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1 Introduction

Twin and family studies have been the standard approach for heritability estimation, where
differences between monozygotic and dizygotic twin pairs are attributed to genetics and familial
relationships are linked with a polygenic effect. Usually the estimate from twin studies is higher
than that from family studies. It is difficult to tease out influence of the common environment
for both types of data.

There has been a lot of interest recently in use of genomic relationship matrices (GRMs)
regardless their famiilial background so unrelated individuals can also be used (Yang et al.
(2010)). The GRM associated with a polygenic component in a random effects or mixed model
mirrors the role of a relationship matrix based on family structures. A dedicated computer
program called GCTA is available (Yang et al. (2011)). Work has been done to show the utility
of GRM in linkage studies (Day-Williams et al. (2011)) and heritability estimation (Klimentidis
et al. (2013)).

Here we use a very simple family to illustrate heritability estimation. As GRMs typically
involve large quantity of genomic data, we will use the relationship matrix derived from the
family structure as if it was a GRM. We then provide examples to read/write GRMs either in
text or binary format as required by GCTA. A version showing estimated GRM in the computer
program PLINK is also provided.

2 Data

The data is on a single family from the computer program Morgan.

> library(gap)
> head(151,10)

id fid mid sex aff qt
i 1 0 0 1 1-0.9642
2 2 0 0 2 1 1.0865
3 3 0 0 1 1-0.5363
4 4 0 0 2 1 0.4514
5 5 1 2 1 1 0.0538



6 6 1 2 1 1 -1.2667
7T 7 3 4 2 1 NA
8§ 8 3 4 2 1 0.1743
9 9 0 0 2 1 0.2923
1010 O O 1 1 NA
library(kinship2)

>
> ped <- with(151,pedigree(id,fid,mid,sex))
> pdf ("figures/151.pdf")

> plot(ped)
> dev.off ()
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and the pedigree diagram is as follows,
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3 Model

We can obtain a linear mixed model for the quantitative trait (qt) in 151 above.

> library(gap)
> k2 <- kin.morgan(151)$kin.matrix*2
> k2[1:10,1:10]

i1 2 3 4 5 6 7 8910
1 1.00.00.00.00.50.50.00.00 0
2 0.01.00.00.00.50.50.00.00 O
3 0.00.01.00.00.00.00.50.50 0
4 0.00.00.01.00.00.00.50.50 0
5 0.50.50.00.01.00.50.00.00 0
6 0.50.50.00.00.51.00.00.00 0
7 0.00.00.50.50.00.01.00.50 O
8 0.00.00.50.50.00.00.51.00 O
9 0.00.00.00.00.00.00.00.01 O
10 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0 1
> library(regress)
> r <- regress(qt ~ 1, “k2, data=151)
> r$sigma

k2 In
0.2817099 0.4444962
> r$sigma.cov
k2 In

k2 0.07163300 -0.03991478
In -0.03991478 0.04042731

The function kin.morgan is readily used for the well-ordered pedigree. The relationship matrix
is supplied to regress function for parameter estimation. We can also generate a binary trait
(bt) and run through the regression model similarly,

> N <- dim(151) [1]

> w <- with(151,quantile(qt,probs=0.75,na.rm=TRUE))
> 151 <- within(151, bt <- ifelse(qt<=w,0,1))

> with(151,table(bt))

bt
0 1
32 11

> d <- regress(bt ~ 1, "k2, data=151)
> d$sigma



k2 In
0.0307703 0.1678370

> d$sigma.cov

k2 In
k2 0.003615481 -0.002525622
In -0.002525622 0.003492826

4 Heritabilities

Once the mixed models are obtained, we can get the heritability estimates. Note that although
we set a population prevalence (K) to be 0.25, there were 11 cases and 40 controls from the
simulation, leading to a case/control proportion (P) of 11/51=0.2156863.

The heritability estimate is a ratio of polygenic and phenotypic variance and available from
function h2G which also gives the associate variance estimate. Internally, this involves function
VR for calculating variance of a ratio. We illustrate with the example given above,

library(gap)

# qt

sigma <- c(0.2817099, 0.4444962)
sigma.cov <- matrix(
c(0.07163300, -0.03991478,
-0.03991478, 0.04042731), 2, 2)
h2G(sigma,sigma.cov)

vV + + VvV Vv VvyVv

Vp = 0.7262061 SE = 0.1795292
h2G = 0.38792 SE = 0.3136308

> # bt

> sigma <- c¢(0.0307703, 0.1678370)

> sigma.cov <- matrix(

+ ¢(0.003615481, -0.002525622,

+ -0.002525622, 0.003492826), 2, 2)
> h2G(sigma,sigma.cov)

Vp = 0.1986073 SE = 0.04535486
h2G = 0.1549304 SE = 0.2904298

As only a single family is involved in the analysis, it is not surprising to see large standard
errors. For a case-control study, the heritability estimation is based on a liability threshold model
and the connection is furnished through the function h21 taking into account the population
prevalence and the proportion of cases in the sample (Lee et al. (2011)).

