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ABSTRACT
Motivation: Functional characterization of genes is of great impor-
tance for the understanding of complex cellular processes. Valuable
information for this purpose can be obtained from pathway databases,
like KEGG. However, only a small fraction of genes is annotated with
pathway information up to now. In contrast, information on contained
protein domains can be obtained for a significantly higher number of
genes, e.g. from the InterPro database.
Results: We present a classification model, which for a specific gene
of interest can predict the mapping to a KEGG pathway, based on
its domain signature. The classifier makes explicit use of the hierar-
chical organization of pathways in the KEGG database. Furthermore,
we take into account that a specific gene can be mapped to differ-
ent pathways at the same time. The classification method produces a
scoring of all possible mapping positions of the gene in the KEGG
hierarchy. Evaluations of our model, which is a combination of a
SVM and ranking perceptron approach, show a high prediction per-
formance. Moreover, for signaling pathways we reveal that it is even
possible to forecast accurately the membership to individual pathway
components.
Availability: The R package gene2pathway is a supplement to this
paper.
Contact: {h.froehlich, t.beissbarth}@dkfz-heidelberg.de

1 INTRODUCTION
Biological characterization of genes is of fundamental importance
for the understanding of complex cellular processes, like cancer.
Valuable information can be obtained from databases, like the Gene
Ontology (GO) (The Gene Ontology Consortium, 2004) or KEGG
(Kanehisa et al., 2008). However, usually only a small fraction of
genes have known functions. Most genes are annotated in GO, only
few in KEGG. For example, the total number of human genes anno-
tated in KEGG currently is about 4,000. This contrasts remarkably
with the estimated number of putative protein-coding genes, which
is 20,000 - 25,000 (Pennisi, 2007). It is therefore highly important
to link other sources of information with these databases to improve
the quality of biological characterization. Especially interesting for
this purpose is the InterPro database (Mulder et al., 2008), which
offers predicted protein domain annotation for ∼19,000 genes. Of
the 4,000 genes in the KEGG database nearly all have at least one
InterPro domain. Together, these comprise ∼3,000 distinct InterPro
domains. Protein domains very often directly correspond to some
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core biological function, such as DNA binding, kinase or phospho-
rylation activity, or to cellular localization. Hence, predicted protein
domains are often utilized for prediction annotations, such as in the
GO database.

Hahne et al. (2008) introduced a method linking protein-domain
signatures with assignments of genes to KEGG pathways. In this
approach one looks for a protein domain signature being signifi-
cantly enriched in a list of genes. This information is then used to
find the most probable pathway these genes come from by compar-
ing the enriched protein domain signature with all pathway domain
signatures.

In contrast to Hahne et al., our aim is to make a prediction and
thus a biological characterization for individual genes. This broad-
ens the applicability of our method significantly. We explicitly take
into account that a particular gene can be mapped to different path-
ways at the same time. Furthermore, our classifier makes use of
the hierarchical organization of the KEGG database in 3 levels: At
the top hierarchy there are the 4 branches “Metabolism”, “Genetic
Information Processing”, “Environmental Information Processing”
and “Cellular Processes” (we do not consider “Human Diseases”
here). On the next hierarchy level each of these branches is divided
further. For instance, “Environmental Information Processing” con-
tains the branches “”Membrane Transport”, “Signal Transduction”
and “Signaling Molecules and Interaction”. On the third hierarchy
level we have the individual KEGG pathways. We expect that a good
classifier should give especially precise predictions at the top levels
of the KEGG hierarchy, while at the bottom levels misclassifica-
tions are more tolerable. That means it is worse to predict a MAPK
pathway (branch “Signal Transduction” in “Environmental Informa-
tion Processing”) gene to be involved in “Olfactory transduction”
(branch “Sensory System” in “Cellular Processes”) than to predict
it as a member of some other signal transduction pathway. This be-
havior, leading to a hierarchical classification scheme, is encoded
into an appropriate loss function within our framework. Our classi-
fier is also able to indicate the reliability of a pathway prediction.
A 10× 10-fold crossvalidation experiment with 2346 genes having
both, a KEGG annotation and a unique protein domain signature,
shows that our method yields good classification performance. We
further demonstrate the usefulness of our method on a microarray
dataset, where we obtain meaningful results.

