 999 resamples

variable P(±1)

1 UnemR 0.801802

2 CrCrea 0.927928

3 CrDstr 0.626627

4 Yld10 0.947948

5 EffFFR 0.600601

6 M2 1

p=NCOL(mtx)

#print(c("colnames=",nam))

if (p<2) stop("chartCorr2 has input mtx with <2 columns")

nameoplot=nam[2:p]

print(nameoplot)

for (i in 2:p) {

mypath<-file.path("C:",temp,paste(nameoplot[i-1],".pdf",sep=""))

pdf(file=mypath,width=9,height=7)

chart.Correlation(mtx[,c(1,i)])

dev.off()

}# end i loop

}#end function

chartCorr2(mtx)

All figures are analogous. Histograms of the two variables is seen in the

diagonal panels. The South West panel has a scatter diagram and locally

best fitting free hand curve. The number in the North East panel is the
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ordinary correlation coefficient whose font size suggests its statistical signif-

icance, with stars increasing with 10%, 5% and 1% level. Figures provide

visual impressions while the exact correlation coefficients and their p-values

are also found in Table 3 with more decimal points.
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Figure 2: Scatterplot with nonlinear curve: EBP-UnemR

Our evidence including Figure 2 suggests that the variation in UnemR is

endogenous, caused by EBP with a scatterplot having a mildly up-down-up

pattern.

Our evidence including Figure 3 suggests that the variation in credit cre-

ation is exogenous. Its scatterplot is mostly flat and lots of noise.

Our evidence including Figure 4 suggests that the variation in credit de-

struction is exogenous. This scatterplot is also mostly flat with lots of noise,

similar to credit creation.
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Figure 3: Scatterplot with nonlinear curve: EBP-CrCrea
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Figure 4: Scatterplot with nonlinear curve: EBP-CrDstr
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Figure 5: Scatterplot with nonlinear curve: EBP-Yld10

Our evidence including Figure 5 suggests that the variation in the yield

on 10-year notes is endogenous, caused by EBP with a scatterplot having a

mildly up-down pattern.

Our evidence including Figure 6 suggests that the variation in the effective

federal funds rate is endogenous, caused by EBP with a scatterplot having a

mildly up-down pattern. The non-deterministic variation in Effective Federal

Funds rate (EffFFR) is less ”original or independent” than the correspond-

ing variation in EBP. When EBP is negative and rises toward zero EffFFR

increases, but beyond zero it decreases with increase in EBP. It would be

interesting to consider the ”surprise” component of the effective FFR and its

relationship with the EBP

Our evidence including Figure 7 suggests that the variation in money
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Figure 6: Scatterplot with nonlinear curve: EBP-EffFFR
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Figure 7: Scatterplot with nonlinear curve: EBP-M2
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stock M2 is exogenous with a scatterplot having a mildly down-up pattern.

The non-deterministic variation in EBP is less ”original or independent” than

the corresponding variation in money stock M2. ). The graphics reveals that

when EBP is negative and rises toward zero as M2 decreases, but beyond the

zero EBP M2 increases with increase in EBP.

4.3 Airquality data

Our next example shows how the causeSummary function of the package pro-

vides reasonable results showing that all meteorological variables are exoge-

nous for Ozone (ppb) air pollution in New York in 1973, using some famous

data always available in R.

library(generalCorr)

c1=causeSummary(as.matrix(airquality))

library(xtable)

xtable(c1)

Table 5: Ozone pollution and its various known causes

cause response strength corr. p-value

1 Solar.R Ozone 100 0.3483 2e-04

2 Wind Ozone 31.496 -0.6015 0

3 Temp Ozone 100 0.6984 0

4 Month Ozone 31.496 0.1645 0.0776

5 Day Ozone 31.496 -0.0132 0.8879

The results in Table 5 show that solar radiation (lang) and temperature
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(degrees F) have strongly independent variation, influencing Ozone pollution

levels with high strength of 100 for both, suggesting unanimity of Cr1 and

Cr2 criteria at all four stochastic dominance levels and further confirmed by

Cr3.