> h21(K=0.25, P=11/51, h2=0.1549304, se=0.2904298)

K= 0.25 P = 0.2156863
h2 = 0.1549304 SE = 0.2904298 h2l1 = 0.3188476 SE = 0.597706



which yields a larger point estimate nevertheless with larger standard error. The relationship
between population prevalence and heritability will be seen more clearly later.

It makes sense to illustrate with real data. Before doing that, we would like to indicate that
when a model includes gene-environment interaction, (restricted) maximum likelihood estimate-
ors would involve three variance components, heritabilities associated with both polygenic and
interaction are obtained via function h2GE.

Below is an example from a real session of GCTA analysis but we only keep the variance
components and their (lower-triangular) variance-covariance matrix as input to the relevant
functions described above.

> library(gap)

> V <= ¢(0.017974, 0.002451, 0.198894)

> VCOV <- matrix(0,3,3)

> diag(VCOV) <- c(0.003988, 0.005247, 0.005764) "2
> Veov[2,1] <- -7.93348e-06

> VCOvV[3,1] <- -5.54006e-06

> VCoV[3,2] <- -1.95297e-05

> z <= h2GE(V,VCOV)

Vp = 0.219319 SE = 0.003263797
h2G = 0.08195368 SE = 0.01799574 h2GE = 0.0111755 SE = 0.02392398

Here is an example for case-control data,

library(gap)

h2 <- 0.274553

se <- 0.067531

P <- 0.496404

z <- h21(P=P,h2=h2,se=se)

vV VvV Vv VvV

=

= 0
h2 =0

.05 P = 0.496404
.274553 SE = 0.067531 h21 = 0.2329584 SE = 0.05730009
R <- 50
kk <- h2all <- seall <- rep(0,R)
for(i in 1:R)
{
kk[i] <- 0.4*i/R
z <- h21(kk[i],P=P,h2=h2,se=se,verbose=FALSE)
h2all[i] <- z$h21
seall[i] <- z$se
}
h2 <- 0.044
se <- 0.061
z <- h21(P=P,h2=h2,se=se)

VVYV+ + + + + +VVYV

K= 0.05P = 0.496404
h2 = 0.044 SE = 0.061 h21 = 0.03733402 SE = 0.05175853



> h2alls <- sealls <- rep(0,R)

> for(i in 1:R)

+{

+ z <- h21(kk[i],P=P,h2=h2,se=se,verbose=FALSE)

+ h2alls[i] <- z$h21

+ sealls[i] <- z$se

+ }

> pdf ("figures/h21.pdf")

> par(mfrow=c(1,2))

> plot(kk,h2all,type="1",ylab="Adjusted heritability",xlab="Prevalence")
> lines(kk,h2all-seall,lty="dashed")

> lines(kk,h2all+seall,lty="dashed")

> title("(a) h2 = .274 and cases], = 50")

> plot(kk,h2alls,type="1",ylab="Adjusted heritability",xlab="Prevalence",ylim=c(0,0.15))
> lines(kk,h2alls-sealls,lty="dashed")

> lines(kk,h2alls+sealls,lty="dashed")

> title("(b) h2 = .044 and casesj = 50")

> dev.off ()
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Later we also examine the impact of disease prevalence, using a grid over 50 prevalences, on
heritbaility estimation as shown in the following figure,



(a) h2 =.274 and cases% = 50 (b) h2 =.044 and cases% = 50
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This suggests a nonlinear relationship between the observed and adjusted estimtes and high
prevalence puts more weight on the estimator. However, the effect of prevalence and ascertain-
ment adjustment is less pronounced when the heritability is low.

5 Exchange of GRMs between software

We can read or write the GRMs used by GCTA for the example above with the following code,

> p <- matrix(0,N,4)

> for(i in 1:N) p[i,] <- with(151[i,],c(i,i,qt,bt))
> write(t(p),file="51.txt",4,sep="\t")

> NN <- rep(51, N * (N + 1)/2)

> WriteGRM(51,p[,1:2],NN,k2)

> one <- ReadGRM(51)

> grm <- one$grm



> WriteGRMBin(51,grm,NN,p[,1:2])
> two <- ReadGRMBin(51,TRUE)
> sum(one$GRM-two$GRM)

As well as illustrating how to manipulate GRMs in two formats, we also generate a phenotypic
file called 51.txt. Note the function kin.morgan result has an elemenet called kin which is
similar to the vector grm above.

GRM from PLINK, i.e., the .genome file, can be read via a function called ReadGRMPLINK. An-
other function is called WriteGRMSAS can be used to output an 1data as required by type=LIN(1)
in SAS PROC MIXED and PROC GLIMMIX. As for phenotypic data, we again turn to our
pedigree 151 and issue commands,

> library(foreign)
> write.dta(151, "151.dta")

to save the data as an external file in Stata format so that software system such as SAS can read
it directly. Together with relationship matrix we can take a whole range of facilities available
from there. Of course with this particular example, one could use PROC INBREED to generate
a relationship matrix.

Morgan actually provides the relevant result for this pedigree as well. It is possible to work
on kinship matrix generated from SOLAR, Earlier we discussed how to do this kind of analysis
using SAS in Zhao and Luan (2012).
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