Signaling pathways are of special importance for the functioning
of biological systems. In an extension of our approach we demon-
strate that it is not only possible to reliably predict a gene’s mem-
bership to the different signaling pathways, but also to connected
pathway components within individual signaling pathways. Again,
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results on our microarray dataset show the biological relevance of
our method.

2 METHODS

2.1 Hierarchical KEGG Pathway Classification
2.1.1 Classification Scheme We suppose that each gene product p is
represented by a binary vector x with component xi = 1, if the correspond-
ing InterPro domain is contained in the protein and 0 otherwise. We hereby
have to take into account that InterPro domains are organized in a hierarchi-
cal fashion. Hence, if domain i is contained in p, also all its parent domains
are contained in p, and therefore all corresponding positions in x have to be
1 as well.

The mapping position(s) of a gene to the KEGG hierarchy can be encoded
into a binary vector C as well. The dimension K of this vector equals the
number of individual KEGG pathways + the number of branches at level 2 +
the number of branches at top level. We set component Cl = 1, if the gene
maps to the corresponding branch or any of its sub-branches. Note that any
position code vector C can contain more than one 1, if the corresponding
gene maps to more than one branch in the KEGG hierarchy.

Given a binary vector representation x for a gene product p, our classi-
fication scheme now consists of two basic steps, which are an adaption of
an approach proposed by Melvin et al. (2007) for classifying proteins within
the SCOP hierarchy:

1. On each hierarchy level we use Support Vector Machine (SVM) clas-
sifiers, trained to separate one specific branch from all others. Linear
kernels are used, and all soft margin parameters C = 1. Each SVM
classifier j will produce a decision value fj(x) ∈ R. Please note that
the decision value is not the same as the predicted class label, which is
the sign of the decision value. For each gene product p represented by a
binary vector x we summarize the decision values of all K SVMs into
a input code vector ~f(x) = (f1(x), ..., fK(x)).

2. Each input code vector ~f(x) is mapped on the best matching position
code vector(s)

C∗ = Cĵ (1)

ĵ = arg max
j
〈Cj , ~f(x) ∗w〉 (2)

where {C1, ...,Cm} is a dictionary of possible position vectors, w
is a weight vector and ∗ indicates component-wise multiplication. The
dictionary of position vectors consists of all unique position vectors
from a training set of gene products with both, KEGG and InterPro
domain annotation. The weight vector w is chosen to minimize the
mismatch between predicted and true KEGG hierarchy positions on the
training data.

Please note that the maximum in Eq. (2) is not necessarily unique. In
other words, it is possible to predict several positions vectors, which are
all equally likely. Hence, we capture the often appearing situation that
a gene maps to several positions in the KEGG hierarchy at the same
time.

2.1.2 Training Procedure Similar to the classification scheme, the
training procedure consists of two steps.

1. All K binary SVM classifiers are trained to obtain a position labeled
data set D = {(~f1(x1),C1), ..., (~fn(xn),Cn)}. For training the in-
dividual SVMs we only use genes belonging to the same super-branch.
E.g. for training the SVM classifier detecting signal transduction, we
only use genes mapping to other branches than signal transduction in
“Environmental Information Processing” as negative examples. Each

Algorithm 1 Pseudocode for the ranking perceptron algorithm to
learn the input code vector weighting. The learning rate η was set to
0.1 here.
Input: Learning rate η, position labeled data set D
Output: weight vector w
Define F (x, y) = 〈Cy, ~f(x) ∗w〉
w = 0
for i = 1 to n

foes(i) = {1, ..., n} − {p|`(Ci,Cp) = 0}
l = arg maxp∈foes(i) F (xi, p)
if F (xi, i)− F (xi, l) < 2

w← w + η · `(Ci,Cl) · (~f(xi) ∗Ci − ~f(xi) ∗Cl)
end for

SVM classifier is thus trained to detect one specific branch in the KEGG
hierarchy only.