Other variables: Wind (mph), month number (1:12) and Day number

(1:31) also affect Ozone, but the causal direction is not unanimous. Hence the

strength index is only 31.496 for them. Not surprisingly, high wind reduces

Ozone pollution is indicated by the significantly negative (–0.6015) Pearson

correlation coefficient with a near zero p-value. Additional comments about

Table 5 are omitted for brevity.

We use following code to generate a table of bootstrap results.

options(np.messages=FALSE)

bb=bootPairs(airquality, n999=999)

ap=apply(bb$out,2,summary)

ap2=rbind(ap,bb$probSign)#P* at the bottom of summary table

xtable(ap2,digits=3)

The results are summarized in Table 6, where the ‘sum’ index is in the

range [−3.175, 3.175]. We can focus of the means to obtain the overall effect.

The bottom row of Table 6 reports the relative frequency of negative values

according to the definition (17) implying a success probability in obtaining

a negative sign after removing from the denominator all bootstrap estimates

m lying in the bidirectional range [−0.05, 0.05]. For our example, m = 0 for

all columns. The bottom line shows that the negative signs in all columns

are very reliably estimated. It may be convenient to simply set m = 0 in the

denominator (N −m), leading to conservative estimates of success rates.
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Table 6: Variability of ‘sum’ over 999 bootstrap resamples using airquality

data

Solar.R Wind Temp Month Day

Min. -3.175 -3.175 -3.175 -3.175 -3.175

1st Qu. -3.175 -2.575 -1.500 -1.600 -1.000

Median -3.175 -1.000 -1.175 -1.000 -1.000

Mean -2.347 -1.539 -1.520 -1.531 -0.957

3rd Qu. -1.175 -1.000 -1.175 -1.000 -1.000

Max. 1.975 1.175 1.000 -0.500 2.025

P ∗(−1) 0.9459 0.9299 0.9710 1.0000 0.9760

‘silentMtx’ illustrated with ‘mtcars’ automobile data

In some engineering applications the causal direction is up to the engineer in

the sense that she can change engineered settings for one variable to study

its effect on some other variable. We use well known ‘mtcars’ data always

available in R to describe the function ‘silentMtx’ which prints a signed ma-

trix of unanimity indexes in the range [–100, 100] for each pair of variables

allowing for some variables to be treated as control. Let us use the sixth

variable ‘wt’ or weight of the car as the control.

require(np);require(generalCorr);options(np.messages=FALSE)

silentMtx(mtcars[,1:4],ctrl=mtcars[,6])

The interpretation of signed unanimity indexes is self-explanatory in the

following R outpout.
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[1] "Negative index means the column named variable

kernel-causes row named"

[1] "Positive index means the row named variable

kernel-causes column named"

[1] "abs(index)=sign unanimity by weighted sum of

3 signs from Cr1 to Cr3"

mpg cyl disp hp

mpg 100.000 -31.496 37.008 -31.496

cyl 31.496 100.000 -31.496 37.008

disp -37.008 31.496 100.000 -31.496

hp 31.496 -37.008 31.496 100.000

For example, the negative element [1,4] =–31.496 suggests that the column 4

variable ‘hp’→‘mpg’, the row 1 variable. The absolute value of the unanim-

ity index 31.496 suggests that the direction of the path is not unanimously

supported by Cr1 to Cr3. The element at the diagonally opposite location

[4,1] =31.496 has the opposite positive sign. It means that the column 1

variable ‘mpg’←‘hp’, the row 4 variable. Both paths are exactly the same

even though the signs are opposite, as they should be. For another example,

verify that ‘mpg’→‘disp’ from both [1,3] and [3,1] elements.