2. Given the position labeled data set D, we employ the modified ranking
perceptron algorithm presented in Melvin et al. (2007) to learn a weight
vector w of the input code vectors ~fi(xi). In the spirit of SVM clas-
sifiers the weight vector is optimized to maximize the margin between
position code vectors Ci, Cj with Ci 6= Cj in input code vector
space. The algorithm shown in Figure 1 involves updating w propor-
tional to the loss we obtain by predicting a wrong position vector Cj

instead of the true position vector Ci. The choice of this loss function
is the essential part of the algorithm, because it reflects our knowledge
about the KEGG hierarchy. Making a wrong prediction at the higher
levels of the hierarchy should be punished more than confusing indi-
vidual KEGG pathways at the bottom level. We therefore set up the
following loss function:

`(C,C′) =

KX
i=1

ci1{Ci 6= C′i and ((Cj = C′j ∀j ∈ Anc(j)) or (Anc(j) = ∅))}

(3)

where Anc denotes the set of all ancestors of branch j and 1 is the
indicator function. By this loss function we punish the first mismatch on
the path down the hierarchy to the final predicted position. The higher
in the hierarchy the mismatch occurs, the higher the punishment ci

should be. We thus choose

ci =
|T (i)|
|T (root)|

(4)

where |T (i)| denotes the size of the hierarchy down of branch i and
|T (root)| is the size of the complete KEGG hierarchy.

2.2 Hierarchical Signaling Pathway Component
Classification

Viewing all gene-gene interactions as an undirected graph, we calculated the
connected components for each signaling pathway (Siek et al., 2002). Our
hierarchy for signaling pathways thus consists of two levels: At the first level
we have all individual signaling pathways and at the second level we have
their corresponding connected components. The training and classification
procedure is then the same as described above.

3 RESULTS
3.1 Estimating Prediction Performance
3.1.1 Hierarchical KEGG Pathway Classification We used all
human genes annotated in both, KEGG and InterPro. KEGG an-
notation was retrieved via the R package KEGG 2.0.1 (released
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August 2007). InterPro annotation was retrieved directly from the
Ensembl database (Flicek et al., 2008) via the R package biomaRt
1.12.1 in March 2008. Hierarchy information for KEGG and Inter-
Pro was obtained from the corresponding homepages via FTP in
March 2008. 3705 genes had both, KEGG and InterPro annotation.
Since for estimating the classification accuracy we employed a 10-
fold cross-validation procedure, we decided to remove genes with
the same InterPro annotation, thus avoiding an overoptimistic pre-
diction performance estimation by having one of the duplicates in
the training and one in the test set. This way our set of genes was
reduced to 2346, containing 2752 distinct InterPro domains in total.

As already noted by Hahne et al. (2008) it is unlikely to reliably
separate metabolic pathways based on their InterPro domain signa-
tures. We thus decided to prune the KEGG hierarchy in order to
improve the prediction accuracy for branches of especially high im-
portance. We cut the hierarchy for metabolic pathways at the top
and for “Genetic Information Processing” pathways at the 2nd hi-
erarchy level. At the same time we required to have more than 30
genes to be mapped to the corresponding hierarchy branch in order
to consider it in the classification hierarchy. This way we ended up
with a total of 53 hierarchy branches to distinguish (Table 1).

We ran a 10 times repeated 10-fold cross-validation procedure
to assess the prediction performance of our hierarchical classifica-
tion model. The classification performance was evaluated using four
different measures:

1. the accuracy, measured as 1 - average classification loss (Eq.
3)

2. the precision (also known as positive predictive value), defined
as TP

TP+FP
, where TP andFP are the number of true positives

and false positives summed over all hierarchy branches. I.e. we
first calculated true and false positives for each component in
the position code vector individually and then summed up.

3. the recall (also known as sensitivity), defined as TP
FP+FN

,
where FN are the number of false negatives summed over all
hierarchy branches.

4. the F1 value, defined as 2·precision·recall
precision+recall

The results, depicted in Figure 1 (left) as boxplots showed a high
median accuracy of >95% and a median F1 value of ∼60% with
precision and recall being in the same range. It should be noted that
only the accuracy measure takes into account the KEGG hierarchy
via the loss function Eq. 3, whereas the other 3 measures weight
all errors equally. Further analysis of the median F1 values for all
top level and second level hierarchy branches approximately showed
a uniform distribution, i.e. all branches could be predicted equally
well within each hierarchy level.

To train our final hierarchical classification model, which we em-
ployed to give predictions on further unseen datasets, we used the
complete set of 3705 genes without removing duplicates. The num-
ber of hierarchy branches to distinguish was 58 now (see Table 1).
For further improvement of predictive power and in order to ob-
tain confidence scores for predictions, our final model was bagged
(Hastie et al., 2001). That means we drew 11 bootstrap training
datasets with replacement and trained our classification model on
each of them. To give a prediction, the majority vote among these
11 sub-models was used. This was done for each component in the
position code-vector separately. A confidence score for the complete

prediction can then be calculated as

score =
1

2
(v̄+ + 1− v̄−) (5)

where v̄+ is the average of all vote proportions >50% and v̄− the
average of all vote proportions ≤ 50%.

3.1.2 Hierarchical Signaling Pathway Component Classification
A setup similar to the one described above was chosen. The num-
ber of human genes with a unique InterPro domain signature and a
corresponding KEGG annotation was 515 and the total number of
used InterPro domains 795. A minimum of 10 mapping genes per
pathway component was required. Therefore, we ended up with 19
hierarchy branches to distinguish (see Table 1).

The result, depicted in Figure 1 (right) showed a high median
accuracy of∼100% and a median F1 value of∼70% with precision
and recall being in the same range. Again, the median F1 values
for all top level and second level hierarchy branches approximately
followed a uniform distribution, i.e. all branches could be predicted
equally well within each hierarchy level.

To train our final hierarchical classification model, the same pro-
cedure was used as described above. The total number of genes
used for training was 788, and the number of hierarchy branches
to distinguish was 22 (see Table 1).

3.2 Application to Microarray Data
We applied our method to predict the KEGG pathway member-
ship for a microarray dataset produced in our department: human
MCF-7 breast cancer cells were treated with 100 nM tamoxifen for
48 hours. On mRNA level effects were measured with in-house
developed cDNA two-color microarrays having 26,722 function-
ing probes (Barth et al., 2006). After VSN normalization (Huber
et al., 2002) 2937 differentially expressed genes were found with
limma (Smyth, 2004) using a Benjamini-Hochberg FDR cutoff of
5% (Benjamini and Hochberg, 1995). Further details on the exper-
iment can be obtained from the authors upon request. The 26,722
probes correspond to 12,692 genes with an Entrez gene ID, of which
for 10,057 InterPro annotation and for 2760 KEGG annotation was
available. Comparison of our predicted and the original KEGG path-
way annotations for the 2760 common genes indicated a very good
median accuracy of∼100% with a median F1 value∼80% and pre-
cision and recall in the same range (Figure 2 left). There were a few
outliers, as indicated in the boxplot. These genes are mostly linked
to the KEGG category “Human Diseases”, which we did not include
in our model.

By our model we could predict pathway memberships for sev-
eral genes with previously unknown KEGG annotation: E.g. NR2C2
is a member of the nuclear hormone receptor family and acts as
ligand-activated transcription factor (Yoshikawa et al., 1996). We
predicted NR2C2 to belong to the branch “Neuroactive ligand-
receptor interaction” (confidence = 99.66%), which exactly fits this
knowledge. As another example we predicted TOMM34 to be a
member of the branches “Folding, Sorting and Degradation” and
“Cell Cycle” (confidence = 100%). Indeed, the protein encoded by
TOMM34 is involved in the import of precursor proteins into mito-
chondria. The encoded protein has a chaperone-like activity, binding
the mature portion of unfolded proteins and aiding their import into
mitochondria (Chewawiwat et al., 1999).
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Figure 1. Prediction performance of our method (10×10-fold cross-validation). The accuracy measure uses the same loss-function, which was used to train
the classifier, and which takes into account the KEGG hierarchy. Left: Pathway prediction within pruned KEGG hierarchy (53 branches). Right: Pathway
component prediction for signaling pathways (19 branches)).