If the argument matrix ‘mtx’ has p rows, ‘silentPairs’ provides a useful

summary vector with (p − 1) elements, focused on the first column paired

with all other columns in the range [–3.175, 3.175]. By contrast, ‘silentMtx’

provides a useful summary matrix all causal path pairs converted to the

intuitive range [–100, 100].
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5 Summary and Final Remarks

Medicine has long rejected medieval-style diagnoses of diseases by simply

showing that a cure works. Hausman-Wu tests are shown to be similarly

flawed as they use IV estimators which can“do more harm than good”(Bound

et al., 1995, p. 449), and are criticized as being “very inefficient” by Kiviet

and Niemczyk (2007), Dufour, and others. This paper suggests an alternative

Koopmans (1950) suggested that exogenous variables Xi should “approx-

imately cause” the dependent variables Y , but not vice versa. Engle et al.

(1983) correctly show that Koopmans’ methods cannot unambiguously iden-

tify the causal variable, since two flipped linear regressions (Y on Xi) and

(Xi on Y ) have the same R2. We show that modern computing tools and

concepts including Zheng et al. (2012) allow us to remove the linearity as-

sumption and focus on Koopmans’ valuable insight that exogenous variables

should have an independently generated DGP.

We suggest that the endogeneity problem is present in an equation if the

left-hand-side variable ‘kernel causes’ the right-hand-side variable in terms

of preponderance of evidence. Hence, we define kernel causality as requiring

satisfaction of at least two out of three criteria Cr1 to Cr3. The Cr3 uses

‘goodness of fit’ when it compares generalized correlation coefficients, sug-

gested in Vinod (2014), such that |r∗y|x| > |r∗x|y| implies that X is the kernel

cause of Y . Vinod (2015a) reports favorable simulations using Cr3 alone.

Section 2.3 here shows how independently generated (exogenous) variables

are mostly correctly identified by using flipped model performance compar-

isons based on a summary of Cr1 to Cr3.

Since it is not safe to rely on goodness of fit alone, the other two crite-
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ria (Cr1, Cr2) here yield two fuzzy inequalities. The Cr1 involves absolute

values of the gradients of kernel regressions and the Cr2 involves absolute

values of residuals. Financial economics has long ago developed tools for a

comprehensive study of fuzzy inequalities between stock market returns of

two competing investment opportunities (e.g., mutual funds) called stochas-

tic dominance of orders 1 to 4 (or SD1 to SD4). See a survey in Levy (1992)

and discussion of SD4 in Vinod (2004).

Our sample statistics measuring SD1 to SD4 are called Av(sd1) to Av(sd4)

which are further aggregated by using weights inversely related to their sam-

pling variances. Weighted sums quantify the Cr1 and Cr2. Our decision rules

based on the ‘sum’ statistic incorporating all three criteria are simulated in

section 2.3 with high success rate.

Our new bootstrap test for exogeneity in section 3 can do statistical in-

ference for the ‘sum’ statistic, using about a thousand estimates. Descriptive

statistics of these estimates, illustrated in Table 2, provide a view of their

sampling distribution to assess the preponderant sign and hence the causal

direction. If significant endogeneity problem persists, econometricians will, of

course, use simultaneous equation models. Koopmans’ “departmental princi-

ple” gives practitioners some flexibility in designating certain non-economic

variables as exogenous, without any need for statistical testing.

We illustrate the new test using the Klein I simultaneous equations model.

Our Section 4.2 considers a novel model explaining the ‘excess bond premium’

(EBP) known to be a good predictor of US recessions. We study detailed re-

lation between EBP and six variables including various criteria and graphics,

providing software tools for implementation based on the R package ‘gener-
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alCorr.’ Our evidence suggests that the variation in three variables: credit

creation (CrCrea), credit destruction (CrDstr) and money stock (M2), is

exogenous (independenly generated) causing changes in EBP.

Clearly, practitioners can use our tools readily implemented with very

few lines of code. It is straightforward to extend and modify our tools, if

indicated by future research, since they are open source.
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