In a second step of our analysis we filtered those genes, which
were either known to be involved in signal transduction by KEGG
annotation (458 genes), or which were predicted by our model to
map to the corresponding KEGG hierarchy branch with confidence
>99% (164 genes). Comparison of our pathway component pre-
dictions for the 458 genes with the original KEGG information,
revealed a very high median accuracy of ∼100% with a median
F1 value >80% and precision and recall in the same range (Fig-
ure 2 right). As an example application of our model in Figure 3 we
depict the predicted connected component for PLCH2 (confidence
= 100%) in the calcium signaling pathway, for which previously
no KEGG annotation was available. The gene has an associated
GO function “calcium ion binding” and GO process “intracellular
signaling cascade” (The Gene Ontology Consortium, 2004).

In a final step we looked for those KEGG branches, which were
statistically overrepresented in the set of differentially expressed
genes compared to the rest. We used all predicted and all original
KEGG annotation for this purpose. Fisher’s exact test was employed
to assess statistical significance, and a multiple testing correction
using the method of Benjamini and Yekutieli (Benjamini, Y. and
Yekutieli, D., 2001), which assumes statistical dependence of the
individual tests, with a 10% cutoff was performed. The test shows
an enrichment of metabolic, cell motility and cancer related path-
ways. None of this would have been found using KEGG annotation
only.

4 CONCLUSION
We presented a novel hierarchical classification method, which can
predict the KEGG annotations of individual genes based on their
InterPro domain signatures. In an extension of our approach we
showed that it is also possible to classify individual signaling path-
way components via InterPro domain information. We think that
linking KEGG with InterPro is an important step to generate new
hypotheses about genetic pathways, which is finally of fundamental
importance for a better understanding of human diseases like can-
cer. With our method it is not only possible to analyze lists of genes,
as done in Hahne et al. (2008), but to give predictions for individual
genes of interest. This way we can drop the unrealistic assumption
that all genes in the list come from the same pathway. Moreover,

Figure 3. Predicted pathway component (marked yellow) for PLCH2 in the
Calcium signaling pathway.

our method is not restricted to microarray experiments any more,
but can be used in a much broader spectrum of applications.

We have implemented our method in the R package gene2pathway,
which is available as a supplement to this paper.
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Figure 2. Prediction performance of the hierarchical classification model on an external validation set for the pruned KEGG hierarchy (left, 2760 genes) and
for signaling pathway components (right, 458 genes).
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Table 1: Pruned KEGG hierarchy used for our classification model. Hierarchy branches marked with ’–’
are left out in the cross-validation procedure, but are included in the final model. For signaling pathways
the number in brackets indicate the number of connected pathway components. The first number refers
to the number of connected pathway components used in the final model, and the second (italic) to the
number used in the cross-validation procedure.

Level 1 Level 2 Level 3

Metabolism — —

Genetic Inf. Proc. Transcription (–) —

Translation —

Folding, Sorting, Degradation —

Env. Inf. Proc. Membrane Transport (–) —

Signal Transduction MAPK pathway
ErbB pathway (2, 0)
Wnt pathway (2)
Notch pathway
Hedgehog pathway
TGF-β pathway (3, 2)
VEGF pathway
Jak-STAT pathway
Calcium signaling (4)
Phosphatidylinositol system
mTOR signaling (–)

Signaling Molecules and
Interaction

Neuroactive ligand-receptor interaction
Cytokine-cytokine receptor interaction
ECM-receptor interaction
Cell adhesion molecules

Cellular Processes Cell Motility —

Cell Growth and Death Cell Cycle
Apoptosis
p53 pathway

Cell Communication Focal adhesion
Adherens junction
Tight junction
Gap junction

Endocrine System Insulin pathway
Adipocytokine pathway
PPAR pathway
GnRH pathway
Melanogenesis

Immune System Hematopoietic cell lineage
Complement and coagulation cascades
Toll-like receptor pathway
Natural killer cell mediated cytotoxicity
Antigen processing and presentation
T cell receptor signaling
B cell receptor signaling
Fc-ε RI pathway
Leukocyte transendothelial migration

Nervous System Long-term potentiation
Long-term depression

Sensory System Olfactory transduction (–)
Taste transduction (–)

Development —
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